diff options
author | Benoit Steiner <benoit.steiner.goog@gmail.com> | 2014-01-29 11:43:05 -0800 |
---|---|---|
committer | Benoit Steiner <benoit.steiner.goog@gmail.com> | 2014-01-29 11:43:05 -0800 |
commit | 64a85800bd3573a7da7a396fde9707dce87a58d9 (patch) | |
tree | 6f82e2c24497038548e594f00b8b29f9affe66b9 /Eigen/src/Core | |
parent | a7621809fe0fc7c65446ab9a83739ebe313004d4 (diff) |
Added support for AVX to Eigen.
Diffstat (limited to 'Eigen/src/Core')
-rw-r--r-- | Eigen/src/Core/DenseStorage.h | 4 | ||||
-rw-r--r-- | Eigen/src/Core/Redux.h | 13 | ||||
-rw-r--r-- | Eigen/src/Core/arch/AVX/CMakeLists.txt | 6 | ||||
-rw-r--r-- | Eigen/src/Core/arch/AVX/Complex.h | 443 | ||||
-rw-r--r-- | Eigen/src/Core/arch/AVX/PacketMath.h | 423 | ||||
-rw-r--r-- | Eigen/src/Core/arch/SSE/PacketMath.h | 8 | ||||
-rw-r--r-- | Eigen/src/Core/products/GeneralMatrixMatrix.h | 6 | ||||
-rw-r--r-- | Eigen/src/Core/products/GeneralMatrixVector.h | 11 | ||||
-rw-r--r-- | Eigen/src/Core/util/Macros.h | 9 | ||||
-rw-r--r-- | Eigen/src/Core/util/Memory.h | 38 |
10 files changed, 928 insertions, 33 deletions
diff --git a/Eigen/src/Core/DenseStorage.h b/Eigen/src/Core/DenseStorage.h index b9dd75ade..2342b08a1 100644 --- a/Eigen/src/Core/DenseStorage.h +++ b/Eigen/src/Core/DenseStorage.h @@ -83,7 +83,7 @@ struct plain_array template <typename T, int Size, int MatrixOrArrayOptions> struct plain_array<T, Size, MatrixOrArrayOptions, 16> { - EIGEN_USER_ALIGN16 T array[Size]; + EIGEN_USER_ALIGN32 T array[Size]; EIGEN_DEVICE_FUNC plain_array() @@ -102,7 +102,7 @@ struct plain_array<T, Size, MatrixOrArrayOptions, 16> template <typename T, int MatrixOrArrayOptions, int Alignment> struct plain_array<T, 0, MatrixOrArrayOptions, Alignment> { - EIGEN_USER_ALIGN16 T array[1]; + EIGEN_USER_ALIGN32 T array[1]; EIGEN_DEVICE_FUNC plain_array() {} EIGEN_DEVICE_FUNC plain_array(constructor_without_unaligned_array_assert) {} }; diff --git a/Eigen/src/Core/Redux.h b/Eigen/src/Core/Redux.h index b2c775d90..5b82c9a65 100644 --- a/Eigen/src/Core/Redux.h +++ b/Eigen/src/Core/Redux.h @@ -303,10 +303,15 @@ struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling> static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func) { eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix"); - Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func)); - if (VectorizedSize != Size) - res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func)); - return res; + if (VectorizedSize > 0) { + Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func)); + if (VectorizedSize != Size) + res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func)); + return res; + } + else { + return redux_novec_unroller<Func, Derived, 0, Size>::run(mat,func); + } } }; diff --git a/Eigen/src/Core/arch/AVX/CMakeLists.txt b/Eigen/src/Core/arch/AVX/CMakeLists.txt new file mode 100644 index 000000000..bdb71ab99 --- /dev/null +++ b/Eigen/src/Core/arch/AVX/CMakeLists.txt @@ -0,0 +1,6 @@ +FILE(GLOB Eigen_Core_arch_AVX_SRCS "*.h") + +INSTALL(FILES + ${Eigen_Core_arch_AVX_SRCS} + DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/AVX COMPONENT Devel +) diff --git a/Eigen/src/Core/arch/AVX/Complex.h b/Eigen/src/Core/arch/AVX/Complex.h new file mode 100644 index 000000000..9fb44ecab --- /dev/null +++ b/Eigen/src/Core/arch/AVX/Complex.h @@ -0,0 +1,443 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner (benoit.steiner.goog@gmail.com) +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMPLEX_AVX_H +#define EIGEN_COMPLEX_AVX_H + +namespace Eigen { + +namespace internal { + +//---------- float ---------- +struct Packet4cf +{ + EIGEN_STRONG_INLINE Packet4cf() {} + EIGEN_STRONG_INLINE explicit Packet4cf(const __m256& a) : v(a) {} + __m256 v; +}; + +template<> struct packet_traits<std::complex<float> > : default_packet_traits +{ + typedef Packet4cf type; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size = 4, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasSetLinear = 0 + }; +}; + +template<> struct unpacket_traits<Packet4cf> { typedef std::complex<float> type; enum {size=4}; }; + +template<> EIGEN_STRONG_INLINE Packet4cf padd<Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_add_ps(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet4cf psub<Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_sub_ps(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet4cf pnegate(const Packet4cf& a) +{ + return Packet4cf(pnegate(a.v)); +} +template<> EIGEN_STRONG_INLINE Packet4cf pconj(const Packet4cf& a) +{ + const __m256 mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000)); + return Packet4cf(_mm256_xor_ps(a.v,mask)); +} + +template<> EIGEN_STRONG_INLINE Packet4cf pmul<Packet4cf>(const Packet4cf& a, const Packet4cf& b) +{ + __m256 tmp1 = _mm256_mul_ps(_mm256_moveldup_ps(a.v), b.v); + __m256 tmp2 = _mm256_mul_ps(_mm256_movehdup_ps(a.v), _mm256_permute_ps(b.v, _MM_SHUFFLE(2,3,0,1))); + __m256 result = _mm256_addsub_ps(tmp1, tmp2); + return Packet4cf(result); +} + +template<> EIGEN_STRONG_INLINE Packet4cf pand <Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_and_ps(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet4cf por <Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_or_ps(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet4cf pxor <Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_xor_ps(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet4cf pandnot<Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_andnot_ps(a.v,b.v)); } + +template<> EIGEN_STRONG_INLINE Packet4cf pload <Packet4cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet4cf(pload<Packet8f>(&numext::real_ref(*from))); } +template<> EIGEN_STRONG_INLINE Packet4cf ploadu<Packet4cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet4cf(ploadu<Packet8f>(&numext::real_ref(*from))); } + + +template<> EIGEN_STRONG_INLINE Packet4cf pset1<Packet4cf>(const std::complex<float>& from) +{ + __m256 result; + for (int i = 0; i < 8; i+=2) { + result[i] = std::real(from); + result[i+1] = std::imag(from); + } + return Packet4cf(result); +} + +template<> EIGEN_STRONG_INLINE Packet4cf ploaddup<Packet4cf>(const std::complex<float>* from) +{ + __m256 result; + for (int i = 0; i < 2; ++i) { + result[4*i] = std::real(from[i]); + result[4*i+1] = std::imag(from[i]); + result[4*i+2] = std::real(from[i]); + result[4*i+3] = std::imag(from[i]); + } + return Packet4cf(result); +} + +template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float>* to, const Packet4cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&numext::real_ref(*to), from.v); } +template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float>* to, const Packet4cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), from.v); } + +template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float>* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); } + + +template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet4cf>(const Packet4cf& a) +{ + return std::complex<float>(a.v[0], a.v[1]); +} + +template<> EIGEN_STRONG_INLINE Packet4cf preverse(const Packet4cf& a) { + __m256 result; + result[0] = a.v[6]; + result[1] = a.v[7]; + result[2] = a.v[4]; + result[3] = a.v[5]; + result[4] = a.v[2]; + result[5] = a.v[3]; + result[6] = a.v[0]; + result[7] = a.v[1]; + return Packet4cf(result); +} + +template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet4cf>(const Packet4cf& a) +{ + return std::complex<float>(a.v[0]+a.v[2]+a.v[4]+a.v[6], a.v[1]+a.v[3]+a.v[5]+a.v[7]); +} + +template<> EIGEN_STRONG_INLINE Packet4cf preduxp<Packet4cf>(const Packet4cf* vecs) +{ + __m256 result = _mm256_setzero_ps(); + for (int i = 0; i < 4; ++i) { + for (int j = 0; j < 8; j+=2) { + result[2*i] += vecs[i].v[j]; + result[2*i+1] += vecs[i].v[j+1]; + } + } + return Packet4cf(result); +} + +template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet4cf>(const Packet4cf& a) +{ + std::complex<float> result(a.v[0], a.v[1]); + for (int i = 2; i < 8; i+=2) { + result *= std::complex<float>(a.v[i], a.v[i+1]); + } + return result; +} + +template<int Offset> +struct palign_impl<Offset,Packet4cf> +{ + static EIGEN_STRONG_INLINE void run(Packet4cf& first, const Packet4cf& second) + { + if (Offset==0) return; + for (int i = 0; i < 4-Offset; ++i) + { + first.v[2*i] = first.v[2*(i+Offset)]; + first.v[2*i+1] = first.v[2*(i+Offset)+1]; + } + for (int i = 4-Offset; i < 4; ++i) + { + first.v[2*i] = second.v[2*(i-4+Offset)]; + first.v[2*i+1] = second.v[2*(i-4+Offset)+1]; + } + } +}; + +template<> struct conj_helper<Packet4cf, Packet4cf, false,true> +{ + EIGEN_STRONG_INLINE Packet4cf pmadd(const Packet4cf& x, const Packet4cf& y, const Packet4cf& c) const + { return padd(pmul(x,y),c); } + + EIGEN_STRONG_INLINE Packet4cf pmul(const Packet4cf& a, const Packet4cf& b) const + { + return internal::pmul(a, pconj(b)); + } +}; + +template<> struct conj_helper<Packet4cf, Packet4cf, true,false> +{ + EIGEN_STRONG_INLINE Packet4cf pmadd(const Packet4cf& x, const Packet4cf& y, const Packet4cf& c) const + { return padd(pmul(x,y),c); } + + EIGEN_STRONG_INLINE Packet4cf pmul(const Packet4cf& a, const Packet4cf& b) const + { + return internal::pmul(pconj(a), b); + } +}; + +template<> struct conj_helper<Packet4cf, Packet4cf, true,true> +{ + EIGEN_STRONG_INLINE Packet4cf pmadd(const Packet4cf& x, const Packet4cf& y, const Packet4cf& c) const + { return padd(pmul(x,y),c); } + + EIGEN_STRONG_INLINE Packet4cf pmul(const Packet4cf& a, const Packet4cf& b) const + { + return pconj(internal::pmul(a, b)); + } +}; + +template<> struct conj_helper<Packet8f, Packet4cf, false,false> +{ + EIGEN_STRONG_INLINE Packet4cf pmadd(const Packet8f& x, const Packet4cf& y, const Packet4cf& c) const + { return padd(c, pmul(x,y)); } + + EIGEN_STRONG_INLINE Packet4cf pmul(const Packet8f& x, const Packet4cf& y) const + { return Packet4cf(Eigen::internal::pmul(x, y.v)); } +}; + +template<> struct conj_helper<Packet4cf, Packet8f, false,false> +{ + EIGEN_STRONG_INLINE Packet4cf pmadd(const Packet4cf& x, const Packet8f& y, const Packet4cf& c) const + { return padd(c, pmul(x,y)); } + + EIGEN_STRONG_INLINE Packet4cf pmul(const Packet4cf& x, const Packet8f& y) const + { return Packet4cf(Eigen::internal::pmul(x.v, y)); } +}; + +template<> EIGEN_STRONG_INLINE Packet4cf pdiv<Packet4cf>(const Packet4cf& a, const Packet4cf& b) +{ + Packet4cf res; + for (int i = 0; i < 8; i+=2) { + std::complex<float> result = std::complex<float>(a.v[i], a.v[i+1]) / std::complex<float>(b.v[i], b.v[i+1]); + res.v[i] = std::real(result); + res.v[i+1] = std::imag(result); + } + return res; +} + +template<> EIGEN_STRONG_INLINE Packet4cf pcplxflip<Packet4cf>(const Packet4cf& x) +{ + Packet4cf res; + for (int i = 0; i < 8; i+=2) { + res.v[i] = x.v[i+1]; + res.v[i+1] = x.v[i]; + } + return res; +} + +//---------- double ---------- +struct Packet2cd +{ + EIGEN_STRONG_INLINE Packet2cd() {} + EIGEN_STRONG_INLINE explicit Packet2cd(const __m256d& a) : v(a) {} + __m256d v; +}; + +template<> struct packet_traits<std::complex<double> > : default_packet_traits +{ + typedef Packet2cd type; + enum { + Vectorizable = 1, + AlignedOnScalar = 0, + size = 2, + + HasAdd = 1, + HasSub = 1, + HasMul = 1, + HasDiv = 1, + HasNegate = 1, + HasAbs = 0, + HasAbs2 = 0, + HasMin = 0, + HasMax = 0, + HasSetLinear = 0 + }; +}; + +template<> struct unpacket_traits<Packet2cd> { typedef std::complex<double> type; enum {size=2}; }; + +template<> EIGEN_STRONG_INLINE Packet2cd padd<Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_add_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cd psub<Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_sub_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cd pnegate(const Packet2cd& a) { return Packet2cd(pnegate(a.v)); } +template<> EIGEN_STRONG_INLINE Packet2cd pconj(const Packet2cd& a) +{ + const __m256d mask = _mm256_castsi256_pd(_mm256_set_epi32(0x80000000,0x0,0x0,0x0,0x80000000,0x0,0x0,0x0)); + return Packet2cd(_mm256_xor_pd(a.v,mask)); +} + +template<> EIGEN_STRONG_INLINE Packet2cd pmul<Packet2cd>(const Packet2cd& a, const Packet2cd& b) +{ + __m256d tmp1 = _mm256_mul_pd(_mm256_permute_pd(a.v, 0), b.v); + // FIXME: _mm256_permute_pd(b.v, _MM_SHUFFLE2(1,0) won't work as expected, figure out an alternative. + __m256d op = {b.v[1], b.v[0], b.v[3], b.v[2]}; + __m256d tmp2 = _mm256_mul_pd(_mm256_permute_pd(a.v, 15), op); + __m256d result = _mm256_addsub_pd(tmp1, tmp2); + + return Packet2cd(result); +} + +template<> EIGEN_STRONG_INLINE Packet2cd pand <Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_and_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cd por <Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_or_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cd pxor <Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_xor_pd(a.v,b.v)); } +template<> EIGEN_STRONG_INLINE Packet2cd pandnot<Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_andnot_pd(a.v,b.v)); } + +template<> EIGEN_STRONG_INLINE Packet2cd pload <Packet2cd>(const std::complex<double>* from) +{ EIGEN_DEBUG_ALIGNED_LOAD return Packet2cd(pload<Packet4d>((const double*)from)); } +template<> EIGEN_STRONG_INLINE Packet2cd ploadu<Packet2cd>(const std::complex<double>* from) +{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cd(ploadu<Packet4d>((const double*)from)); } + +template<> EIGEN_STRONG_INLINE Packet2cd pset1<Packet2cd>(const std::complex<double>& from) +{ + __m256d result; + for (int i = 0; i < 4; i+=2) { + result[i] = std::real(from); + result[i+1] = std::imag(from); + } + return Packet2cd(result); +} + +template<> EIGEN_STRONG_INLINE Packet2cd ploaddup<Packet2cd>(const std::complex<double>* from) { return pset1<Packet2cd>(*from); } + +template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet2cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); } +template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet2cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); } + +template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); } + +template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet2cd>(const Packet2cd& a) +{ + return std::complex<double>(a.v[0],a.v[1]); +} + +template<> EIGEN_STRONG_INLINE Packet2cd preverse(const Packet2cd& a) { + __m256d result; + result[0] = a.v[2]; + result[1] = a.v[3]; + result[2] = a.v[0]; + result[3] = a.v[1]; + return Packet2cd(result); +} + +template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet2cd>(const Packet2cd& a) +{ + return std::complex<double>(a.v[0]+a.v[2], a.v[1]+a.v[3]); +} + +template<> EIGEN_STRONG_INLINE Packet2cd preduxp<Packet2cd>(const Packet2cd* vecs) +{ + __m256d result = _mm256_setzero_pd(); + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 4; j+=2) { + result[2*i] += vecs[i].v[j]; + result[2*i+1] += vecs[i].v[j+1]; + } + } + return Packet2cd(result); +} + +template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet2cd>(const Packet2cd& a) +{ + return std::complex<double>(a.v[0], a.v[1]) * std::complex<double>(a.v[2], a.v[3]); +} + +template<int Offset> +struct palign_impl<Offset,Packet2cd> +{ + static EIGEN_STRONG_INLINE void run(Packet2cd& first, const Packet2cd& second) + { + if (Offset==0) return; + first.v[0] = first.v[2]; + first.v[1] = first.v[3]; + first.v[2] = second.v[0]; + first.v[3] = second.v[1]; + } +}; + +template<> struct conj_helper<Packet2cd, Packet2cd, false,true> +{ + EIGEN_STRONG_INLINE Packet2cd pmadd(const Packet2cd& x, const Packet2cd& y, const Packet2cd& c) const + { return padd(pmul(x,y),c); } + + EIGEN_STRONG_INLINE Packet2cd pmul(const Packet2cd& a, const Packet2cd& b) const + { + return internal::pmul(a, pconj(b)); + } +}; + +template<> struct conj_helper<Packet2cd, Packet2cd, true,false> +{ + EIGEN_STRONG_INLINE Packet2cd pmadd(const Packet2cd& x, const Packet2cd& y, const Packet2cd& c) const + { return padd(pmul(x,y),c); } + + EIGEN_STRONG_INLINE Packet2cd pmul(const Packet2cd& a, const Packet2cd& b) const + { + return internal::pmul(pconj(a), b); + } +}; + +template<> struct conj_helper<Packet2cd, Packet2cd, true,true> +{ + EIGEN_STRONG_INLINE Packet2cd pmadd(const Packet2cd& x, const Packet2cd& y, const Packet2cd& c) const + { return padd(pmul(x,y),c); } + + EIGEN_STRONG_INLINE Packet2cd pmul(const Packet2cd& a, const Packet2cd& b) const + { + return pconj(internal::pmul(a, b)); + } +}; + +template<> struct conj_helper<Packet4d, Packet2cd, false,false> +{ + EIGEN_STRONG_INLINE Packet2cd pmadd(const Packet4d& x, const Packet2cd& y, const Packet2cd& c) const + { return padd(c, pmul(x,y)); } + + EIGEN_STRONG_INLINE Packet2cd pmul(const Packet4d& x, const Packet2cd& y) const + { return Packet2cd(Eigen::internal::pmul(x, y.v)); } +}; + +template<> struct conj_helper<Packet2cd, Packet4d, false,false> +{ + EIGEN_STRONG_INLINE Packet2cd pmadd(const Packet2cd& x, const Packet4d& y, const Packet2cd& c) const + { return padd(c, pmul(x,y)); } + + EIGEN_STRONG_INLINE Packet2cd pmul(const Packet2cd& x, const Packet4d& y) const + { return Packet2cd(Eigen::internal::pmul(x.v, y)); } +}; + +template<> EIGEN_STRONG_INLINE Packet2cd pdiv<Packet2cd>(const Packet2cd& a, const Packet2cd& b) +{ + Packet2cd res; + for (int i = 0; i < 4; i+=2) { + std::complex<double> result = std::complex<double>(a.v[i], a.v[i+1]) / std::complex<double>(b.v[i], b.v[i+1]); + res.v[i] = std::real(result); + res.v[i+1] = std::imag(result); + } + return res; +} + +template<> EIGEN_STRONG_INLINE Packet2cd pcplxflip<Packet2cd>(const Packet2cd& x) +{ + Packet2cd res; + for (int i = 0; i < 4; i+=2) { + res.v[i] = x.v[i+1]; + res.v[i+1] = x.v[i]; + } + return res; +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_COMPLEX_AVX_H diff --git a/Eigen/src/Core/arch/AVX/PacketMath.h b/Eigen/src/Core/arch/AVX/PacketMath.h new file mode 100644 index 000000000..244e63e74 --- /dev/null +++ b/Eigen/src/Core/arch/AVX/PacketMath.h @@ -0,0 +1,423 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner (benoit.steiner.goog@gmail.com) +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PACKET_MATH_AVX_H +#define EIGEN_PACKET_MATH_AVX_H + +namespace Eigen { + +namespace internal { + +#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD +#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 +#endif + +#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS +#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*)) +#endif + +typedef __m256 Packet8f; +typedef __m256i Packet8i; +typedef __m256d Packet4d; + +template<> struct is_arithmetic<__m256> { enum { value = true }; }; +template<> struct is_arithmetic<__m256i> { enum { value = true }; }; +template<> struct is_arithmetic<__m256d> { enum { value = true }; }; + +#define _EIGEN_DECLARE_CONST_Packet8f(NAME,X) \ + const Packet8f p8f_##NAME = pset1<Packet8f>(X) + +#define _EIGEN_DECLARE_CONST_Packet4d(NAME,X) \ + const Packet4d p4d_##NAME = pset1<Packet4d>(X) + + +template<> struct packet_traits<float> : default_packet_traits +{ + typedef Packet8f type; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size=8, + + HasDiv = 1, + HasSin = 0, + HasCos = 0, + HasLog = 0, + HasExp = 0, + HasSqrt = 0 + }; + }; +template<> struct packet_traits<double> : default_packet_traits +{ + typedef Packet4d type; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size=4, + + HasDiv = 1, + HasExp = 0 + }; +}; + +/* Proper support for integers is only provided by AVX2. In the meantime, we'll + use SSE instructions and packets to deal with integers. +template<> struct packet_traits<int> : default_packet_traits +{ + typedef Packet8i type; + enum { + Vectorizable = 1, + AlignedOnScalar = 1, + size=8 + }; +}; +*/ + +template<> struct unpacket_traits<Packet8f> { typedef float type; enum {size=8}; }; +template<> struct unpacket_traits<Packet4d> { typedef double type; enum {size=4}; }; +template<> struct unpacket_traits<Packet8i> { typedef int type; enum {size=8}; }; + +template<> EIGEN_STRONG_INLINE Packet8f pset1<Packet8f>(const float& from) { return _mm256_set1_ps(from); } +template<> EIGEN_STRONG_INLINE Packet4d pset1<Packet4d>(const double& from) { return _mm256_set1_pd(from); } +template<> EIGEN_STRONG_INLINE Packet8i pset1<Packet8i>(const int& from) { return _mm256_set1_epi32(from); } + +template<> EIGEN_STRONG_INLINE Packet8f plset<float>(const float& a) { return _mm256_add_ps(_mm256_set1_ps(a), _mm256_set_ps(7.0,6.0,5.0,4.0,3.0,2.0,1.0,0.0)); } +template<> EIGEN_STRONG_INLINE Packet4d plset<double>(const double& a) { return _mm256_add_pd(_mm256_set1_pd(a), _mm256_set_pd(3.0,2.0,1.0,0.0)); } + +template<> EIGEN_STRONG_INLINE Packet8f padd<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_add_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4d padd<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_add_pd(a,b); } + +template<> EIGEN_STRONG_INLINE Packet8f psub<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_sub_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4d psub<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_sub_pd(a,b); } + +template<> EIGEN_STRONG_INLINE Packet8f pnegate(const Packet8f& a) +{ + return _mm256_sub_ps(_mm256_set1_ps(0.0),a); +} +template<> EIGEN_STRONG_INLINE Packet4d pnegate(const Packet4d& a) +{ + return _mm256_sub_pd(_mm256_set1_pd(0.0),a); +} + +template<> EIGEN_STRONG_INLINE Packet8f pconj(const Packet8f& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet4d pconj(const Packet4d& a) { return a; } +template<> EIGEN_STRONG_INLINE Packet8i pconj(const Packet8i& a) { return a; } + +template<> EIGEN_STRONG_INLINE Packet8f pmul<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_mul_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4d pmul<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_mul_pd(a,b); } + + +template<> EIGEN_STRONG_INLINE Packet8f pdiv<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_div_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4d pdiv<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_div_pd(a,b); } +template<> EIGEN_STRONG_INLINE Packet8i pdiv<Packet8i>(const Packet8i& /*a*/, const Packet8i& /*b*/) +{ eigen_assert(false && "packet integer division are not supported by AVX"); + return pset1<Packet8i>(0); +} + +template<> EIGEN_STRONG_INLINE Packet8f pmin<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_min_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4d pmin<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_min_pd(a,b); } + +template<> EIGEN_STRONG_INLINE Packet8f pmax<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_max_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4d pmax<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_max_pd(a,b); } + +template<> EIGEN_STRONG_INLINE Packet8f pand<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_and_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4d pand<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_and_pd(a,b); } + +template<> EIGEN_STRONG_INLINE Packet8f por<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_or_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4d por<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_or_pd(a,b); } + +template<> EIGEN_STRONG_INLINE Packet8f pxor<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_xor_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4d pxor<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_xor_pd(a,b); } + +template<> EIGEN_STRONG_INLINE Packet8f pandnot<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_andnot_ps(a,b); } +template<> EIGEN_STRONG_INLINE Packet4d pandnot<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_andnot_pd(a,b); } + +template<> EIGEN_STRONG_INLINE Packet8f pload<Packet8f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_ps(from); } +template<> EIGEN_STRONG_INLINE Packet4d pload<Packet4d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_pd(from); } +template<> EIGEN_STRONG_INLINE Packet8i pload<Packet8i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_si256(reinterpret_cast<const __m256i*>(from)); } + +template<> EIGEN_STRONG_INLINE Packet8f ploadu<Packet8f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_ps(from); } +template<> EIGEN_STRONG_INLINE Packet4d ploadu<Packet4d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_pd(from); } +template<> EIGEN_STRONG_INLINE Packet8i ploadu<Packet8i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(from)); } + +// Loads 4 floats from memory a returns the packet {a0, a0 a1, a1, a2, a2, a3, a3} +template<> EIGEN_STRONG_INLINE Packet8f ploaddup<Packet8f>(const float* from) +{ + Packet8f tmp = ploadu<Packet8f>(from); + Packet8f tmp1 = _mm256_permute_ps(tmp, _MM_SHUFFLE(3,3,2,2)); + Packet8f tmp2 = _mm256_permute_ps(tmp, _MM_SHUFFLE(1,1,0,0)); + return _mm256_blend_ps(_mm256_permute2f128_ps(tmp1,tmp1,1),tmp2,15); +} +// Loads 2 doubles from memory a returns the packet {a0, a0 a1, a1} +template<> EIGEN_STRONG_INLINE Packet4d ploaddup<Packet4d>(const double* from) +{ + Packet4d tmp = ploadu<Packet4d>(from); + Packet4d tmp1 = _mm256_permute_pd(tmp,0); + Packet4d tmp2 = _mm256_permute_pd(tmp,3); + return _mm256_blend_pd(tmp1,_mm256_permute2f128_pd(tmp2,tmp2,1),12); +} + +template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet8f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_ps(to, from); } +template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet4d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_pd(to, from); } +template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet8i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); } + +template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet8f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_ps(to, from); } +template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet4d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_pd(to, from); } +template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet8i& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); } + +template<> EIGEN_STRONG_INLINE void pstore1<Packet8f>(float* to, const float& a) +{ + Packet8f pa = pset1<Packet8f>(a); + pstore(to, pa); +} +template<> EIGEN_STRONG_INLINE void pstore1<Packet4d>(double* to, const double& a) +{ + Packet4d pa = pset1<Packet4d>(a); + pstore(to, pa); +} +template<> EIGEN_STRONG_INLINE void pstore1<Packet8i>(int* to, const int& a) +{ + Packet8i pa = pset1<Packet8i>(a); + pstore(to, pa); +} + +template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); } +template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); } +template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); } + +template<> EIGEN_STRONG_INLINE float pfirst<Packet8f>(const Packet8f& a) { + return _mm_cvtss_f32(_mm256_castps256_ps128(a)); +} +template<> EIGEN_STRONG_INLINE double pfirst<Packet4d>(const Packet4d& a) { + return _mm_cvtsd_f64(_mm256_castpd256_pd128(a)); +} +template<> EIGEN_STRONG_INLINE int pfirst<Packet8i>(const Packet8i& a) { + return _mm_cvtsi128_si32(_mm256_castsi256_si128(a)); +} + + +template<> EIGEN_STRONG_INLINE Packet8f preverse(const Packet8f& a) +{ + __m256 tmp = _mm256_shuffle_ps(a,a,0x1b); + return _mm256_permute2f128_ps(tmp, tmp, 1); +} +template<> EIGEN_STRONG_INLINE Packet4d preverse(const Packet4d& a) +{ + __m256d tmp = _mm256_shuffle_pd(a,a,5); + return _mm256_permute2f128_pd(tmp, tmp, 1); + + __m256d swap_halves = _mm256_permute2f128_pd(a,a,1); + return _mm256_permute_pd(swap_halves,5); +} + +// pabs should be ok +template<> EIGEN_STRONG_INLINE Packet8f pabs(const Packet8f& a) +{ + const Packet8f mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF)); + return _mm256_and_ps(a,mask); +} +template<> EIGEN_STRONG_INLINE Packet4d pabs(const Packet4d& a) +{ + const Packet4d mask = _mm256_castsi256_pd(_mm256_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF)); + return _mm256_and_pd(a,mask); +} + +// preduxp should be ok +// FIXME: why is this ok? why isn't the simply implementation working as expected? +template<> EIGEN_STRONG_INLINE Packet8f preduxp<Packet8f>(const Packet8f* vecs) +{ + __m256 hsum1 = _mm256_hadd_ps(vecs[0], vecs[1]); + __m256 hsum2 = _mm256_hadd_ps(vecs[2], vecs[3]); + __m256 hsum3 = _mm256_hadd_ps(vecs[4], vecs[5]); + __m256 hsum4 = _mm256_hadd_ps(vecs[6], vecs[7]); + + __m256 hsum5 = _mm256_hadd_ps(hsum1, hsum1); + __m256 hsum6 = _mm256_hadd_ps(hsum2, hsum2); + __m256 hsum7 = _mm256_hadd_ps(hsum3, hsum3); + __m256 hsum8 = _mm256_hadd_ps(hsum4, hsum4); + + __m256 perm1 = _mm256_permute2f128_ps(hsum5, hsum5, 0x23); + __m256 perm2 = _mm256_permute2f128_ps(hsum6, hsum6, 0x23); + __m256 perm3 = _mm256_permute2f128_ps(hsum7, hsum7, 0x23); + __m256 perm4 = _mm256_permute2f128_ps(hsum8, hsum8, 0x23); + + __m256 sum1 = _mm256_add_ps(perm1, hsum5); + __m256 sum2 = _mm256_add_ps(perm2, hsum6); + __m256 sum3 = _mm256_add_ps(perm3, hsum7); + __m256 sum4 = _mm256_add_ps(perm4, hsum8); + + __m256 blend1 = _mm256_blend_ps(sum1, sum2, 0xcc); + __m256 blend2 = _mm256_blend_ps(sum3, sum4, 0xcc); + + __m256 final = _mm256_blend_ps(blend1, blend2, 0xf0); + return final; +} +template<> EIGEN_STRONG_INLINE Packet4d preduxp<Packet4d>(const Packet4d* vecs) +{ + Packet4d tmp0, tmp1; + + tmp0 = _mm256_hadd_pd(vecs[0], vecs[1]); + tmp0 = _mm256_add_pd(tmp0, _mm256_permute2f128_pd(tmp0, tmp0, 1)); + + tmp1 = _mm256_hadd_pd(vecs[2], vecs[3]); + tmp1 = _mm256_add_pd(tmp1, _mm256_permute2f128_pd(tmp1, tmp1, 1)); + + return _mm256_blend_pd(tmp0, tmp1, 0xC); +} + +template<> EIGEN_STRONG_INLINE float predux<Packet8f>(const Packet8f& a) +{ + Packet8f tmp0 = _mm256_hadd_ps(a,_mm256_permute2f128_ps(a,a,1)); + tmp0 = _mm256_hadd_ps(tmp0,tmp0); + return pfirst(_mm256_hadd_ps(tmp0, tmp0)); +} +template<> EIGEN_STRONG_INLINE double predux<Packet4d>(const Packet4d& a) +{ + Packet4d tmp0 = _mm256_hadd_pd(a,_mm256_permute2f128_pd(a,a,1)); + return pfirst(_mm256_hadd_pd(tmp0,tmp0)); +} + +template<> EIGEN_STRONG_INLINE float predux_mul<Packet8f>(const Packet8f& a) +{ + Packet8f tmp; + tmp = _mm256_mul_ps(a, _mm256_permute2f128_ps(a,a,1)); + tmp = _mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2))); + return pfirst(_mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1))); +} +template<> EIGEN_STRONG_INLINE double predux_mul<Packet4d>(const Packet4d& a) +{ + Packet4d tmp; + tmp = _mm256_mul_pd(a, _mm256_permute2f128_pd(a,a,1)); + return pfirst(_mm256_mul_pd(tmp, _mm256_shuffle_pd(tmp,tmp,1))); +} + +template<> EIGEN_STRONG_INLINE float predux_min<Packet8f>(const Packet8f& a) +{ + float result = a[0]; + for (int i = 1; i < 8; ++i) { + if (a[i] < result) result = a[i]; + } + return result; +} +template<> EIGEN_STRONG_INLINE double predux_min<Packet4d>(const Packet4d& a) +{ + double result = a[0]; + for (int i = 1; i < 4; ++i) { + if (a[i] < result) result = a[i]; + } + return result; +} + +template<> EIGEN_STRONG_INLINE float predux_max<Packet8f>(const Packet8f& a) +{ + float result = a[0]; + for (int i = 1; i < 8; ++i) { + if (a[i] > result) result = a[i]; + } + return result; +} + +template<> EIGEN_STRONG_INLINE double predux_max<Packet4d>(const Packet4d& a) +{ + double result = a[0]; + for (int i = 1; i < 4; ++i) { + if (a[i] > result) result = a[i]; + } + return result; +} + + +template<int Offset> +struct palign_impl<Offset,Packet8f> +{ + static EIGEN_STRONG_INLINE void run(Packet8f& first, const Packet8f& second) + { + if (Offset==1) + { + first = _mm256_blend_ps(first, second, 1); + Packet8f tmp = _mm256_permute_ps (first, _MM_SHUFFLE(0,3,2,1)); + first = _mm256_blend_ps(tmp, _mm256_permute2f128_ps (tmp, tmp, 1), 0x88); + } + else if (Offset==2) + { + first = _mm256_blend_ps(first, second, 3); + Packet8f tmp = _mm256_permute_ps (first, _MM_SHUFFLE(1,0,3,2)); + first = _mm256_blend_ps(tmp, _mm256_permute2f128_ps (tmp, tmp, 1), 0xcc); + } + else if (Offset==3) + { + first = _mm256_blend_ps(first, second, 7); + Packet8f tmp = _mm256_permute_ps (first, _MM_SHUFFLE(2,1,0,3)); + first = _mm256_blend_ps(tmp, _mm256_permute2f128_ps (tmp, tmp, 1), 0xee); + } + else if (Offset==4) + { + first = _mm256_blend_ps(first, second, 15); + Packet8f tmp = _mm256_permute_ps (first, _MM_SHUFFLE(3,2,1,0)); + first = _mm256_permute_ps(_mm256_permute2f128_ps (tmp, tmp, 1), _MM_SHUFFLE(3,2,1,0)); + } + else if (Offset==5) + { + first = _mm256_blend_ps(first, second, 31); + first = _mm256_permute2f128_ps(first, first, 1); + Packet8f tmp = _mm256_permute_ps (first, _MM_SHUFFLE(0,3,2,1)); + first = _mm256_permute2f128_ps(tmp, tmp, 1); + first = _mm256_blend_ps(tmp, first, 0x88); + } + else if (Offset==6) + { + first = _mm256_blend_ps(first, second, 63); + first = _mm256_permute2f128_ps(first, first, 1); + Packet8f tmp = _mm256_permute_ps (first, _MM_SHUFFLE(1,0,3,2)); + first = _mm256_permute2f128_ps(tmp, tmp, 1); + first = _mm256_blend_ps(tmp, first, 0xcc); + } + else if (Offset==7) + { + first = _mm256_blend_ps(first, second, 127); + first = _mm256_permute2f128_ps(first, first, 1); + Packet8f tmp = _mm256_permute_ps (first, _MM_SHUFFLE(2,1,0,3)); + first = _mm256_permute2f128_ps(tmp, tmp, 1); + first = _mm256_blend_ps(tmp, first, 0xee); + } + } +}; + +template<int Offset> +struct palign_impl<Offset,Packet4d> +{ + static EIGEN_STRONG_INLINE void run(Packet4d& first, const Packet4d& second) + { + if (Offset==1) + { + first = _mm256_blend_pd(first, second, 1); + __m256d tmp = _mm256_permute_pd(first, 5); + first = _mm256_permute2f128_pd(tmp, tmp, 1); + first = _mm256_blend_pd(tmp, first, 0xA); + } + else if (Offset==2) + { + first = _mm256_blend_pd(first, second, 3); + first = _mm256_permute2f128_pd(first, first, 1); + } + else if (Offset==3) + { + first = _mm256_blend_pd(first, second, 7); + __m256d tmp = _mm256_permute_pd(first, 5); + first = _mm256_permute2f128_pd(tmp, tmp, 1); + first = _mm256_blend_pd(tmp, first, 5); + } + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_PACKET_MATH_AVX_H diff --git a/Eigen/src/Core/arch/SSE/PacketMath.h b/Eigen/src/Core/arch/SSE/PacketMath.h index f5a3dab52..e913af650 100644 --- a/Eigen/src/Core/arch/SSE/PacketMath.h +++ b/Eigen/src/Core/arch/SSE/PacketMath.h @@ -58,6 +58,9 @@ template<> struct is_arithmetic<__m128d> { enum { value = true }; }; const Packet4i p4i_##NAME = pset1<Packet4i>(X) +// Use the packet_traits defined in AVX/PacketMath.h instead if we're going +// to leverage AVX instructions. +#ifndef EIGEN_VECTORIZE_AVX template<> struct packet_traits<float> : default_packet_traits { typedef Packet4f type; @@ -87,6 +90,7 @@ template<> struct packet_traits<double> : default_packet_traits HasSqrt = 1 }; }; +#endif template<> struct packet_traits<int> : default_packet_traits { typedef Packet4i type; @@ -115,8 +119,10 @@ template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { re template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return _mm_set1_epi32(from); } #endif +#ifndef EIGEN_VECTORIZE_AVX template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a) { return _mm_add_ps(pset1<Packet4f>(a), _mm_set_ps(3,2,1,0)); } template<> EIGEN_STRONG_INLINE Packet2d plset<double>(const double& a) { return _mm_add_pd(pset1<Packet2d>(a),_mm_set_pd(1,0)); } +#endif template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a) { return _mm_add_epi32(pset1<Packet4i>(a),_mm_set_epi32(3,2,1,0)); } template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_add_ps(a,b); } @@ -331,9 +337,11 @@ template<> EIGEN_STRONG_INLINE void pstore1<Packet2d>(double* to, const double& pstore(to, vec2d_swizzle1(pa,0,0)); } +#ifndef EIGEN_VECTORIZE_AVX template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); } template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); } template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); } +#endif #if defined(_MSC_VER) && defined(_WIN64) && !defined(__INTEL_COMPILER) // The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010 diff --git a/Eigen/src/Core/products/GeneralMatrixMatrix.h b/Eigen/src/Core/products/GeneralMatrixMatrix.h index 3f5ffcf51..eb399a824 100644 --- a/Eigen/src/Core/products/GeneralMatrixMatrix.h +++ b/Eigen/src/Core/products/GeneralMatrixMatrix.h @@ -286,9 +286,9 @@ class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, M SizeW = MaxDepth * Traits::WorkSpaceFactor }; - EIGEN_ALIGN16 LhsScalar m_staticA[SizeA]; - EIGEN_ALIGN16 RhsScalar m_staticB[SizeB]; - EIGEN_ALIGN16 RhsScalar m_staticW[SizeW]; + EIGEN_ALIGN32 LhsScalar m_staticA[SizeA]; + EIGEN_ALIGN32 RhsScalar m_staticB[SizeB]; + EIGEN_ALIGN32 RhsScalar m_staticW[SizeW]; public: diff --git a/Eigen/src/Core/products/GeneralMatrixVector.h b/Eigen/src/Core/products/GeneralMatrixVector.h index c8697c913..7f35cc53a 100644 --- a/Eigen/src/Core/products/GeneralMatrixVector.h +++ b/Eigen/src/Core/products/GeneralMatrixVector.h @@ -141,7 +141,8 @@ EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,ColMajor,Co // find how many columns do we have to skip to be aligned with the result (if possible) Index skipColumns = 0; // if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats) - if( (size_t(lhs)%sizeof(LhsScalar)) || (size_t(res)%sizeof(ResScalar)) ) + // TODO: extend the code to support aligned loads whenever possible when LhsPacketSize > 4. + if( (size_t(lhs)%sizeof(LhsScalar)) || (size_t(res)%sizeof(ResScalar)) || LhsPacketSize > 4) { alignedSize = 0; alignedStart = 0; @@ -404,7 +405,9 @@ EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,RowMajor,Co // find how many rows do we have to skip to be aligned with rhs (if possible) Index skipRows = 0; // if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats) - if( (sizeof(LhsScalar)!=sizeof(RhsScalar)) || (size_t(lhs)%sizeof(LhsScalar)) || (size_t(rhs)%sizeof(RhsScalar)) ) + // TODO: extend the code to support aligned loads whenever possible when LhsPacketSize > 4. + if( (sizeof(LhsScalar)!=sizeof(RhsScalar)) || (size_t(lhs)%sizeof(LhsScalar)) || (size_t(rhs)%sizeof(RhsScalar)) || + (LhsPacketSize > 4)) { alignedSize = 0; alignedStart = 0; @@ -446,7 +449,7 @@ EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,RowMajor,Co Index rowBound = ((rows-skipRows)/rowsAtOnce)*rowsAtOnce + skipRows; for (Index i=skipRows; i<rowBound; i+=rowsAtOnce) { - EIGEN_ALIGN16 ResScalar tmp0 = ResScalar(0); + EIGEN_ALIGN32 ResScalar tmp0 = ResScalar(0); ResScalar tmp1 = ResScalar(0), tmp2 = ResScalar(0), tmp3 = ResScalar(0); // this helps the compiler generating good binary code @@ -555,7 +558,7 @@ EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,RowMajor,Co { for (Index i=start; i<end; ++i) { - EIGEN_ALIGN16 ResScalar tmp0 = ResScalar(0); + EIGEN_ALIGN32 ResScalar tmp0 = ResScalar(0); ResPacket ptmp0 = pset1<ResPacket>(tmp0); const LhsScalar* lhs0 = lhs + i*lhsStride; // process first unaligned result's coeffs diff --git a/Eigen/src/Core/util/Macros.h b/Eigen/src/Core/util/Macros.h index debc04f3f..787f800b8 100644 --- a/Eigen/src/Core/util/Macros.h +++ b/Eigen/src/Core/util/Macros.h @@ -72,7 +72,11 @@ #endif #define EIGEN_ALIGN 0 #else - #define EIGEN_ALIGN 1 + #if !defined(EIGEN_DONT_VECTORIZE) && defined(__AVX__) + #define EIGEN_ALIGN 32 + #else + #define EIGEN_ALIGN 16 + #endif #endif // EIGEN_ALIGN_STATICALLY is the true test whether we want to align arrays on the stack or not. It takes into account both the user choice to explicitly disable @@ -281,13 +285,16 @@ #endif #define EIGEN_ALIGN16 EIGEN_ALIGN_TO_BOUNDARY(16) +#define EIGEN_ALIGN32 EIGEN_ALIGN_TO_BOUNDARY(32) #if EIGEN_ALIGN_STATICALLY #define EIGEN_USER_ALIGN_TO_BOUNDARY(n) EIGEN_ALIGN_TO_BOUNDARY(n) #define EIGEN_USER_ALIGN16 EIGEN_ALIGN16 +#define EIGEN_USER_ALIGN32 EIGEN_ALIGN32 #else #define EIGEN_USER_ALIGN_TO_BOUNDARY(n) #define EIGEN_USER_ALIGN16 +#define EIGEN_USER_ALIGN32 #endif #ifdef EIGEN_DONT_USE_RESTRICT_KEYWORD diff --git a/Eigen/src/Core/util/Memory.h b/Eigen/src/Core/util/Memory.h index d177e8b5a..76bdb6cfc 100644 --- a/Eigen/src/Core/util/Memory.h +++ b/Eigen/src/Core/util/Memory.h @@ -32,7 +32,7 @@ // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed // quite safe, at least within the context of glibc, to equate 64-bit with LP64. #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \ - && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) + && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) && (EIGEN_ALIGN == 16) #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1 #else #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0 @@ -42,14 +42,14 @@ // See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures // See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup -#if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__) +#if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__) && (EIGEN_ALIGN == 16) #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1 #else #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0 #endif -#if defined(__APPLE__) \ - || defined(_WIN64) \ +#if (defined(__APPLE__) && (EIGEN_ALIGN == 16)) \ + || (defined(_WIN64) && (EIGEN_ALIGN == 16)) \ || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \ || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED #define EIGEN_MALLOC_ALREADY_ALIGNED 1 @@ -73,7 +73,7 @@ #define EIGEN_HAS_POSIX_MEMALIGN 0 #endif -#ifdef EIGEN_VECTORIZE_SSE +#if defined EIGEN_VECTORIZE_SSE || defined EIGEN_VECTORIZE_AVX #define EIGEN_HAS_MM_MALLOC 1 #else #define EIGEN_HAS_MM_MALLOC 0 @@ -105,9 +105,9 @@ inline void throw_std_bad_alloc() */ inline void* handmade_aligned_malloc(std::size_t size) { - void *original = std::malloc(size+16); + void *original = std::malloc(size+EIGEN_ALIGN); if (original == 0) return 0; - void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16); + void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_ALIGN-1))) + EIGEN_ALIGN); *(reinterpret_cast<void**>(aligned) - 1) = original; return aligned; } @@ -128,9 +128,9 @@ inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = if (ptr == 0) return handmade_aligned_malloc(size); void *original = *(reinterpret_cast<void**>(ptr) - 1); std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original); - original = std::realloc(original,size+16); + original = std::realloc(original,size+EIGEN_ALIGN); if (original == 0) return 0; - void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16); + void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_ALIGN-1))) + EIGEN_ALIGN); void *previous_aligned = static_cast<char *>(original)+previous_offset; if(aligned!=previous_aligned) std::memmove(aligned, previous_aligned, size); @@ -208,7 +208,7 @@ inline void check_that_malloc_is_allowed() {} #endif -/** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 bytes alignment. +/** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 or 32 bytes alignment depending on the requirements. * On allocation error, the returned pointer is null, and std::bad_alloc is thrown. */ inline void* aligned_malloc(size_t size) @@ -221,11 +221,11 @@ inline void* aligned_malloc(size_t size) #elif EIGEN_MALLOC_ALREADY_ALIGNED result = std::malloc(size); #elif EIGEN_HAS_POSIX_MEMALIGN - if(posix_memalign(&result, 16, size)) result = 0; + if(posix_memalign(&result, EIGEN_ALIGN, size)) result = 0; #elif EIGEN_HAS_MM_MALLOC - result = _mm_malloc(size, 16); + result = _mm_malloc(size, EIGEN_ALIGN); #elif defined(_MSC_VER) && (!defined(_WIN32_WCE)) - result = _aligned_malloc(size, 16); + result = _aligned_malloc(size, EIGEN_ALIGN); #else result = handmade_aligned_malloc(size); #endif @@ -275,12 +275,12 @@ inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size) // implements _mm_malloc/_mm_free based on the corresponding _aligned_ // functions. This may not always be the case and we just try to be safe. #if defined(_MSC_VER) && defined(_mm_free) - result = _aligned_realloc(ptr,new_size,16); + result = _aligned_realloc(ptr,new_size,EIGEN_ALIGN); #else result = generic_aligned_realloc(ptr,new_size,old_size); #endif #elif defined(_MSC_VER) - result = _aligned_realloc(ptr,new_size,16); + result = _aligned_realloc(ptr,new_size,EIGEN_ALIGN); #else result = handmade_aligned_realloc(ptr,new_size,old_size); #endif @@ -607,9 +607,9 @@ template<typename T> class aligned_stack_memory_handler * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token. */ #ifdef EIGEN_ALLOCA - - #ifdef __arm__ - #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16) + // The native alloca() that comes with llvm aligns buffer on 16 bytes even when AVX is enabled. + #if defined(__arm__) || EIGEN_ALIGN > 16 + #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+EIGEN_ALIGN)) & ~(size_t(EIGEN_ALIGN-1))) + EIGEN_ALIGN) #else #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA #endif @@ -679,7 +679,7 @@ template<typename T> class aligned_stack_memory_handler #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true) #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \ - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0))) + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%EIGEN_ALIGN==0))) /****************************************************************************/ |