aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Eigenvalues/Tridiagonalization.h
diff options
context:
space:
mode:
authorGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2010-05-01 17:52:16 +0100
committerGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2010-05-01 17:52:16 +0100
commitafed0ef90d8f6c6c62dc5b1173bbbc63bee3c5c1 (patch)
tree78d3b648ce1ac4c65c8df49226688cda6ddbbc2c /Eigen/src/Eigenvalues/Tridiagonalization.h
parentd9c1224133153045fb92df351bdd3660a801f8d7 (diff)
Document Tridiagonalization class, remove unused types.
Diffstat (limited to 'Eigen/src/Eigenvalues/Tridiagonalization.h')
-rw-r--r--Eigen/src/Eigenvalues/Tridiagonalization.h250
1 files changed, 206 insertions, 44 deletions
diff --git a/Eigen/src/Eigenvalues/Tridiagonalization.h b/Eigen/src/Eigenvalues/Tridiagonalization.h
index a41a5f670..024590f3c 100644
--- a/Eigen/src/Eigenvalues/Tridiagonalization.h
+++ b/Eigen/src/Eigenvalues/Tridiagonalization.h
@@ -30,14 +30,32 @@
*
* \class Tridiagonalization
*
- * \brief Trigiagonal decomposition of a selfadjoint matrix
+ * \brief Tridiagonal decomposition of a selfadjoint matrix
*
- * \param MatrixType the type of the matrix of which we are performing the tridiagonalization
+ * \tparam _MatrixType the type of the matrix of which we are computing the
+ * tridiagonal decomposition; this is expected to be an instantiation of the
+ * Matrix class template.
*
* This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
* \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
*
- * \sa MatrixBase::tridiagonalize()
+ * A tridiagonal matrix is a matrix which has nonzero elements only on the
+ * main diagonal and the first diagonal below and above it. The Hessenberg
+ * decomposition of a selfadjoint matrix is in fact a tridiagonal
+ * decomposition. This class is used in SelfAdjointEigenSolver to compute the
+ * eigenvalues and eigenvectors of a selfadjoint matrix.
+ *
+ * Call the function compute() to compute the tridiagonal decomposition of a
+ * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&)
+ * constructor which computes the tridiagonal Schur decomposition at
+ * construction time. Once the decomposition is computed, you can use the
+ * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the
+ * decomposition.
+ *
+ * The documentation of Tridiagonalization(const MatrixType&) contains an
+ * example of the typical use of this class.
+ *
+ * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver
*/
template<typename _MatrixType> class Tridiagonalization
{
@@ -46,21 +64,18 @@ template<typename _MatrixType> class Tridiagonalization
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename ei_packet_traits<Scalar>::type Packet;
enum {
Size = MatrixType::RowsAtCompileTime,
SizeMinusOne = Size == Dynamic ? Dynamic : Size - 1,
Options = MatrixType::Options,
MaxSize = MatrixType::MaxRowsAtCompileTime,
- MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : MaxSize - 1,
- PacketSize = ei_packet_traits<Scalar>::size
+ MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : MaxSize - 1
};
typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
typedef typename ei_plain_col_type<MatrixType, RealScalar>::type DiagonalType;
typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType;
- typedef typename ei_plain_row_type<MatrixType>::type RowVectorType;
typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex,
typename Diagonal<MatrixType,0>::RealReturnType,
@@ -74,22 +89,53 @@ template<typename _MatrixType> class Tridiagonalization
Block<MatrixType,SizeMinusOne,SizeMinusOne>,0 >
>::ret SubDiagonalReturnType;
- /** This constructor initializes a Tridiagonalization object for
- * further use with Tridiagonalization::compute()
+ /** \brief Default constructor.
+ *
+ * \param [in] size Positive integer, size of the matrix whose tridiagonal
+ * decomposition will be computed.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via compute(). The \p size parameter is only
+ * used as a hint. It is not an error to give a wrong \p size, but it may
+ * impair performance.
+ *
+ * \sa compute() for an example.
*/
Tridiagonalization(int size = Size==Dynamic ? 2 : Size)
: m_matrix(size,size), m_hCoeffs(size-1)
{}
+ /** \brief Constructor; computes tridiagonal decomposition of given matrix.
+ *
+ * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition
+ * is to be computed.
+ *
+ * This constructor calls compute() to compute the tridiagonal decomposition.
+ *
+ * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp
+ * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out
+ */
Tridiagonalization(const MatrixType& matrix)
: m_matrix(matrix), m_hCoeffs(matrix.cols()-1)
{
_compute(m_matrix, m_hCoeffs);
}
- /** Computes or re-compute the tridiagonalization for the matrix \a matrix.
+ /** \brief Computes tridiagonal decomposition of given matrix.
+ *
+ * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition
+ * is to be computed.
+ *
+ * The tridiagonal decomposition is computed by bringing the columns of
+ * the matrix successively in the required form using Householder
+ * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes
+ * the size of the given matrix.
+ *
+ * This method reuses of the allocated data in the Tridiagonalization
+ * object, if the size of the matrix does not change.
*
- * This method allows to re-use the allocated data.
+ * Example: \include Tridiagonalization_compute.cpp
+ * Output: \verbinclude Tridiagonalization_compute.out
*/
void compute(const MatrixType& matrix)
{
@@ -98,74 +144,191 @@ template<typename _MatrixType> class Tridiagonalization
_compute(m_matrix, m_hCoeffs);
}
- /** \returns the householder coefficients allowing to
- * reconstruct the matrix Q from the packed data.
+ /** \brief Returns the Householder coefficients.
+ *
+ * \returns a const reference to the vector of Householder coefficients
+ *
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+ * the member function compute(const MatrixType&) has been called before
+ * to compute the tridiagonal decomposition of a matrix.
+ *
+ * The Householder coefficients allow the reconstruction of the matrix
+ * \f$ Q \f$ in the tridiagonal decomposition from the packed data.
*
- * \sa packedMatrix()
+ * Example: \include Tridiagonalization_householderCoefficients.cpp
+ * Output: \verbinclude Tridiagonalization_householderCoefficients.out
+ *
+ * \sa packedMatrix(), \ref Householder_Module "Householder module"
*/
- inline CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; }
+ inline CoeffVectorType householderCoefficients() const { return m_hCoeffs; }
- /** \returns the internal result of the decomposition.
+ /** \brief Returns the internal representation of the decomposition
+ *
+ * \returns a const reference to a matrix with the internal representation
+ * of the decomposition.
+ *
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+ * the member function compute(const MatrixType&) has been called before
+ * to compute the tridiagonal decomposition of a matrix.
*
* The returned matrix contains the following information:
- * - the strict upper part is equal to the input matrix A
- * - the diagonal and lower sub-diagonal represent the tridiagonal symmetric matrix (real).
- * - the rest of the lower part contains the Householder vectors that, combined with
- * Householder coefficients returned by householderCoefficients(),
- * allows to reconstruct the matrix Q as follow:
- * Q = H_{N-1} ... H_1 H_0
- * where the matrices H are the Householder transformations:
- * H_i = (I - h_i * v_i * v_i')
- * where h_i == householderCoefficients()[i] and v_i is a Householder vector:
- * v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ]
+ * - the strict upper triangular part is equal to the input matrix A.
+ * - the diagonal and lower sub-diagonal represent the real tridiagonal
+ * symmetric matrix T.
+ * - the rest of the lower part contains the Householder vectors that,
+ * combined with Householder coefficients returned by
+ * householderCoefficients(), allows to reconstruct the matrix Q as
+ * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
+ * Here, the matrices \f$ H_i \f$ are the Householder transformations
+ * \f$ H_i = (I - h_i v_i v_i^T) \f$
+ * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
+ * \f$ v_i \f$ is the Householder vector defined by
+ * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
+ * with M the matrix returned by this function.
*
* See LAPACK for further details on this packed storage.
+ *
+ * Example: \include Tridiagonalization_packedMatrix.cpp
+ * Output: \verbinclude Tridiagonalization_packedMatrix.out
+ *
+ * \sa householderCoefficients()
*/
- inline const MatrixType& packedMatrix(void) const { return m_matrix; }
+ inline const MatrixType& packedMatrix() const { return m_matrix; }
+ /** \brief Reconstructs the unitary matrix Q in the decomposition
+ *
+ * \returns the matrix Q
+ *
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+ * the member function compute(const MatrixType&) has been called before
+ * to compute the tridiagonal decomposition of a matrix.
+ *
+ * This function reconstructs the matrix Q from the Householder
+ * coefficients and the packed matrix stored internally. This
+ * reconstruction requires \f$ 4n^3 / 3 \f$ flops.
+ *
+ * \sa Tridiagonalization(const MatrixType&) for an example,
+ * matrixT(), matrixQInPlace()
+ */
MatrixType matrixQ() const;
+
+ /** \brief Reconstructs the unitary matrix Q in the decomposition
+ *
+ * This is an in-place variant of matrixQ() which avoids the copy.
+ * This function will probably be deleted soon.
+ */
template<typename QDerived> void matrixQInPlace(MatrixBase<QDerived>* q) const;
+
+ /** \brief Constructs the tridiagonal matrix T in the decomposition
+ *
+ * \returns the matrix T
+ *
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+ * the member function compute(const MatrixType&) has been called before
+ * to compute the tridiagonal decomposition of a matrix.
+ *
+ * This function copies the matrix T from internal data. The diagonal and
+ * subdiagonal of the packed matrix as returned by packedMatrix()
+ * represents the matrix T. It may sometimes be sufficient to directly use
+ * the packed matrix or the vector expressions returned by diagonal()
+ * and subDiagonal() instead of creating a new matrix with this function.
+ *
+ * \sa Tridiagonalization(const MatrixType&) for an example,
+ * matrixQ(), packedMatrix(), diagonal(), subDiagonal()
+ */
MatrixType matrixT() const;
- const DiagonalReturnType diagonal(void) const;
- const SubDiagonalReturnType subDiagonal(void) const;
- static void decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true);
+ /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition.
+ *
+ * \returns expression representing the diagonal of T
+ *
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+ * the member function compute(const MatrixType&) has been called before
+ * to compute the tridiagonal decomposition of a matrix.
+ *
+ * Example: \include Tridiagonalization_diagonal.cpp
+ * Output: \verbinclude Tridiagonalization_diagonal.out
+ *
+ * \sa matrixT(), subDiagonal()
+ */
+ const DiagonalReturnType diagonal() const;
- static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs);
+ /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
+ *
+ * \returns expression representing the subdiagonal of T
+ *
+ * \pre Either the constructor Tridiagonalization(const MatrixType&) or
+ * the member function compute(const MatrixType&) has been called before
+ * to compute the tridiagonal decomposition of a matrix.
+ *
+ * \sa diagonal() for an example, matrixT()
+ */
+ const SubDiagonalReturnType subDiagonal() const;
+
+ /** \brief Performs a full decomposition in place
+ *
+ * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal
+ * decomposition is to be computed. On output, the orthogonal matrix Q
+ * in the decomposition if \p extractQ is true.
+ * \param[out] diag The diagonal of the tridiagonal matrix T in the
+ * decomposition.
+ * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in
+ * the decomposition.
+ * \param[in] extractQ If true, the orthogonal matrix Q in the
+ * decomposition is computed and stored in \p mat.
+ *
+ * Compute the tridiagonal matrix of \p mat in place. The tridiagonal
+ * matrix T is passed to the output parameters \p diag and \p subdiag. If
+ * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat.
+ *
+ * The vectors \p diag and \p subdiag are not resized. The function
+ * assumes that they are already of the correct size. The length of the
+ * vector \p diag should equal the number of rows in \p mat, and the
+ * length of the vector \p subdiag should be one left.
+ *
+ * This implementation contains an optimized path for real 3-by-3 matrices
+ * which is especially useful for plane fitting.
+ *
+ * \note Notwithstanding the name, the current implementation copies
+ * \p mat to a temporary matrix and uses that matrix to compute the
+ * decomposition.
+ *
+ * Example (this uses the same matrix as the example in
+ * Tridiagonalization(const MatrixType&)):
+ * \include Tridiagonalization_decomposeInPlace.cpp
+ * Output: \verbinclude Tridiagonalization_decomposeInPlace.out
+ *
+ * \sa Tridiagonalization(const MatrixType&), compute()
+ */
+ static void decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true);
protected:
+ static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs);
static void _decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true);
MatrixType m_matrix;
CoeffVectorType m_hCoeffs;
};
-/** \returns an expression of the diagonal vector */
template<typename MatrixType>
const typename Tridiagonalization<MatrixType>::DiagonalReturnType
-Tridiagonalization<MatrixType>::diagonal(void) const
+Tridiagonalization<MatrixType>::diagonal() const
{
return m_matrix.diagonal();
}
-/** \returns an expression of the sub-diagonal vector */
template<typename MatrixType>
const typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
-Tridiagonalization<MatrixType>::subDiagonal(void) const
+Tridiagonalization<MatrixType>::subDiagonal() const
{
int n = m_matrix.rows();
return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1).diagonal();
}
-/** constructs and returns the tridiagonal matrix T.
- * Note that the matrix T is equivalent to the diagonal and sub-diagonal of the packed matrix.
- * Therefore, it might be often sufficient to directly use the packed matrix, or the vector
- * expressions returned by diagonal() and subDiagonal() instead of creating a new matrix.
- */
template<typename MatrixType>
typename Tridiagonalization<MatrixType>::MatrixType
-Tridiagonalization<MatrixType>::matrixT(void) const
+Tridiagonalization<MatrixType>::matrixT() const
{
// FIXME should this function (and other similar ones) rather take a matrix as argument
// and fill it ? (to avoid temporaries)
@@ -223,10 +386,9 @@ void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType&
}
}
-/** reconstructs and returns the matrix Q */
template<typename MatrixType>
typename Tridiagonalization<MatrixType>::MatrixType
-Tridiagonalization<MatrixType>::matrixQ(void) const
+Tridiagonalization<MatrixType>::matrixQ() const
{
MatrixType matQ;
matrixQInPlace(&matQ);
@@ -240,6 +402,7 @@ void Tridiagonalization<MatrixType>::matrixQInPlace(MatrixBase<QDerived>* q) con
QDerived& matQ = q->derived();
int n = m_matrix.rows();
matQ = MatrixType::Identity(n,n);
+ typedef typename ei_plain_row_type<MatrixType>::type RowVectorType;
RowVectorType aux(n);
for (int i = n-2; i>=0; i--)
{
@@ -248,7 +411,6 @@ void Tridiagonalization<MatrixType>::matrixQInPlace(MatrixBase<QDerived>* q) con
}
}
-/** Performs a full decomposition in place */
template<typename MatrixType>
void Tridiagonalization<MatrixType>::decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
{