aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/Ref.h
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2016-01-01 21:45:06 +0100
committerGravatar Gael Guennebaud <g.gael@free.fr>2016-01-01 21:45:06 +0100
commit8b0d1eb0f7f1ab017a8e603f3887143df15662d7 (patch)
treef4dfaa8f9daeb27595923d052afd844435f90ae7 /Eigen/src/Core/Ref.h
parent9900782e882b9429e44ad4902476cbaa489edbfa (diff)
Fix numerous doxygen shortcomings, and workaround some clang -Wdocumentation warnings
Diffstat (limited to 'Eigen/src/Core/Ref.h')
-rw-r--r--Eigen/src/Core/Ref.h140
1 files changed, 69 insertions, 71 deletions
diff --git a/Eigen/src/Core/Ref.h b/Eigen/src/Core/Ref.h
index 61de5ed17..ae414204e 100644
--- a/Eigen/src/Core/Ref.h
+++ b/Eigen/src/Core/Ref.h
@@ -12,76 +12,6 @@
namespace Eigen {
-/** \class Ref
- * \ingroup Core_Module
- *
- * \brief A matrix or vector expression mapping an existing expression
- *
- * \tparam PlainObjectType the equivalent matrix type of the mapped data
- * \tparam MapOptions specifies the pointer alignment in bytes. It can be: \c #Aligned128, , \c #Aligned64, \c #Aligned32, \c #Aligned16, \c #Aligned8 or \c #Unaligned.
- * The default is \c #Unaligned.
- * \tparam StrideType optionally specifies strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1),
- * but accepts a variable outer stride (leading dimension).
- * This can be overridden by specifying strides.
- * The type passed here must be a specialization of the Stride template, see examples below.
- *
- * This class provides a way to write non-template functions taking Eigen objects as parameters while limiting the number of copies.
- * A Ref<> object can represent either a const expression or a l-value:
- * \code
- * // in-out argument:
- * void foo1(Ref<VectorXf> x);
- *
- * // read-only const argument:
- * void foo2(const Ref<const VectorXf>& x);
- * \endcode
- *
- * In the in-out case, the input argument must satisfy the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered.
- * By default, a Ref<VectorXf> can reference any dense vector expression of float having a contiguous memory layout.
- * Likewise, a Ref<MatrixXf> can reference any column-major dense matrix expression of float whose column's elements are contiguously stored with
- * the possibility to have a constant space in-between each column, i.e. the inner stride must be equal to 1, but the outer stride (or leading dimension)
- * can be greater than the number of rows.
- *
- * In the const case, if the input expression does not match the above requirement, then it is evaluated into a temporary before being passed to the function.
- * Here are some examples:
- * \code
- * MatrixXf A;
- * VectorXf a;
- * foo1(a.head()); // OK
- * foo1(A.col()); // OK
- * foo1(A.row()); // Compilation error because here innerstride!=1
- * foo2(A.row()); // Compilation error because A.row() is a 1xN object while foo2 is expecting a Nx1 object
- * foo2(A.row().transpose()); // The row is copied into a contiguous temporary
- * foo2(2*a); // The expression is evaluated into a temporary
- * foo2(A.col().segment(2,4)); // No temporary
- * \endcode
- *
- * The range of inputs that can be referenced without temporary can be enlarged using the last two template parameters.
- * Here is an example accepting an innerstride!=1:
- * \code
- * // in-out argument:
- * void foo3(Ref<VectorXf,0,InnerStride<> > x);
- * foo3(A.row()); // OK
- * \endcode
- * The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involve more
- * expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overload internally calling a
- * template function, e.g.:
- * \code
- * // in the .h:
- * void foo(const Ref<MatrixXf>& A);
- * void foo(const Ref<MatrixXf,0,Stride<> >& A);
- *
- * // in the .cpp:
- * template<typename TypeOfA> void foo_impl(const TypeOfA& A) {
- * ... // crazy code goes here
- * }
- * void foo(const Ref<MatrixXf>& A) { foo_impl(A); }
- * void foo(const Ref<MatrixXf,0,Stride<> >& A) { foo_impl(A); }
- * \endcode
- *
- *
- * \sa PlainObjectBase::Map(), \ref TopicStorageOrders
- */
-
namespace internal {
template<typename _PlainObjectType, int _Options, typename _StrideType>
@@ -182,7 +112,75 @@ protected:
StrideBase m_stride;
};
-
+/** \class Ref
+ * \ingroup Core_Module
+ *
+ * \brief A matrix or vector expression mapping an existing expression
+ *
+ * \tparam PlainObjectType the equivalent matrix type of the mapped data
+ * \tparam Options specifies the pointer alignment in bytes. It can be: \c #Aligned128, , \c #Aligned64, \c #Aligned32, \c #Aligned16, \c #Aligned8 or \c #Unaligned.
+ * The default is \c #Unaligned.
+ * \tparam StrideType optionally specifies strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1),
+ * but accepts a variable outer stride (leading dimension).
+ * This can be overridden by specifying strides.
+ * The type passed here must be a specialization of the Stride template, see examples below.
+ *
+ * This class provides a way to write non-template functions taking Eigen objects as parameters while limiting the number of copies.
+ * A Ref<> object can represent either a const expression or a l-value:
+ * \code
+ * // in-out argument:
+ * void foo1(Ref<VectorXf> x);
+ *
+ * // read-only const argument:
+ * void foo2(const Ref<const VectorXf>& x);
+ * \endcode
+ *
+ * In the in-out case, the input argument must satisfy the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered.
+ * By default, a Ref<VectorXf> can reference any dense vector expression of float having a contiguous memory layout.
+ * Likewise, a Ref<MatrixXf> can reference any column-major dense matrix expression of float whose column's elements are contiguously stored with
+ * the possibility to have a constant space in-between each column, i.e. the inner stride must be equal to 1, but the outer stride (or leading dimension)
+ * can be greater than the number of rows.
+ *
+ * In the const case, if the input expression does not match the above requirement, then it is evaluated into a temporary before being passed to the function.
+ * Here are some examples:
+ * \code
+ * MatrixXf A;
+ * VectorXf a;
+ * foo1(a.head()); // OK
+ * foo1(A.col()); // OK
+ * foo1(A.row()); // Compilation error because here innerstride!=1
+ * foo2(A.row()); // Compilation error because A.row() is a 1xN object while foo2 is expecting a Nx1 object
+ * foo2(A.row().transpose()); // The row is copied into a contiguous temporary
+ * foo2(2*a); // The expression is evaluated into a temporary
+ * foo2(A.col().segment(2,4)); // No temporary
+ * \endcode
+ *
+ * The range of inputs that can be referenced without temporary can be enlarged using the last two template parameters.
+ * Here is an example accepting an innerstride!=1:
+ * \code
+ * // in-out argument:
+ * void foo3(Ref<VectorXf,0,InnerStride<> > x);
+ * foo3(A.row()); // OK
+ * \endcode
+ * The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involve more
+ * expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overload internally calling a
+ * template function, e.g.:
+ * \code
+ * // in the .h:
+ * void foo(const Ref<MatrixXf>& A);
+ * void foo(const Ref<MatrixXf,0,Stride<> >& A);
+ *
+ * // in the .cpp:
+ * template<typename TypeOfA> void foo_impl(const TypeOfA& A) {
+ * ... // crazy code goes here
+ * }
+ * void foo(const Ref<MatrixXf>& A) { foo_impl(A); }
+ * void foo(const Ref<MatrixXf,0,Stride<> >& A) { foo_impl(A); }
+ * \endcode
+ *
+ *
+ * \sa PlainObjectBase::Map(), \ref TopicStorageOrders
+ */
template<typename PlainObjectType, int Options, typename StrideType> class Ref
: public RefBase<Ref<PlainObjectType, Options, StrideType> >
{