aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Eigenvalues
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2016-08-23 18:14:37 +0200
committerGravatar Gael Guennebaud <g.gael@free.fr>2016-08-23 18:14:37 +0200
commit0a6a50d1b060e03993b893c8e74a3b24330d44d1 (patch)
tree9a7b3bd94bc9227888576a096b13fe8210cfc73e /Eigen/src/Eigenvalues
parent00b2666853d2e33eb62db256a5b948b26ea67812 (diff)
Cleanup eiegnvector extraction: leverage matrix products and compile-time sizes, remove numerous useless temporaries.
Diffstat (limited to 'Eigen/src/Eigenvalues')
-rw-r--r--Eigen/src/Eigenvalues/GeneralizedEigenSolver.h78
1 files changed, 41 insertions, 37 deletions
diff --git a/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h b/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
index 1302fde5b..3390a9e1a 100644
--- a/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
+++ b/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
@@ -136,7 +136,8 @@ template<typename _MatrixType> class GeneralizedEigenSolver
m_betas(size),
m_valuesOkay(false),
m_vectorsOkay(false),
- m_realQZ(size)
+ m_realQZ(size),
+ m_tmp(size)
{}
/** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
@@ -157,7 +158,8 @@ template<typename _MatrixType> class GeneralizedEigenSolver
m_betas(A.cols()),
m_valuesOkay(false),
m_vectorsOkay(false),
- m_realQZ(A.cols())
+ m_realQZ(A.cols()),
+ m_tmp(A.cols())
{
compute(A, B, computeEigenvectors);
}
@@ -277,6 +279,7 @@ template<typename _MatrixType> class GeneralizedEigenSolver
VectorType m_betas;
bool m_valuesOkay, m_vectorsOkay;
RealQZ<MatrixType> m_realQZ;
+ ComplexVectorType m_tmp;
};
template<typename MatrixType>
@@ -288,6 +291,7 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
using std::sqrt;
using std::abs;
eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
+ Index size = A.cols();
m_valuesOkay = false;
m_vectorsOkay = false;
// Reduce to generalized real Schur form:
@@ -295,25 +299,26 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
m_realQZ.compute(A, B, computeEigenvectors);
if (m_realQZ.info() == Success)
{
- // Temp space for the untransformed eigenvectors
- VectorType v;
- ComplexVectorType cv;
// Resize storage
- m_alphas.resize(A.cols());
- m_betas.resize(A.cols());
- if (computeEigenvectors) {
- m_eivec.resize(A.cols(), A.cols());
- v.resize(A.cols());
- cv.resize(A.cols());
+ m_alphas.resize(size);
+ m_betas.resize(size);
+ if (computeEigenvectors)
+ {
+ m_eivec.resize(size,size);
+ m_tmp.resize(size);
}
- // Grab some references
- const MatrixType &mZT = m_realQZ.matrixZ().transpose();
+
+ // Aliases:
+ Map<VectorType> v(reinterpret_cast<Scalar*>(m_tmp.data()), size);
+ ComplexVectorType &cv = m_tmp;
+ const MatrixType &mZ = m_realQZ.matrixZ();
const MatrixType &mS = m_realQZ.matrixS();
const MatrixType &mT = m_realQZ.matrixT();
+
Index i = 0;
- while (i < A.cols())
+ while (i < size)
{
- if (i == A.cols() - 1 || mS.coeff(i+1, i) == Scalar(0))
+ if (i == size - 1 || mS.coeff(i+1, i) == Scalar(0))
{
// Real eigenvalue
m_alphas.coeffRef(i) = mS.diagonal().coeff(i);
@@ -333,14 +338,11 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
const Index st = j+1;
const Index sz = i-j;
if (j > 0 && mS.coeff(j, j-1) != Scalar(0))
- { // 2x2 block
- Matrix<Scalar, 2, 1> RHS;
- RHS[0] = -v.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j-1,st,1,sz) - alpha*mT.block(j-1,st,1,sz)).sum();
- RHS[1] = -v.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum();
- Matrix<Scalar, 2, 2> LHS;
- LHS << beta*mS.coeffRef(j-1,j-1) - alpha*mT.coeffRef(j-1,j-1), beta*mS.coeffRef(j-1,j) - alpha*mT.coeffRef(j-1,j),
- beta*mS.coeffRef(j,j-1) - alpha*mT.coeffRef(j,j-1), beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j);
- v.segment(j-1,2) = LHS.partialPivLu().solve(RHS);
+ {
+ // 2x2 block
+ Matrix<Scalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( v.segment(st,sz) );
+ Matrix<Scalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1);
+ v.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs);
j--;
}
else
@@ -349,7 +351,8 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
}
}
}
- m_eivec.col(i).real() = (mZT * v).normalized();
+ m_eivec.col(i).real().noalias() = mZ.transpose() * v;
+ m_eivec.col(i).real().normalize();
m_eivec.col(i).imag().setConstant(0);
}
++i;
@@ -376,31 +379,32 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
if (computeEigenvectors) {
// Compute eigenvector in position (i+1) and then position (i) is just the conjugate
- cv.setConstant(ComplexScalar(0.0, 0.0));
- cv.coeffRef(i+1) = ComplexScalar(1.0, 0.0);
+ cv.setZero();
+ cv.coeffRef(i+1) = Scalar(1.0);
cv.coeffRef(i) = -(beta*mS.coeffRef(i,i+1) - alpha*mT.coeffRef(i,i+1)) / (beta*mS.coeffRef(i,i) - alpha*mT.coeffRef(i,i));
- for (Index j = i-1; j >= 0; j--) {
+ for (Index j = i-1; j >= 0; j--)
+ {
const Index st = j+1;
const Index sz = i+1-j;
- if (j > 0 && mS.coeff(j, j-1) != Scalar(0)) { // 2x2 block
- Matrix<ComplexScalar, 2, 1> RHS;
- RHS[0] = -cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j-1,st,1,sz) - alpha*mT.block(j-1,st,1,sz)).sum();
- RHS[1] = -cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum();
- Matrix<ComplexScalar, 2, 2> LHS;
- LHS << beta*mS.coeffRef(j-1,j-1) - alpha*mT.coeffRef(j-1,j-1), beta*mS.coeffRef(j-1,j) - alpha*mT.coeffRef(j-1,j),
- beta*mS.coeffRef(j,j-1) - alpha*mT.coeffRef(j,j-1), beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j);
- cv.segment(j-1,2) = LHS.partialPivLu().solve(RHS);
+ if (j > 0 && mS.coeff(j, j-1) != Scalar(0))
+ {
+ // 2x2 block
+ Matrix<ComplexScalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( cv.segment(st,sz) );
+ Matrix<ComplexScalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1);
+ cv.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs);
j--;
} else {
cv.coeffRef(j) = -cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() / (beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j));
}
}
- m_eivec.col(i+1) = (mZT * cv).normalized();
- m_eivec.col(i) = m_eivec.col(i+1).conjugate();
+ m_eivec.col(i+1).noalias() = (mZ.transpose() * cv);
+ m_eivec.col(i+1).normalize();
+ m_eivec.col(i) = m_eivec.col(i+1).conjugate();
}
i += 2;
}
}
+
m_valuesOkay = true;
m_vectorsOkay = computeEigenvectors;
}