aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/LU
diff options
context:
space:
mode:
authorGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-09-22 00:16:51 -0400
committerGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-09-22 00:16:51 -0400
commit4f9e27034392d4f6744509e52f7b7d829e9070ce (patch)
tree863f9817a3b629d5ae3fbf47b7ec1d288052339c /Eigen/src/LU
parent0ad3494bd370ec992ac1eabaec60ea604ea14a29 (diff)
* make LU::kernel() and LU::image() also use ReturnByValue
* make them return zero vector in the degenerate case, instead of asserting (let's stick to the principle that we only assert on memory errors)
Diffstat (limited to 'Eigen/src/LU')
-rw-r--r--Eigen/src/LU/LU.h417
1 files changed, 218 insertions, 199 deletions
diff --git a/Eigen/src/LU/LU.h b/Eigen/src/LU/LU.h
index a5ca9bf8f..300c7152f 100644
--- a/Eigen/src/LU/LU.h
+++ b/Eigen/src/LU/LU.h
@@ -26,88 +26,8 @@
#define EIGEN_LU_H
template<typename MatrixType, typename Rhs> struct ei_lu_solve_impl;
-
-template<typename MatrixType,typename Rhs>
-struct ei_traits<ei_lu_solve_impl<MatrixType,Rhs> >
-{
- typedef Matrix<typename Rhs::Scalar,
- MatrixType::ColsAtCompileTime,
- Rhs::ColsAtCompileTime,
- Rhs::PlainMatrixType::Options,
- MatrixType::MaxColsAtCompileTime,
- Rhs::MaxColsAtCompileTime> ReturnMatrixType;
-};
-
-template<typename MatrixType, typename Rhs>
-struct ei_lu_solve_impl : public ReturnByValue<ei_lu_solve_impl<MatrixType, Rhs> >
-{
- typedef typename ei_cleantype<typename Rhs::Nested>::type RhsNested;
- typedef LU<MatrixType> LUType;
-
- ei_lu_solve_impl(const LUType& lu, const Rhs& rhs)
- : m_lu(lu), m_rhs(rhs)
- {}
-
- inline int rows() const { return m_lu.matrixLU().cols(); }
- inline int cols() const { return m_rhs.cols(); }
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dst.resize(m_lu.matrixLU().cols(), m_rhs.cols());
- if(m_lu.rank()==0)
- {
- dst.setZero();
- return;
- }
-
- /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
- * So we proceed as follows:
- * Step 1: compute c = P * rhs.
- * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
- * Step 3: replace c by the solution x to Ux = c. May or may not exist.
- * Step 4: result = Q * c;
- */
-
- const int rows = m_lu.matrixLU().rows(),
- cols = m_lu.matrixLU().cols(),
- rank = m_lu.rank();
- ei_assert(m_rhs.rows() == rows);
- const int smalldim = std::min(rows, cols);
-
- typename Rhs::PlainMatrixType c(m_rhs.rows(), m_rhs.cols());
-
- // Step 1
- for(int i = 0; i < rows; ++i)
- c.row(m_lu.permutationP().coeff(i)) = m_rhs.row(i);
-
- // Step 2
- m_lu.matrixLU()
- .corner(Eigen::TopLeft,smalldim,smalldim)
- .template triangularView<UnitLowerTriangular>()
- .solveInPlace(c.corner(Eigen::TopLeft, smalldim, c.cols()));
- if(rows>cols)
- {
- c.corner(Eigen::BottomLeft, rows-cols, c.cols())
- -= m_lu.matrixLU().corner(Eigen::BottomLeft, rows-cols, cols)
- * c.corner(Eigen::TopLeft, cols, c.cols());
- }
-
- // Step 3
- m_lu.matrixLU()
- .corner(TopLeft, rank, rank)
- .template triangularView<UpperTriangular>()
- .solveInPlace(c.corner(TopLeft, rank, c.cols()));
-
- // Step 4
- for(int i = 0; i < rank; ++i)
- dst.row(m_lu.permutationQ().coeff(i)) = c.row(i);
- for(int i = rank; i < m_lu.matrixLU().cols(); ++i)
- dst.row(m_lu.permutationQ().coeff(i)).setZero();
- }
-
- const LUType& m_lu;
- const typename Rhs::Nested m_rhs;
-};
+template<typename MatrixType> struct ei_lu_kernel_impl;
+template<typename MatrixType> struct ei_lu_image_impl;
/** \ingroup LU_Module
*
@@ -156,25 +76,6 @@ template<typename MatrixType> class LU
MatrixType::MaxRowsAtCompileTime)
};
- typedef Matrix<typename MatrixType::Scalar,
- MatrixType::ColsAtCompileTime, // the number of rows in the "kernel matrix" is the number of cols of the original matrix
- // so that the product "matrix * kernel = zero" makes sense
- Dynamic, // we don't know at compile-time the dimension of the kernel
- MatrixType::Options,
- MatrixType::MaxColsAtCompileTime, // see explanation for 2nd template parameter
- MatrixType::MaxColsAtCompileTime // the kernel is a subspace of the domain space, whose dimension is the number
- // of columns of the original matrix
- > KernelResultType;
-
- typedef Matrix<typename MatrixType::Scalar,
- MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose
- // dimension is the number of rows of the original matrix
- Dynamic, // we don't know at compile time the dimension of the image (the rank)
- MatrixType::Options,
- MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix,
- MatrixType::MaxColsAtCompileTime // so it has the same number of rows and at most as many columns.
- > ImageResultType;
-
/**
* \brief Default Constructor.
*
@@ -210,7 +111,15 @@ template<typename MatrixType> class LU
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
return m_lu;
}
-
+
+ /** \returns a pointer to the matrix of which *this is the LU decomposition.
+ */
+ inline const MatrixType* originalMatrix() const
+ {
+ ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
+ return m_originalMatrix;
+ }
+
/** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed,
* representing the P permutation i.e. the permutation of the rows. For its precise meaning,
* see the examples given in the documentation of class LU.
@@ -235,69 +144,37 @@ template<typename MatrixType> class LU
return m_q;
}
- /** Computes a basis of the kernel of the matrix, also called the null-space of the matrix.
- *
- * \note This method is only allowed on non-invertible matrices, as determined by
- * isInvertible(). Calling it on an invertible matrix will make an assertion fail.
- *
- * \param result a pointer to the matrix in which to store the kernel. The columns of this
- * matrix will be set to form a basis of the kernel (it will be resized
- * if necessary).
- *
- * Example: \include LU_computeKernel.cpp
- * Output: \verbinclude LU_computeKernel.out
- *
- * \sa kernel(), computeImage(), image()
- */
- template<typename KernelMatrixType>
- void computeKernel(KernelMatrixType *result) const;
-
- /** Computes a basis of the image of the matrix, also called the column-space or range of he matrix.
- *
- * \note Calling this method on the zero matrix will make an assertion fail.
- *
- * \param result a pointer to the matrix in which to store the image. The columns of this
- * matrix will be set to form a basis of the image (it will be resized
- * if necessary).
- *
- * Example: \include LU_computeImage.cpp
- * Output: \verbinclude LU_computeImage.out
- *
- * \sa image(), computeKernel(), kernel()
- */
- template<typename ImageMatrixType>
- void computeImage(ImageMatrixType *result) const;
-
/** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
* will form a basis of the kernel.
*
- * \note: this method is only allowed on non-invertible matrices, as determined by
- * isInvertible(). Calling it on an invertible matrix will make an assertion fail.
- *
- * \note: this method returns a matrix by value, which induces some inefficiency.
- * If you prefer to avoid this overhead, use computeKernel() instead.
+ * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
*
* Example: \include LU_kernel.cpp
* Output: \verbinclude LU_kernel.out
*
- * \sa computeKernel(), image()
+ * \sa image()
*/
- const KernelResultType kernel() const;
+ inline const ei_lu_kernel_impl<MatrixType> kernel() const
+ {
+ ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
+ return ei_lu_kernel_impl<MatrixType>(*this);
+ }
/** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
* will form a basis of the kernel.
*
- * \note: Calling this method on the zero matrix will make an assertion fail.
- *
- * \note: this method returns a matrix by value, which induces some inefficiency.
- * If you prefer to avoid this overhead, use computeImage() instead.
+ * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
*
* Example: \include LU_image.cpp
* Output: \verbinclude LU_image.out
*
- * \sa computeImage(), kernel()
+ * \sa kernel()
*/
- const ImageResultType image() const;
+ inline const ei_lu_image_impl<MatrixType> image() const
+ {
+ ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
+ return ei_lu_image_impl<MatrixType>(*this);
+ }
/** This method returns a solution x to the equation Ax=b, where A is the matrix of which
* *this is the LU decomposition.
@@ -316,7 +193,7 @@ template<typename MatrixType> class LU
* Example: \include LU_solve.cpp
* Output: \verbinclude LU_solve.out
*
- * \sa TriangularView::solve(), kernel(), computeKernel(), inverse(), computeInverse()
+ * \sa TriangularView::solve(), kernel(), inverse(), computeInverse()
*/
template<typename Rhs>
inline const ei_lu_solve_impl<MatrixType, Rhs>
@@ -547,71 +424,213 @@ typename ei_traits<MatrixType>::Scalar LU<MatrixType>::determinant() const
return Scalar(m_det_pq) * m_lu.diagonal().prod();
}
+/********* Implementation of kernel() **************************************************/
+
template<typename MatrixType>
-template<typename KernelMatrixType>
-void LU<MatrixType>::computeKernel(KernelMatrixType *result) const
+struct ei_traits<ei_lu_kernel_impl<MatrixType> >
{
- ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
- const int dimker = dimensionOfKernel(), cols = m_lu.cols();
- result->resize(cols, dimker);
+ typedef Matrix<
+ typename MatrixType::Scalar,
+ MatrixType::ColsAtCompileTime, // the number of rows in the "kernel matrix"
+ // is the number of cols of the original matrix
+ // so that the product "matrix * kernel = zero" makes sense
+ Dynamic, // we don't know at compile-time the dimension of the kernel
+ MatrixType::Options,
+ MatrixType::MaxColsAtCompileTime, // see explanation for 2nd template parameter
+ MatrixType::MaxColsAtCompileTime // the kernel is a subspace of the domain space,
+ // whose dimension is the number of columns of the original matrix
+ > ReturnMatrixType;
+};
- /* Let us use the following lemma:
- *
- * Lemma: If the matrix A has the LU decomposition PAQ = LU,
- * then Ker A = Q(Ker U).
- *
- * Proof: trivial: just keep in mind that P, Q, L are invertible.
- */
+template<typename MatrixType>
+struct ei_lu_kernel_impl : public ReturnByValue<ei_lu_kernel_impl<MatrixType> >
+{
+ typedef LU<MatrixType> LUType;
+ const LUType& m_lu;
+ int m_dimKer;
+
+ ei_lu_kernel_impl(const LUType& lu) : m_lu(lu), m_dimKer(lu.dimensionOfKernel()) {}
- /* Thus, all we need to do is to compute Ker U, and then apply Q.
- *
- * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
- * Thus, the diagonal of U ends with exactly
- * m_dimKer zero's. Let us use that to construct m_dimKer linearly
- * independent vectors in Ker U.
- */
+ inline int rows() const { return m_lu.matrixLU().cols(); }
+ inline int cols() const { return m_dimKer; }
- Matrix<Scalar, Dynamic, Dynamic, MatrixType::Options,
- MatrixType::MaxColsAtCompileTime, MatrixType::MaxColsAtCompileTime>
- y(-m_lu.corner(TopRight, m_rank, dimker));
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ typedef typename MatrixType::Scalar Scalar;
+ const int rank = m_lu.rank(),
+ cols = m_lu.matrixLU().cols();
+ if(m_dimKer == 0)
+ {
+ // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
+ // avoid crashing/asserting as that depends on floating point calculations. Let's
+ // just return a single column vector filled with zeros.
+ dst.resize(cols,1);
+ dst.setZero();
+ return;
+ }
+
+ /* Let us use the following lemma:
+ *
+ * Lemma: If the matrix A has the LU decomposition PAQ = LU,
+ * then Ker A = Q(Ker U).
+ *
+ * Proof: trivial: just keep in mind that P, Q, L are invertible.
+ */
- m_lu.corner(TopLeft, m_rank, m_rank)
- .template triangularView<UpperTriangular>().solveInPlace(y);
+ /* Thus, all we need to do is to compute Ker U, and then apply Q.
+ *
+ * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
+ * Thus, the diagonal of U ends with exactly
+ * m_dimKer zero's. Let us use that to construct dimKer linearly
+ * independent vectors in Ker U.
+ */
- for(int i = 0; i < m_rank; ++i) result->row(m_q.coeff(i)) = y.row(i);
- for(int i = m_rank; i < cols; ++i) result->row(m_q.coeff(i)).setZero();
- for(int k = 0; k < dimker; ++k) result->coeffRef(m_q.coeff(m_rank+k), k) = Scalar(1);
-}
+ dst.resize(cols, m_dimKer);
+
+ Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
+ MatrixType::MaxColsAtCompileTime, MatrixType::MaxColsAtCompileTime>
+ y(-m_lu.matrixLU().corner(TopRight, rank, m_dimKer));
+
+ m_lu.matrixLU()
+ .corner(TopLeft, rank, rank)
+ .template triangularView<UpperTriangular>().solveInPlace(y);
+
+ for(int i = 0; i < rank; ++i) dst.row(m_lu.permutationQ().coeff(i)) = y.row(i);
+ for(int i = rank; i < cols; ++i) dst.row(m_lu.permutationQ().coeff(i)).setZero();
+ for(int k = 0; k < m_dimKer; ++k) dst.coeffRef(m_lu.permutationQ().coeff(rank+k), k) = Scalar(1);
+ }
+};
+
+/***** Implementation of image() *****************************************************/
template<typename MatrixType>
-const typename LU<MatrixType>::KernelResultType
-LU<MatrixType>::kernel() const
+struct ei_traits<ei_lu_image_impl<MatrixType> >
{
- ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
- KernelResultType result(m_lu.cols(), dimensionOfKernel());
- computeKernel(&result);
- return result;
-}
+ typedef Matrix<
+ typename MatrixType::Scalar,
+ MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose
+ // dimension is the number of rows of the original matrix
+ Dynamic, // we don't know at compile time the dimension of the image (the rank)
+ MatrixType::Options,
+ MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix,
+ MatrixType::MaxColsAtCompileTime // so it has the same number of rows and at most as many columns.
+ > ReturnMatrixType;
+};
template<typename MatrixType>
-template<typename ImageMatrixType>
-void LU<MatrixType>::computeImage(ImageMatrixType *result) const
+struct ei_lu_image_impl : public ReturnByValue<ei_lu_image_impl<MatrixType> >
{
- ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
- result->resize(m_originalMatrix->rows(), m_rank);
- for(int i = 0; i < m_rank; ++i)
- result->col(i) = m_originalMatrix->col(m_q.coeff(i));
-}
+ typedef LU<MatrixType> LUType;
+ const LUType& m_lu;
+
+ ei_lu_image_impl(const LUType& lu) : m_lu(lu) {}
-template<typename MatrixType>
-const typename LU<MatrixType>::ImageResultType
-LU<MatrixType>::image() const
+ inline int rows() const { return m_lu.matrixLU().cols(); }
+ inline int cols() const { return m_lu.rank(); }
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ int rank = m_lu.rank();
+ if(rank == 0)
+ {
+ // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
+ // avoid crashing/asserting as that depends on floating point calculations. Let's
+ // just return a single column vector filled with zeros.
+ dst.resize(m_lu.originalMatrix()->rows(), 1);
+ dst.setZero();
+ return;
+ }
+
+ dst.resize(m_lu.originalMatrix()->rows(), rank);
+ for(int i = 0; i < rank; ++i)
+ dst.col(i) = m_lu.originalMatrix()->col(m_lu.permutationQ().coeff(i));
+ }
+};
+
+/***** Implementation of solve() *****************************************************/
+
+template<typename MatrixType,typename Rhs>
+struct ei_traits<ei_lu_solve_impl<MatrixType,Rhs> >
{
- ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
- ImageResultType result(m_originalMatrix->rows(), m_rank);
- computeImage(&result);
- return result;
-}
+ typedef Matrix<typename Rhs::Scalar,
+ MatrixType::ColsAtCompileTime,
+ Rhs::ColsAtCompileTime,
+ Rhs::PlainMatrixType::Options,
+ MatrixType::MaxColsAtCompileTime,
+ Rhs::MaxColsAtCompileTime> ReturnMatrixType;
+};
+
+template<typename MatrixType, typename Rhs>
+struct ei_lu_solve_impl : public ReturnByValue<ei_lu_solve_impl<MatrixType, Rhs> >
+{
+ typedef typename ei_cleantype<typename Rhs::Nested>::type RhsNested;
+ typedef LU<MatrixType> LUType;
+ const LUType& m_lu;
+ const typename Rhs::Nested m_rhs;
+
+ ei_lu_solve_impl(const LUType& lu, const Rhs& rhs)
+ : m_lu(lu), m_rhs(rhs)
+ {}
+
+ inline int rows() const { return m_lu.matrixLU().cols(); }
+ inline int cols() const { return m_rhs.cols(); }
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dst.resize(m_lu.matrixLU().cols(), m_rhs.cols());
+ if(m_lu.rank()==0)
+ {
+ dst.setZero();
+ return;
+ }
+
+ /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
+ * So we proceed as follows:
+ * Step 1: compute c = P * rhs.
+ * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
+ * Step 3: replace c by the solution x to Ux = c. May or may not exist.
+ * Step 4: result = Q * c;
+ */
+
+ const int rows = m_lu.matrixLU().rows(),
+ cols = m_lu.matrixLU().cols(),
+ rank = m_lu.rank();
+ ei_assert(m_rhs.rows() == rows);
+ const int smalldim = std::min(rows, cols);
+
+ typename Rhs::PlainMatrixType c(m_rhs.rows(), m_rhs.cols());
+
+ // Step 1
+ for(int i = 0; i < rows; ++i)
+ c.row(m_lu.permutationP().coeff(i)) = m_rhs.row(i);
+
+ // Step 2
+ m_lu.matrixLU()
+ .corner(Eigen::TopLeft,smalldim,smalldim)
+ .template triangularView<UnitLowerTriangular>()
+ .solveInPlace(c.corner(Eigen::TopLeft, smalldim, c.cols()));
+ if(rows>cols)
+ {
+ c.corner(Eigen::BottomLeft, rows-cols, c.cols())
+ -= m_lu.matrixLU().corner(Eigen::BottomLeft, rows-cols, cols)
+ * c.corner(Eigen::TopLeft, cols, c.cols());
+ }
+
+ // Step 3
+ m_lu.matrixLU()
+ .corner(TopLeft, rank, rank)
+ .template triangularView<UpperTriangular>()
+ .solveInPlace(c.corner(TopLeft, rank, c.cols()));
+
+ // Step 4
+ for(int i = 0; i < rank; ++i)
+ dst.row(m_lu.permutationQ().coeff(i)) = c.row(i);
+ for(int i = rank; i < m_lu.matrixLU().cols(); ++i)
+ dst.row(m_lu.permutationQ().coeff(i)).setZero();
+ }
+};
+
+/******* MatrixBase methods *****************************************************************/
/** \lu_module
*