aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Eigenvalues
diff options
context:
space:
mode:
authorGravatar Christoph Hertzberg <chtz@informatik.uni-bremen.de>2015-05-17 21:54:32 +0200
committerGravatar Christoph Hertzberg <chtz@informatik.uni-bremen.de>2015-05-17 21:54:32 +0200
commitebea530782a0c628aea4789e0e16eed353b62030 (patch)
tree1edc23b5ba785b48af273db2ad6c6ccfceca32cc /Eigen/src/Eigenvalues
parentc88e1abaf3aa12c35e0c2793e3186702152dbdfa (diff)
bug #1014: More stable direct computation of eigenvalues and -vectors for 3x3 matrices
Diffstat (limited to 'Eigen/src/Eigenvalues')
-rw-r--r--Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h173
1 files changed, 71 insertions, 102 deletions
diff --git a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
index fff331d33..1830b99c1 100644
--- a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
+++ b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
@@ -540,6 +540,11 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
typedef typename SolverType::RealVectorType VectorType;
typedef typename SolverType::Scalar Scalar;
+
+ /** \internal
+ * Computes the roots of the characteristic polynomial of \a m.
+ * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
+ */
EIGEN_DEVICE_FUNC
static inline void computeRoots(const MatrixType& m, VectorType& roots)
{
@@ -560,40 +565,48 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
// Construct the parameters used in classifying the roots of the equation
// and in solving the equation for the roots in closed form.
Scalar c2_over_3 = c2*s_inv3;
- Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3;
- if (a_over_3 > Scalar(0))
- a_over_3 = Scalar(0);
+ Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
+ a_over_3 = numext::maxi(a_over_3, Scalar(0));
Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
- Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3;
- if (q > Scalar(0))
- q = Scalar(0);
+ Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
+ q = numext::maxi(q, Scalar(0));
// Compute the eigenvalues by solving for the roots of the polynomial.
- Scalar rho = sqrt(-a_over_3);
- Scalar theta = atan2(sqrt(-q),half_b)*s_inv3;
+ Scalar rho = sqrt(a_over_3);
+ Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
Scalar cos_theta = cos(theta);
Scalar sin_theta = sin(theta);
- roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta;
- roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta);
- roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta);
-
- // Sort in increasing order.
- if (roots(0) >= roots(1))
- numext::swap(roots(0),roots(1));
- if (roots(1) >= roots(2))
- {
- numext::swap(roots(1),roots(2));
- if (roots(0) >= roots(1))
- numext::swap(roots(0),roots(1));
- }
+ // roots are already sorted, since cos is monotonically decreasing on [0, pi]
+ roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
+ roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
+ roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
}
-
+
+ EIGEN_DEVICE_FUNC
+ static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
+ {
+ using std::abs;
+ Index i0;
+ // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
+ mat.diagonal().cwiseAbs().maxCoeff(&i0);
+ // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
+ // so let's save it:
+ representative = mat.col(i0);
+ Scalar n0, n1;
+ VectorType c0, c1;
+ n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
+ n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
+ if(n0>n1) res = c0/std::sqrt(n0);
+ else res = c1/std::sqrt(n1);
+
+ return true;
+ }
+
EIGEN_DEVICE_FUNC
static inline void run(SolverType& solver, const MatrixType& mat, int options)
{
- using std::sqrt;
eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
eigen_assert((options&~(EigVecMask|GenEigMask))==0
&& (options&EigVecMask)!=EigVecMask
@@ -603,116 +616,72 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
MatrixType& eivecs = solver.m_eivec;
VectorType& eivals = solver.m_eivalues;
- // map the matrix coefficients to [-1:1] to avoid over- and underflow.
- Scalar scale = mat.cwiseAbs().maxCoeff();
- MatrixType scaledMat = mat / scale;
+ // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
+ Scalar shift = mat.trace() / Scalar(3);
+ // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
+ MatrixType scaledMat = mat.template selfadjointView<Lower>();
+ scaledMat.diagonal().array() -= shift;
+ Scalar scale = scaledMat.cwiseAbs().maxCoeff();
+ if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations
// compute the eigenvalues
computeRoots(scaledMat,eivals);
- // compute the eigen vectors
+ // compute the eigenvectors
if(computeEigenvectors)
{
- Scalar safeNorm2 = Eigen::NumTraits<Scalar>::epsilon();
if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
{
+ // All three eigenvalues are numerically the same
eivecs.setIdentity();
}
else
{
- scaledMat = scaledMat.template selfadjointView<Lower>();
MatrixType tmp;
tmp = scaledMat;
+ // Compute the eigenvector of the most distinct eigenvalue
Scalar d0 = eivals(2) - eivals(1);
Scalar d1 = eivals(1) - eivals(0);
- int k = d0 > d1 ? 2 : 0;
- d0 = d0 > d1 ? d0 : d1;
-
- tmp.diagonal().array () -= eivals(k);
- VectorType cross;
- Scalar n;
- n = (cross = tmp.row(0).cross(tmp.row(1))).squaredNorm();
-
- if(n>safeNorm2)
+ Index k(0), l(2);
+ if(d0 > d1)
{
- eivecs.col(k) = cross / sqrt(n);
+ std::swap(k,l);
+ d0 = d1;
}
- else
+
+ // Compute the eigenvector of index k
{
- n = (cross = tmp.row(0).cross(tmp.row(2))).squaredNorm();
-
- if(n>safeNorm2)
- {
- eivecs.col(k) = cross / sqrt(n);
- }
- else
- {
- n = (cross = tmp.row(1).cross(tmp.row(2))).squaredNorm();
-
- if(n>safeNorm2)
- {
- eivecs.col(k) = cross / sqrt(n);
- }
- else
- {
- // the input matrix and/or the eigenvaues probably contains some inf/NaN,
- // => exit
- // scale back to the original size.
- eivals *= scale;
-
- solver.m_info = NumericalIssue;
- solver.m_isInitialized = true;
- solver.m_eigenvectorsOk = computeEigenvectors;
- return;
- }
- }
+ tmp.diagonal().array () -= eivals(k);
+ // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
+ extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
}
- tmp = scaledMat;
- tmp.diagonal().array() -= eivals(1);
-
- if(d0<=Eigen::NumTraits<Scalar>::epsilon())
+ // Compute eigenvector of index l
+ if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
{
- eivecs.col(1) = eivecs.col(k).unitOrthogonal();
+ // If d0 is too small, then the two other eigenvalues are numerically the same,
+ // and thus we only have to ortho-normalize the near orthogonal vector we saved above.
+ eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
+ eivecs.col(l).normalize();
}
else
{
- n = (cross = eivecs.col(k).cross(tmp.row(0))).squaredNorm();
- if(n>safeNorm2)
- {
- eivecs.col(1) = cross / sqrt(n);
- }
- else
- {
- n = (cross = eivecs.col(k).cross(tmp.row(1))).squaredNorm();
- if(n>safeNorm2)
- eivecs.col(1) = cross / sqrt(n);
- else
- {
- n = (cross = eivecs.col(k).cross(tmp.row(2))).squaredNorm();
- if(n>safeNorm2)
- eivecs.col(1) = cross / sqrt(n);
- else
- {
- // we should never reach this point,
- // if so the last two eigenvalues are likely to be very close to each other
- eivecs.col(1) = eivecs.col(k).unitOrthogonal();
- }
- }
- }
-
- // make sure that eivecs[1] is orthogonal to eivecs[2]
- // FIXME: this step should not be needed
- Scalar d = eivecs.col(1).dot(eivecs.col(k));
- eivecs.col(1) = (eivecs.col(1) - d * eivecs.col(k)).normalized();
+ tmp = scaledMat;
+ tmp.diagonal().array () -= eivals(l);
+
+ VectorType dummy;
+ extract_kernel(tmp, eivecs.col(l), dummy);
}
- eivecs.col(k==2 ? 0 : 2) = eivecs.col(k).cross(eivecs.col(1)).normalized();
+ // Compute last eigenvector from the other two
+ eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
}
}
+
// Rescale back to the original size.
eivals *= scale;
+ eivals.array() += shift;
solver.m_info = Success;
solver.m_isInitialized = true;
@@ -732,7 +701,7 @@ struct direct_selfadjoint_eigenvalues<SolverType,2,false>
static inline void computeRoots(const MatrixType& m, VectorType& roots)
{
using std::sqrt;
- const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*m(1,0)*m(1,0));
+ const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
roots(0) = t1 - t0;
roots(1) = t1 + t0;