aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/ConditionEstimator.h
diff options
context:
space:
mode:
authorGravatar Rasmus Munk Larsen <rmlarsen@google.com>2016-04-01 11:58:17 -0700
committerGravatar Rasmus Munk Larsen <rmlarsen@google.com>2016-04-01 11:58:17 -0700
commit91414e0042779b1b9d312d9255f389e67aa38106 (patch)
tree7ad8bd061a431e5e66e17ea8d7c87b2872bfe3f6 /Eigen/src/Core/ConditionEstimator.h
parent1aa89fb85548dc425d54d2cbe7f28915c29db13a (diff)
Fix comments in ConditionEstimator and minor cleanup.
Diffstat (limited to 'Eigen/src/Core/ConditionEstimator.h')
-rw-r--r--Eigen/src/Core/ConditionEstimator.h119
1 files changed, 63 insertions, 56 deletions
diff --git a/Eigen/src/Core/ConditionEstimator.h b/Eigen/src/Core/ConditionEstimator.h
index ab6f59319..68e4535aa 100644
--- a/Eigen/src/Core/ConditionEstimator.h
+++ b/Eigen/src/Core/ConditionEstimator.h
@@ -14,7 +14,7 @@ namespace Eigen {
namespace internal {
template <typename Decomposition, bool IsComplex>
-struct EstimateInverseL1NormImpl {};
+struct EstimateInverseMatrixL1NormImpl {};
} // namespace internal
template <typename Decomposition>
@@ -48,7 +48,6 @@ class ConditionEstimator {
if (dec.rows() == 0) {
return RealScalar(1);
}
- RealScalar matrix_l1_norm = matrix.cwiseAbs().colwise().sum().maxCoeff();
return rcond(MatrixL1Norm(matrix), dec);
}
@@ -76,42 +75,50 @@ class ConditionEstimator {
if (matrix_norm == 0) {
return 0;
}
- const RealScalar inverse_matrix_norm = EstimateInverseL1Norm(dec);
+ const RealScalar inverse_matrix_norm = EstimateInverseMatrixL1Norm(dec);
return inverse_matrix_norm == 0 ? 0
: (1 / inverse_matrix_norm) / matrix_norm;
}
- /*
- * Fast algorithm for computing a lower bound estimate on the L1 norm of
- * the inverse of the matrix using at most 10 calls to the solve method on its
- * decomposition. This is an implementation of Algorithm 4.1 in
- * http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf
- * The most common usage of this algorithm is in estimating the condition
- * number ||A||_1 * ||A^{-1}||_1 of a matrix A. While ||A||_1 can be computed
- * directly in O(dims^2) operations (see MatrixL1Norm() below), while
- * there is no cheap closed-form expression for ||A^{-1}||_1.
- * Given a decompostion of A, this algorithm estimates ||A^{-1}|| in O(dims^2)
- * operations. This is done by providing operators that use the decomposition
- * to solve systems of the form A x = b or A^* z = c by back-substitution,
- * each costing O(dims^2) operations. Since at most 10 calls are performed,
- * the total cost is O(dims^2), as opposed to O(dims^3) if the inverse matrix
- * B^{-1} was formed explicitly.
- */
- static RealScalar EstimateInverseL1Norm(const Decomposition& dec) {
+ /**
+ * \returns an estimate of ||inv(matrix)||_1 given a decomposition of
+ * matrix that implements .solve() and .adjoint().solve() methods.
+ *
+ * The method implements Algorithms 4.1 and 5.1 from
+ * http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf
+ * which also forms the basis for the condition number estimators in
+ * LAPACK. Since at most 10 calls to the solve method of dec are
+ * performed, the total cost is O(dims^2), as opposed to O(dims^3)
+ * needed to compute the inverse matrix explicitly.
+ *
+ * The most common usage is in estimating the condition number
+ * ||matrix||_1 * ||inv(matrix)||_1. The first term ||matrix||_1 can be
+ * computed directly in O(n^2) operations.
+ */
+ static RealScalar EstimateInverseMatrixL1Norm(const Decomposition& dec) {
eigen_assert(dec.rows() == dec.cols());
- const int n = dec.rows();
- if (n == 0) {
+ if (dec.rows() == 0) {
return 0;
}
- return internal::EstimateInverseL1NormImpl<
+ return internal::EstimateInverseMatrixL1NormImpl<
Decomposition, NumTraits<Scalar>::IsComplex>::compute(dec);
}
+
+ /**
+ * \returns the induced matrix l1-norm
+ * ||matrix||_1 = sup ||matrix * v||_1 / ||v||_1, which is equal to
+ * the greatest absolute column sum.
+ */
+ inline static Scalar MatrixL1Norm(const MatrixType& matrix) {
+ return matrix.cwiseAbs().colwise().sum().maxCoeff();
+ }
};
namespace internal {
+
// Partial specialization for real matrices.
template <typename Decomposition>
-struct EstimateInverseL1NormImpl<Decomposition, 0> {
+struct EstimateInverseMatrixL1NormImpl<Decomposition, 0> {
typedef typename Decomposition::MatrixType MatrixType;
typedef typename internal::traits<MatrixType>::Scalar Scalar;
typedef typename internal::plain_col_type<MatrixType>::type Vector;
@@ -130,8 +137,9 @@ struct EstimateInverseL1NormImpl<Decomposition, 0> {
if (n == 1) {
return lower_bound;
}
- // lower_bound is a lower bound on ||inv(A)||_1 = sup_v ||inv(A) v||_1 /
- // ||v||_1 and is the objective maximized by the ("super-") gradient ascent
+ // lower_bound is a lower bound on
+ // ||inv(matrix)||_1 = sup_v ||inv(matrix) v||_1 / ||v||_1
+ // and is the objective maximized by the ("super-") gradient ascent
// algorithm.
// Basic idea: We know that the optimum is achieved at one of the simplices
// v = e_i, so in each iteration we follow a super-gradient to move towards
@@ -143,8 +151,8 @@ struct EstimateInverseL1NormImpl<Decomposition, 0> {
int v_max_abs_index = -1;
int old_v_max_abs_index = v_max_abs_index;
for (int k = 0; k < 4; ++k) {
- // argmax |inv(A)^T * sign_vector|
- v = dec.transpose().solve(sign_vector);
+ // argmax |inv(matrix)^T * sign_vector|
+ v = dec.adjoint().solve(sign_vector);
v.cwiseAbs().maxCoeff(&v_max_abs_index);
if (v_max_abs_index == old_v_max_abs_index) {
// Break if the solution stagnated.
@@ -153,7 +161,7 @@ struct EstimateInverseL1NormImpl<Decomposition, 0> {
// Move to the new simplex e_j, where j = v_max_abs_index.
v.setZero();
v[v_max_abs_index] = 1;
- v = dec.solve(v); // v = inv(A) * e_j.
+ v = dec.solve(v); // v = inv(matrix) * e_j.
lower_bound = VectorL1Norm(v);
if (lower_bound <= old_lower_bound) {
// Break if the gradient step did not increase the lower_bound.
@@ -168,17 +176,16 @@ struct EstimateInverseL1NormImpl<Decomposition, 0> {
old_v_max_abs_index = v_max_abs_index;
old_lower_bound = lower_bound;
}
- // The following calculates an independent estimate of ||A||_1 by
- // multiplying
- // A by a vector with entries of slowly increasing magnitude and alternating
- // sign: v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1. This
- // improvement
- // to Hager's algorithm above is due to Higham. It was added to make the
- // algorithm more robust in certain corner cases where large elements in
- // the matrix might otherwise escape detection due to exact cancellation
- // (especially when op and op_adjoint correspond to a sequence of
- // backsubstitutions and permutations), which could cause Hager's algorithm
- // to vastly underestimate ||A||_1.
+ // The following calculates an independent estimate of ||matrix||_1 by
+ // multiplying matrix by a vector with entries of slowly increasing
+ // magnitude and alternating sign:
+ // v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1.
+ // This improvement to Hager's algorithm above is due to Higham. It was
+ // added to make the algorithm more robust in certain corner cases where
+ // large elements in the matrix might otherwise escape detection due to
+ // exact cancellation (especially when op and op_adjoint correspond to a
+ // sequence of backsubstitutions and permutations), which could cause
+ // Hager's algorithm to vastly underestimate ||matrix||_1.
Scalar alternating_sign = 1;
for (int i = 0; i < n; ++i) {
v[i] = alternating_sign * static_cast<Scalar>(1) +
@@ -194,7 +201,7 @@ struct EstimateInverseL1NormImpl<Decomposition, 0> {
// Partial specialization for complex matrices.
template <typename Decomposition>
-struct EstimateInverseL1NormImpl<Decomposition, 1> {
+struct EstimateInverseMatrixL1NormImpl<Decomposition, 1> {
typedef typename Decomposition::MatrixType MatrixType;
typedef typename internal::traits<MatrixType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
@@ -216,8 +223,9 @@ struct EstimateInverseL1NormImpl<Decomposition, 1> {
if (n == 1) {
return lower_bound;
}
- // lower_bound is a lower bound on ||inv(A)||_1 = sup_v ||inv(A) v||_1 /
- // ||v||_1 and is the objective maximized by the ("super-") gradient ascent
+ // lower_bound is a lower bound on
+ // ||inv(matrix)||_1 = sup_v ||inv(matrix) v||_1 / ||v||_1
+ // and is the objective maximized by the ("super-") gradient ascent
// algorithm.
// Basic idea: We know that the optimum is achieved at one of the simplices
// v = e_i, so in each iteration we follow a super-gradient to move towards
@@ -226,7 +234,7 @@ struct EstimateInverseL1NormImpl<Decomposition, 1> {
int v_max_abs_index = -1;
int old_v_max_abs_index = v_max_abs_index;
for (int k = 0; k < 4; ++k) {
- // argmax |inv(A)^* * sign_vector|
+ // argmax |inv(matrix)^* * sign_vector|
RealVector abs_v = v.cwiseAbs();
const Vector psi =
(abs_v.array() == 0).select(v.cwiseQuotient(abs_v), ones);
@@ -240,7 +248,7 @@ struct EstimateInverseL1NormImpl<Decomposition, 1> {
// Move to the new simplex e_j, where j = v_max_abs_index.
v.setZero();
v[v_max_abs_index] = 1;
- v = dec.solve(v); // v = inv(A) * e_j.
+ v = dec.solve(v); // v = inv(matrix) * e_j.
lower_bound = VectorL1Norm(v);
if (lower_bound <= old_lower_bound) {
// Break if the gradient step did not increase the lower_bound.
@@ -249,17 +257,16 @@ struct EstimateInverseL1NormImpl<Decomposition, 1> {
old_v_max_abs_index = v_max_abs_index;
old_lower_bound = lower_bound;
}
- // The following calculates an independent estimate of ||A||_1 by
- // multiplying
- // A by a vector with entries of slowly increasing magnitude and alternating
- // sign: v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1. This
- // improvement
- // to Hager's algorithm above is due to Higham. It was added to make the
- // algorithm more robust in certain corner cases where large elements in
- // the matrix might otherwise escape detection due to exact cancellation
- // (especially when op and op_adjoint correspond to a sequence of
- // backsubstitutions and permutations), which could cause Hager's algorithm
- // to vastly underestimate ||A||_1.
+ // The following calculates an independent estimate of ||matrix||_1 by
+ // multiplying matrix by a vector with entries of slowly increasing
+ // magnitude and alternating sign:
+ // v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1.
+ // This improvement to Hager's algorithm above is due to Higham. It was
+ // added to make the algorithm more robust in certain corner cases where
+ // large elements in the matrix might otherwise escape detection due to
+ // exact cancellation (especially when op and op_adjoint correspond to a
+ // sequence of backsubstitutions and permutations), which could cause
+ // Hager's algorithm to vastly underestimate ||matrix||_1.
RealScalar alternating_sign = 1;
for (int i = 0; i < n; ++i) {
v[i] = alternating_sign * static_cast<RealScalar>(1) +