aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Jacobi
diff options
context:
space:
mode:
authorGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-08-31 22:26:15 -0400
committerGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-08-31 22:26:15 -0400
commit6e4e94ff3266f8d85adbfe6556e612a2ff9a7e68 (patch)
tree33a1923d88f095df3f98edd80cb1b02fc7799b91 /Eigen/src/Jacobi
parent29c6b2452dbe82cd49aa701921f2fa5a20017cc0 (diff)
* JacobiSVD:
- support complex numbers - big rewrite of the 2x2 kernel, much more robust * Jacobi: - fix weirdness in initial design, e.g. applyJacobiOnTheRight actually did the inverse transformation - fully support complex numbers - fix logic to decide whether to vectorize - remove several clumsy methods fix for complex numbers
Diffstat (limited to 'Eigen/src/Jacobi')
-rw-r--r--Eigen/src/Jacobi/Jacobi.h113
1 files changed, 46 insertions, 67 deletions
diff --git a/Eigen/src/Jacobi/Jacobi.h b/Eigen/src/Jacobi/Jacobi.h
index 76f0800fe..96f08d54a 100644
--- a/Eigen/src/Jacobi/Jacobi.h
+++ b/Eigen/src/Jacobi/Jacobi.h
@@ -33,19 +33,20 @@
*
* \sa MatrixBase::applyJacobiOnTheLeft(), MatrixBase::applyJacobiOnTheRight()
*/
-template<typename VectorX, typename VectorY>
-void ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, typename VectorX::Scalar c, typename VectorY::Scalar s);
+template<typename VectorX, typename VectorY, typename JacobiScalar>
+void ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, JacobiScalar c, JacobiScalar s);
/** Applies a rotation in the plane defined by \a c, \a s to the rows \a p and \a q of \c *this.
* More precisely, it computes B = J' * B, with J = [c s ; -s' c] and B = [ *this.row(p) ; *this.row(q) ]
* \sa MatrixBase::applyJacobiOnTheRight(), ei_apply_rotation_in_the_plane()
*/
template<typename Derived>
-inline void MatrixBase<Derived>::applyJacobiOnTheLeft(int p, int q, Scalar c, Scalar s)
+template<typename JacobiScalar>
+inline void MatrixBase<Derived>::applyJacobiOnTheLeft(int p, int q, JacobiScalar c, JacobiScalar s)
{
RowXpr x(row(p));
RowXpr y(row(q));
- ei_apply_rotation_in_the_plane(x, y, ei_conj(c), ei_conj(s));
+ ei_apply_rotation_in_the_plane(x, y, c, s);
}
/** Applies a rotation in the plane defined by \a c, \a s to the columns \a p and \a q of \c *this.
@@ -53,23 +54,25 @@ inline void MatrixBase<Derived>::applyJacobiOnTheLeft(int p, int q, Scalar c, Sc
* \sa MatrixBase::applyJacobiOnTheLeft(), ei_apply_rotation_in_the_plane()
*/
template<typename Derived>
-inline void MatrixBase<Derived>::applyJacobiOnTheRight(int p, int q, Scalar c, Scalar s)
+template<typename JacobiScalar>
+inline void MatrixBase<Derived>::applyJacobiOnTheRight(int p, int q, JacobiScalar c, JacobiScalar s)
{
ColXpr x(col(p));
ColXpr y(col(q));
- ei_apply_rotation_in_the_plane(x, y, c, s);
+ ei_apply_rotation_in_the_plane(x, y, c, -ei_conj(s));
}
/** Computes the cosine-sine pair (\a c, \a s) such that its associated
- * rotation \f$ J = ( \begin{array}{cc} c & s \\ -s' c \end{array} )\f$
+ * rotation \f$ J = ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} )\f$
* applied to both the right and left of the 2x2 matrix
* \f$ B = ( \begin{array}{cc} x & y \\ * & z \end{array} )\f$ yields
- * a diagonal matrix A: \f$ A = J' B J \f$
+ * a diagonal matrix A: \f$ A = J^* B J \f$
*/
template<typename Scalar>
-bool ei_makeJacobi(Scalar x, Scalar y, Scalar z, Scalar *c, Scalar *s)
+bool ei_makeJacobi(typename NumTraits<Scalar>::Real x, Scalar y, typename NumTraits<Scalar>::Real z, Scalar *c, Scalar *s)
{
- if(y == 0)
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ if(y == Scalar(0))
{
*c = Scalar(1);
*s = Scalar(0);
@@ -77,15 +80,21 @@ bool ei_makeJacobi(Scalar x, Scalar y, Scalar z, Scalar *c, Scalar *s)
}
else
{
- Scalar tau = (z - x) / (2 * y);
- Scalar w = ei_sqrt(1 + ei_abs2(tau));
- Scalar t;
+ RealScalar tau = (x-z)/(RealScalar(2)*ei_abs(y));
+ RealScalar w = ei_sqrt(ei_abs2(tau) + 1);
+ RealScalar t;
if(tau>0)
- t = Scalar(1) / (tau + w);
+ {
+ t = RealScalar(1) / (tau + w);
+ }
else
- t = Scalar(1) / (tau - w);
- *c = Scalar(1) / ei_sqrt(1 + ei_abs2(t));
- *s = *c * t;
+ {
+ t = RealScalar(1) / (tau - w);
+ }
+ RealScalar sign_t = t > 0 ? 1 : -1;
+ RealScalar n = RealScalar(1) / ei_sqrt(ei_abs2(t)+1);
+ *s = - sign_t * (ei_conj(y) / ei_abs(y)) * ei_abs(t) * n;
+ *c = n;
return true;
}
}
@@ -93,41 +102,11 @@ bool ei_makeJacobi(Scalar x, Scalar y, Scalar z, Scalar *c, Scalar *s)
template<typename Derived>
inline bool MatrixBase<Derived>::makeJacobi(int p, int q, Scalar *c, Scalar *s) const
{
- return ei_makeJacobi(coeff(p,p), coeff(p,q), coeff(q,q), c, s);
-}
-
-template<typename Derived>
-inline bool MatrixBase<Derived>::makeJacobiForAtA(int p, int q, Scalar *c, Scalar *s) const
-{
- return ei_makeJacobi(ei_abs2(coeff(p,p)) + ei_abs2(coeff(q,p)),
- ei_conj(coeff(p,p))*coeff(p,q) + ei_conj(coeff(q,p))*coeff(q,q),
- ei_abs2(coeff(p,q)) + ei_abs2(coeff(q,q)),
- c,s);
-}
-
-template<typename Derived>
-inline bool MatrixBase<Derived>::makeJacobiForAAt(int p, int q, Scalar *c, Scalar *s) const
-{
- return ei_makeJacobi(ei_abs2(coeff(p,p)) + ei_abs2(coeff(p,q)),
- ei_conj(coeff(q,p))*coeff(p,p) + ei_conj(coeff(q,q))*coeff(p,q),
- ei_abs2(coeff(q,p)) + ei_abs2(coeff(q,q)),
- c,s);
-}
-
-template<typename Scalar>
-inline void ei_normalizeJacobi(Scalar *c, Scalar *s, const Scalar& x, const Scalar& y)
-{
- Scalar a = x * *c - y * *s;
- Scalar b = x * *s + y * *c;
- if(ei_abs(b)>ei_abs(a)) {
- Scalar x = *c;
- *c = -*s;
- *s = x;
- }
+ return ei_makeJacobi(ei_real(coeff(p,p)), coeff(p,q), ei_real(coeff(q,q)), c, s);
}
-template<typename VectorX, typename VectorY>
-void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, typename VectorX::Scalar c, typename VectorY::Scalar s)
+template<typename VectorX, typename VectorY, typename JacobiScalar>
+void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, JacobiScalar c, JacobiScalar s)
{
typedef typename VectorX::Scalar Scalar;
ei_assert(_x.size() == _y.size());
@@ -138,7 +117,7 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
Scalar* EIGEN_RESTRICT x = &_x.coeffRef(0);
Scalar* EIGEN_RESTRICT y = &_y.coeffRef(0);
- if (incrx==1 && incry==1)
+ if((VectorX::Flags & VectorY::Flags & PacketAccessBit) && incrx==1 && incry==1)
{
// both vectors are sequentially stored in memory => vectorization
typedef typename ei_packet_traits<Scalar>::type Packet;
@@ -147,16 +126,16 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
int alignedStart = ei_alignmentOffset(y, size);
int alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;
- const Packet pc = ei_pset1(c);
- const Packet ps = ei_pset1(s);
+ const Packet pc = ei_pset1(Scalar(c));
+ const Packet ps = ei_pset1(Scalar(s));
ei_conj_helper<NumTraits<Scalar>::IsComplex,false> cj;
for(int i=0; i<alignedStart; ++i)
{
Scalar xi = x[i];
Scalar yi = y[i];
- x[i] = c * xi - ei_conj(s) * yi;
- y[i] = s * xi + c * yi;
+ x[i] = c * xi + ei_conj(s) * yi;
+ y[i] = - s * xi + ei_conj(c) * yi;
}
Scalar* px = x + alignedStart;
@@ -168,8 +147,8 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
{
Packet xi = ei_pload(px);
Packet yi = ei_pload(py);
- ei_pstore(px, ei_psub(ei_pmul(pc,xi),cj.pmul(ps,yi)));
- ei_pstore(py, ei_padd(ei_pmul(ps,xi),ei_pmul(pc,yi)));
+ ei_pstore(px, ei_padd(ei_pmul(pc,xi),cj.pmul(ps,yi)));
+ ei_pstore(py, ei_psub(ei_pmul(pc,yi),ei_pmul(ps,xi)));
px += PacketSize;
py += PacketSize;
}
@@ -183,10 +162,10 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
Packet xi1 = ei_ploadu(px+PacketSize);
Packet yi = ei_pload (py);
Packet yi1 = ei_pload (py+PacketSize);
- ei_pstoreu(px, ei_psub(ei_pmul(pc,xi),cj.pmul(ps,yi)));
- ei_pstoreu(px+PacketSize, ei_psub(ei_pmul(pc,xi1),cj.pmul(ps,yi1)));
- ei_pstore (py, ei_padd(ei_pmul(ps,xi),ei_pmul(pc,yi)));
- ei_pstore (py+PacketSize, ei_padd(ei_pmul(ps,xi1),ei_pmul(pc,yi1)));
+ ei_pstoreu(px, ei_padd(ei_pmul(pc,xi),cj.pmul(ps,yi)));
+ ei_pstoreu(px+PacketSize, ei_padd(ei_pmul(pc,xi1),cj.pmul(ps,yi1)));
+ ei_pstore (py, ei_psub(ei_pmul(pc,yi),ei_pmul(ps,xi)));
+ ei_pstore (py+PacketSize, ei_psub(ei_pmul(pc,yi1),ei_pmul(ps,xi1)));
px += Peeling*PacketSize;
py += Peeling*PacketSize;
}
@@ -194,8 +173,8 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
{
Packet xi = ei_ploadu(x+peelingEnd);
Packet yi = ei_pload (y+peelingEnd);
- ei_pstoreu(x+peelingEnd, ei_psub(ei_pmul(pc,xi),cj.pmul(ps,yi)));
- ei_pstore (y+peelingEnd, ei_padd(ei_pmul(ps,xi),ei_pmul(pc,yi)));
+ ei_pstoreu(x+peelingEnd, ei_padd(ei_pmul(pc,xi),cj.pmul(ps,yi)));
+ ei_pstore (y+peelingEnd, ei_psub(ei_pmul(pc,yi),ei_pmul(ps,xi)));
}
}
@@ -203,8 +182,8 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
{
Scalar xi = x[i];
Scalar yi = y[i];
- x[i] = c * xi - ei_conj(s) * yi;
- y[i] = s * xi + c * yi;
+ x[i] = c * xi + ei_conj(s) * yi;
+ y[i] = -s * xi + ei_conj(c) * yi;
}
}
else
@@ -213,8 +192,8 @@ void /*EIGEN_DONT_INLINE*/ ei_apply_rotation_in_the_plane(VectorX& _x, VectorY&
{
Scalar xi = *x;
Scalar yi = *y;
- *x = c * xi - ei_conj(s) * yi;
- *y = s * xi + c * yi;
+ *x = c * xi + ei_conj(s) * yi;
+ *y = -s * xi + ei_conj(c) * yi;
x += incrx;
y += incry;
}