aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
diff options
context:
space:
mode:
authorGravatar Desire NUENTSA <desire.nuentsa_wakam@inria.fr>2012-02-10 10:59:39 +0100
committerGravatar Desire NUENTSA <desire.nuentsa_wakam@inria.fr>2012-02-10 10:59:39 +0100
commita815d962daa778408942aeac4ef9c3fe283bd724 (patch)
tree86d6fbdbd9aafcc945c7c6feddf373c277369273 /Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
parent9ed6a267a336f0fff4a2183a622e311d05194aca (diff)
Add the implementation of the Incomplete LU preconditioner with dual threshold (ILUT)
Modify the BiCGSTAB function to check the residual norm of the initial guess
Diffstat (limited to 'Eigen/src/IterativeLinearSolvers/IncompleteLUT.h')
-rw-r--r--Eigen/src/IterativeLinearSolvers/IncompleteLUT.h406
1 files changed, 406 insertions, 0 deletions
diff --git a/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h b/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
new file mode 100644
index 000000000..bfa6e290a
--- /dev/null
+++ b/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
@@ -0,0 +1,406 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_INCOMPLETE_LUT_H
+#define EIGEN_INCOMPLETE_LUT_H
+#include <bench/btl/generic_bench/utils/utilities.h>
+#include <Eigen/src/OrderingMethods/Amd.h>
+
+/**
+ * \brief Incomplete LU factorization with dual-threshold strategy
+ * During the numerical factorization, two dropping rules are used :
+ * 1) any element whose magnitude is less than some tolerance is dropped.
+ * This tolerance is obtained by multiplying the input tolerance @p droptol
+ * by the average magnitude of all the original elements in the current row.
+ * 2) After the elimination of the row, only the @p fill largest elements in
+ * the L part and the @p fill largest elements in the U part are kept
+ * (in addition to the diagonal element ). Note that @p fill is computed from
+ * the input parameter @p fillfactor which is used the ratio to control the fill_in
+ * relatively to the initial number of nonzero elements.
+ *
+ * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
+ * and when @p fill=n/2 with @p droptol being different to zero.
+ *
+ * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
+ * Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
+ *
+ * NOTE : The following implementation is derived from the ILUT implementation
+ * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
+ * released under the terms of the GNU LGPL;
+ * see http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README for more details.
+ */
+template <typename _Scalar>
+class IncompleteLUT
+{
+ typedef _Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Matrix<Scalar,Dynamic,1> Vector;
+ typedef SparseMatrix<Scalar,RowMajor> FactorType;
+ typedef SparseMatrix<Scalar,ColMajor> PermutType;
+ typedef typename FactorType::Index Index;
+
+ public:
+ typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
+
+ IncompleteLUT() : m_droptol(NumTraits<Scalar>::dummy_precision()),m_fillfactor(50),m_isInitialized(false) {};
+
+ template<typename MatrixType>
+ IncompleteLUT(const MatrixType& mat, RealScalar droptol, int fillfactor)
+ : m_droptol(droptol),m_fillfactor(fillfactor),m_isInitialized(false)
+ {
+ compute(mat);
+ }
+
+ Index rows() const { return m_lu.rows(); }
+
+ Index cols() const { return m_lu.cols(); }
+
+
+/**
+ * Compute an incomplete LU factorization with dual threshold on the matrix mat
+ * No pivoting is done in this version
+ *
+ **/
+template<typename MatrixType>
+IncompleteLUT<Scalar>& compute(const MatrixType& amat)
+{
+ int n = amat.cols(); /* Size of the matrix */
+ m_lu.resize(n,n);
+ int fill_in; /* Number of largest elements to keep in each row */
+ int nnzL, nnzU; /* Number of largest nonzero elements to keep in the L and the U part of the current row */
+ /* Declare Working vectors and variables */
+ int sizeu; /* number of nonzero elements in the upper part of the current row */
+ int sizel; /* number of nonzero elements in the lower part of the current row */
+ Vector u(n) ; /* real values of the row -- maximum size is n -- */
+ VectorXi ju(n); /*column position of the values in u -- maximum size is n*/
+ VectorXi jr(n); /* Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1*/
+ int j, k, ii, jj, jpos, minrow, len;
+ Scalar fact, prod;
+ RealScalar rownorm;
+
+ /* Compute the Fill-reducing permutation */
+ SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
+ SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
+ SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 * mat1; /* Symmetrize the pattern */
+ AtA.prune(keep_diag());
+ internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); /* Then compute the AMD ordering... */
+
+ m_Pinv = m_P.inverse(); /* ... and the inverse permutation */
+
+// m_Pinv.indices().setLinSpaced(0,n);
+// m_P.indices().setLinSpaced(0,n);
+
+ SparseMatrix<Scalar,RowMajor, Index> mat;
+ mat = amat.twistedBy(m_Pinv);
+ /* Initialization */
+ fact = 0;
+ jr.fill(-1);
+ ju.fill(0);
+ u.fill(0);
+ fill_in = static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1;
+ if (fill_in > n) fill_in = n;
+ nnzL = fill_in/2;
+ nnzU = nnzL;
+ m_lu.reserve(n * (nnzL + nnzU + 1));
+ for (int ii = 0; ii < n; ii++)
+ { /* global loop over the rows of the sparse matrix */
+
+ /* Copy the lower and the upper part of the row i of mat in the working vector u */
+ sizeu = 1;
+ sizel = 0;
+ ju(ii) = ii;
+ u(ii) = 0;
+ jr(ii) = ii;
+ rownorm = 0;
+
+ typename FactorType::InnerIterator j_it(mat, ii); /* Iterate through the current row ii */
+ for (; j_it; ++j_it)
+ {
+ k = j_it.index();
+ if (k < ii)
+ { /* Copy the lower part */
+ ju(sizel) = k;
+ u(sizel) = j_it.value();
+ jr(k) = sizel;
+ ++sizel;
+ }
+ else if (k == ii)
+ {
+ u(ii) = j_it.value();
+ }
+ else
+ { /* Copy the upper part */
+ jpos = ii + sizeu;
+ ju(jpos) = k;
+ u(jpos) = j_it.value();
+ jr(k) = jpos;
+ ++sizeu;
+ }
+ rownorm += internal::abs2(j_it.value());
+ } /* end copy of the row */
+ /* detect possible zero row */
+ if (rownorm == 0) eigen_internal_assert(false);
+ rownorm = std::sqrt(rownorm); /* Take the 2-norm of the current row as a relative tolerance */
+
+ /* Now, eliminate the previous nonzero rows */
+ jj = 0; len = 0;
+ while (jj < sizel)
+ { /* In order to eliminate in the correct order, we must select first the smallest column index among ju(jj:sizel) */
+
+ minrow = ju.segment(jj,sizel-jj).minCoeff(&k); /* k est relatif au segment */
+ k += jj;
+ if (minrow != ju(jj)) { /* swap the two locations */
+ j = ju(jj);
+ std::swap(ju(jj), ju(k));
+ jr(minrow) = jj; jr(j) = k;
+ std::swap(u(jj), u(k));
+ }
+ /* Reset this location to zero */
+ jr(minrow) = -1;
+
+ /* Start elimination */
+ typename FactorType::InnerIterator ki_it(m_lu, minrow);
+ while (ki_it && ki_it.index() < minrow) ++ki_it;
+ if(ki_it && ki_it.col()==minrow) fact = u(jj) / ki_it.value();
+ else { eigen_internal_assert(false); }
+ if( std::abs(fact) <= m_droptol ) {
+ jj++;
+ continue ; /* This element is been dropped */
+ }
+ /* linear combination of the current row ii and the row minrow */
+ ++ki_it;
+ for (; ki_it; ++ki_it) {
+ prod = fact * ki_it.value();
+ j = ki_it.index();
+ jpos = jr(j);
+ if (j >= ii) { /* Dealing with the upper part */
+ if (jpos == -1) { /* Fill-in element */
+ int newpos = ii + sizeu;
+ ju(newpos) = j;
+ u(newpos) = - prod;
+ jr(j) = newpos;
+ sizeu++;
+ if (sizeu > n) { eigen_internal_assert(false);}
+ }
+ else { /* Not a fill_in element */
+ u(jpos) -= prod;
+ }
+ }
+ else { /* Dealing with the lower part */
+ if (jpos == -1) { /* Fill-in element */
+ ju(sizel) = j;
+ jr(j) = sizel;
+ u(sizel) = - prod;
+ sizel++;
+ if(sizel > n) { eigen_internal_assert(false);}
+ }
+ else {
+ u(jpos) -= prod;
+ }
+ }
+ }
+ /* Store the pivot element */
+ u(len) = fact;
+ ju(len) = minrow;
+ ++len;
+
+ jj++;
+ } /* End While loop -- end of the elimination on the row ii*/
+ /* Reset the upper part of the pointer jr to zero */
+ for (k = 0; k <sizeu; k++){
+ jr(ju(ii+k)) = -1;
+ }
+ /* Sort the L-part of the row --use Quicksplit()*/
+ sizel = len;
+ len = std::min(sizel, nnzL );
+ typename Vector::SegmentReturnType ul(u.segment(0, len));
+ typename VectorXi::SegmentReturnType jul(ju.segment(0, len));
+ QuickSplit(ul, jul, len);
+
+
+ /* Store the largest m_fill elements of the L part */
+ m_lu.startVec(ii);
+ for (k = 0; k < len; k++){
+ m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
+ }
+
+ /* Store the diagonal element */
+ if (u(ii) == Scalar(0))
+ u(ii) = std::sqrt(m_droptol ) * rownorm ; /* NOTE This is used to avoid a zero pivot, because we are doing an incomplete factorization */
+ m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
+ /* Sort the U-part of the row -- Use Quicksplit() */
+ len = 0;
+ for (k = 1; k < sizeu; k++) { /* First, drop any element that is below a relative tolerance */
+ if ( std::abs(u(ii+k)) > m_droptol * rownorm ) {
+ ++len;
+ u(ii + len) = u(ii + k);
+ ju(ii + len) = ju(ii + k);
+ }
+ }
+ sizeu = len + 1; /* To take into account the diagonal element */
+ len = std::min(sizeu, nnzU);
+ typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
+ typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
+ QuickSplit(uu, juu, len);
+ /* Store the largest <fill> elements of the U part */
+ for (k = ii + 1; k < ii + len; k++){
+ m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
+ }
+ } /* End global for-loop */
+ m_lu.finalize();
+ m_lu.makeCompressed(); /* NOTE To save the extra space */
+ m_isInitialized = true;
+ return *this;
+}
+
+
+ void setDroptol(RealScalar droptol);
+ void setFill(int fillfactor);
+
+
+
+
+ template<typename Rhs, typename Dest>
+ void _solve(const Rhs& b, Dest& x) const
+ {
+ x = m_Pinv * b;
+ x = m_lu.template triangularView<UnitLower>().solve(x);/* Compute L*x = P*b for x */
+ x = m_lu.template triangularView<Upper>().solve(x); /* Compute U * z = y for z */
+ x = m_P * x;
+ }
+
+ template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
+ eigen_assert(cols()==b.rows()
+ && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
+ return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
+ }
+
+protected:
+ FactorType m_lu;
+ RealScalar m_droptol;
+ int m_fillfactor;
+ bool m_isInitialized;
+ template <typename VectorV, typename VectorI>
+ int QuickSplit(VectorV &row, VectorI &ind, int ncut);
+ PermutationMatrix<Dynamic,Dynamic,Index> m_P; /* Fill-reducing permutation */
+ PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; /* Inverse permutation */
+
+ /** keeps off-diagonal entries; drops diagonal entries */
+ struct keep_diag {
+ inline bool operator() (const Index& row, const Index& col, const Scalar&) const
+ {
+ return row!=col;
+ }
+ };
+};
+
+/**
+ * Set control parameter droptol
+ * \param droptol Drop any element whose magnitude is less than this tolerance
+ **/
+template<typename Scalar>
+void IncompleteLUT<Scalar>::setDroptol(RealScalar droptol)
+{
+ this->m_droptol = droptol;
+}
+
+/**
+ * Set control parameter fillfactor
+ * \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row.
+ **/
+template<typename Scalar>
+void IncompleteLUT<Scalar>::setFill(int fillfactor)
+{
+ this->m_fillfactor = fillfactor;
+}
+
+
+/**
+ * Compute a quick-sort split of a vector
+ * On output, the vector row is permuted such that its elements satisfy
+ * abs(row(i)) >= abs(row(ncut)) if i<ncut
+ * abs(row(i)) <= abs(row(ncut)) if i>ncut
+ * \param row The vector of values
+ * \param ind The array of index for the elements in @p row
+ * \param ncut The number of largest elements to keep
+ **/
+template <typename Scalar>
+template <typename VectorV, typename VectorI>
+int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut)
+{
+ int i,j,mid;
+ Scalar d;
+ int n = row.size(); /* lenght of the vector */
+ int first, last ;
+
+ ncut--; /* to fit the zero-based indices */
+ first = 0;
+ last = n-1;
+ if (ncut < first || ncut > last ) return 0;
+
+ do {
+ mid = first;
+ RealScalar abskey = std::abs(row(mid));
+ for (j = first + 1; j <= last; j++) {
+ if ( std::abs(row(j)) > abskey) {
+ ++mid;
+ std::swap(row(mid), row(j));
+ std::swap(ind(mid), ind(j));
+ }
+ }
+ /* Interchange for the pivot element */
+ std::swap(row(mid), row(first));
+ std::swap(ind(mid), ind(first));
+
+ if (mid > ncut) last = mid - 1;
+ else if (mid < ncut ) first = mid + 1;
+ } while (mid != ncut );
+
+
+ return 0; /* mid is equal to ncut */
+
+}
+
+
+namespace internal {
+
+template<typename _MatrixType, typename Rhs>
+struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
+ : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
+{
+ typedef IncompleteLUT<_MatrixType> Dec;
+ EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dec()._solve(rhs(),dst);
+ }
+};
+
+}
+#endif // EIGEN_INCOMPLETE_LUT_H
+