aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2013-01-12 11:56:56 +0100
committerGravatar Gael Guennebaud <g.gael@free.fr>2013-01-12 11:56:56 +0100
commit7262cf783c1b041dacda997c7bf67c9b4c1a2a02 (patch)
tree03d203bc883babec18b354bdfa8a487cf3a6426f /Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
parent38fa432e075c31b0dff17ed98dd27cad01046ea8 (diff)
Cleaning documentation pass in ordering and ILUT
Diffstat (limited to 'Eigen/src/IterativeLinearSolvers/IncompleteLUT.h')
-rw-r--r--Eigen/src/IterativeLinearSolvers/IncompleteLUT.h78
1 files changed, 40 insertions, 38 deletions
diff --git a/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h b/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
index 5a71531cd..5b408f83d 100644
--- a/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
+++ b/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
@@ -15,15 +15,15 @@ namespace Eigen {
namespace internal {
-/**
- * Compute a quick-sort split of a vector
- * On output, the vector row is permuted such that its elements satisfy
- * abs(row(i)) >= abs(row(ncut)) if i<ncut
- * abs(row(i)) <= abs(row(ncut)) if i>ncut
- * \param row The vector of values
- * \param ind The array of index for the elements in @p row
- * \param ncut The number of largest elements to keep
- **/
+/** \internal
+ * Compute a quick-sort split of a vector
+ * On output, the vector row is permuted such that its elements satisfy
+ * abs(row(i)) >= abs(row(ncut)) if i<ncut
+ * abs(row(i)) <= abs(row(ncut)) if i>ncut
+ * \param row The vector of values
+ * \param ind The array of index for the elements in @p row
+ * \param ncut The number of largest elements to keep
+ **/
template <typename VectorV, typename VectorI>
int QuickSplit(VectorV &row, VectorI &ind, int ncut)
{
@@ -60,34 +60,37 @@ int QuickSplit(VectorV &row, VectorI &ind, int ncut)
}
}// end namespace internal
-/**
- * \brief Incomplete LU factorization with dual-threshold strategy
- * During the numerical factorization, two dropping rules are used :
- * 1) any element whose magnitude is less than some tolerance is dropped.
- * This tolerance is obtained by multiplying the input tolerance @p droptol
- * by the average magnitude of all the original elements in the current row.
- * 2) After the elimination of the row, only the @p fill largest elements in
- * the L part and the @p fill largest elements in the U part are kept
- * (in addition to the diagonal element ). Note that @p fill is computed from
- * the input parameter @p fillfactor which is used the ratio to control the fill_in
- * relatively to the initial number of nonzero elements.
- *
- * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
- * and when @p fill=n/2 with @p droptol being different to zero.
- *
- * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
- * Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
- *
- * NOTE : The following implementation is derived from the ILUT implementation
- * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
- * released under the terms of the GNU LGPL:
- * http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
- * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
- * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
- * http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
- * alternatively, on GMANE:
- * http://comments.gmane.org/gmane.comp.lib.eigen/3302
- */
+
+/** \ingroup IterativeLinearSolvers_Module
+ * \class IncompleteLUT
+ * \brief Incomplete LU factorization with dual-threshold strategy
+ *
+ * During the numerical factorization, two dropping rules are used :
+ * 1) any element whose magnitude is less than some tolerance is dropped.
+ * This tolerance is obtained by multiplying the input tolerance @p droptol
+ * by the average magnitude of all the original elements in the current row.
+ * 2) After the elimination of the row, only the @p fill largest elements in
+ * the L part and the @p fill largest elements in the U part are kept
+ * (in addition to the diagonal element ). Note that @p fill is computed from
+ * the input parameter @p fillfactor which is used the ratio to control the fill_in
+ * relatively to the initial number of nonzero elements.
+ *
+ * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
+ * and when @p fill=n/2 with @p droptol being different to zero.
+ *
+ * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
+ * Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
+ *
+ * NOTE : The following implementation is derived from the ILUT implementation
+ * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
+ * released under the terms of the GNU LGPL:
+ * http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
+ * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
+ * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
+ * http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
+ * alternatively, on GMANE:
+ * http://comments.gmane.org/gmane.comp.lib.eigen/3302
+ */
template <typename _Scalar>
class IncompleteLUT : internal::noncopyable
{
@@ -462,4 +465,3 @@ struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
} // end namespace Eigen
#endif // EIGEN_INCOMPLETE_LUT_H
-