aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/ConditionEstimator.h
diff options
context:
space:
mode:
authorGravatar Rasmus Munk Larsen <rmlarsen@google.com>2016-04-04 14:20:01 -0700
committerGravatar Rasmus Munk Larsen <rmlarsen@google.com>2016-04-04 14:20:01 -0700
commit86e0ed81f8db5a0c9562b62a67a9ba60ec58dec0 (patch)
tree10d4e195015009b69a76bff39bc824f0e1e8fb09 /Eigen/src/Core/ConditionEstimator.h
parent30242b75653fa4128181dba364f540184beff5ac (diff)
Addresses comments on Eigen pull request PR-174.
* Get rid of code-duplication for real vs. complex matrices. * Fix flipped arguments to select. * Make the condition estimation functions free functions. * Use Vector::Unit() to generate canonical unit vectors. * Misc. cleanup.
Diffstat (limited to 'Eigen/src/Core/ConditionEstimator.h')
-rw-r--r--Eigen/src/Core/ConditionEstimator.h405
1 files changed, 152 insertions, 253 deletions
diff --git a/Eigen/src/Core/ConditionEstimator.h b/Eigen/src/Core/ConditionEstimator.h
index dca3da417..12b4ae648 100644
--- a/Eigen/src/Core/ConditionEstimator.h
+++ b/Eigen/src/Core/ConditionEstimator.h
@@ -13,45 +13,35 @@
namespace Eigen {
namespace internal {
-template <typename Decomposition, bool IsSelfAdjoint, bool IsComplex>
-struct EstimateInverseMatrixL1NormImpl {};
-} // namespace internal
-
-template <typename Decomposition, bool IsSelfAdjoint = false>
-class ConditionEstimator {
- public:
- typedef typename Decomposition::MatrixType MatrixType;
- typedef typename internal::traits<MatrixType>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename internal::plain_col_type<MatrixType>::type Vector;
+template <typename MatrixType>
+inline typename MatrixType::RealScalar MatrixL1Norm(const MatrixType& matrix) {
+ return matrix.cwiseAbs().colwise().sum().maxCoeff();
+}
+
+template <typename Vector>
+inline typename Vector::RealScalar VectorL1Norm(const Vector& v) {
+ return v.template lpNorm<1>();
+}
+
+template <typename Vector, typename RealVector, bool IsComplex>
+struct SignOrUnity {
+ static inline Vector run(const Vector& v) {
+ const RealVector v_abs = v.cwiseAbs();
+ return (v_abs.array() == 0).select(Vector::Ones(v.size()), v.cwiseQuotient(v_abs));
+ }
+};
- /** \class ConditionEstimator
- * \ingroup Core_Module
- *
- * \brief Condition number estimator.
- *
- * Computing a decomposition of a dense matrix takes O(n^3) operations, while
- * this method estimates the condition number quickly and reliably in O(n^2)
- * operations.
- *
- * \returns an estimate of the reciprocal condition number
- * (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given the matrix and
- * its decomposition. Supports the following decompositions: FullPivLU,
- * PartialPivLU.
- *
- * \sa FullPivLU, PartialPivLU.
- */
- static RealScalar rcond(const MatrixType& matrix, const Decomposition& dec) {
- eigen_assert(matrix.rows() == dec.rows());
- eigen_assert(matrix.cols() == dec.cols());
- eigen_assert(matrix.rows() == matrix.cols());
- if (dec.rows() == 0) {
- return RealScalar(1);
- }
- return rcond(MatrixL1Norm(matrix), dec);
+// Partial specialization to avoid elementwise division for real vectors.
+template <typename Vector>
+struct SignOrUnity<Vector, Vector, false> {
+ static inline Vector run(const Vector& v) {
+ return (v.array() < 0).select(-Vector::Ones(v.size()), Vector::Ones(v.size()));
}
+};
- /** \class ConditionEstimator
+} // namespace internal
+
+/** \class ConditionEstimator
* \ingroup Core_Module
*
* \brief Condition number estimator.
@@ -61,245 +51,154 @@ class ConditionEstimator {
* operations.
*
* \returns an estimate of the reciprocal condition number
- * (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given ||matrix||_1 and
+ * (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given the matrix and
* its decomposition. Supports the following decompositions: FullPivLU,
* PartialPivLU.
*
* \sa FullPivLU, PartialPivLU.
*/
- static RealScalar rcond(RealScalar matrix_norm, const Decomposition& dec) {
- eigen_assert(dec.rows() == dec.cols());
- if (dec.rows() == 0) {
- return 1;
- }
- if (matrix_norm == 0) {
- return 0;
- }
- const RealScalar inverse_matrix_norm = EstimateInverseMatrixL1Norm(dec);
- return inverse_matrix_norm == 0 ? 0
- : (1 / inverse_matrix_norm) / matrix_norm;
+template <typename Decomposition>
+typename Decomposition::RealScalar ReciprocalConditionNumberEstimate(
+ const typename Decomposition::MatrixType& matrix,
+ const Decomposition& dec) {
+ eigen_assert(matrix.rows() == dec.rows());
+ eigen_assert(matrix.cols() == dec.cols());
+ eigen_assert(matrix.rows() == matrix.cols());
+ if (dec.rows() == 0) {
+ return Decomposition::RealScalar(1);
}
-
- /**
- * \returns an estimate of ||inv(matrix)||_1 given a decomposition of
- * matrix that implements .solve() and .adjoint().solve() methods.
- *
- * The method implements Algorithms 4.1 and 5.1 from
- * http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf
- * which also forms the basis for the condition number estimators in
- * LAPACK. Since at most 10 calls to the solve method of dec are
- * performed, the total cost is O(dims^2), as opposed to O(dims^3)
- * needed to compute the inverse matrix explicitly.
- *
- * The most common usage is in estimating the condition number
- * ||matrix||_1 * ||inv(matrix)||_1. The first term ||matrix||_1 can be
- * computed directly in O(n^2) operations.
- */
- static RealScalar EstimateInverseMatrixL1Norm(const Decomposition& dec) {
- eigen_assert(dec.rows() == dec.cols());
- if (dec.rows() == 0) {
- return 0;
- }
- return internal::EstimateInverseMatrixL1NormImpl<
- Decomposition, IsSelfAdjoint,
- NumTraits<Scalar>::IsComplex != 0>::compute(dec);
+ return ReciprocalConditionNumberEstimate(MatrixL1Norm(matrix), dec);
+}
+
+/** \class ConditionEstimator
+ * \ingroup Core_Module
+ *
+ * \brief Condition number estimator.
+ *
+ * Computing a decomposition of a dense matrix takes O(n^3) operations, while
+ * this method estimates the condition number quickly and reliably in O(n^2)
+ * operations.
+ *
+ * \returns an estimate of the reciprocal condition number
+ * (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given ||matrix||_1 and
+ * its decomposition. Supports the following decompositions: FullPivLU,
+ * PartialPivLU.
+ *
+ * \sa FullPivLU, PartialPivLU.
+ */
+template <typename Decomposition>
+typename Decomposition::RealScalar ReciprocalConditionNumberEstimate(
+ typename Decomposition::RealScalar matrix_norm, const Decomposition& dec) {
+ eigen_assert(dec.rows() == dec.cols());
+ if (dec.rows() == 0) {
+ return 1;
}
-
- /**
- * \returns the induced matrix l1-norm
- * ||matrix||_1 = sup ||matrix * v||_1 / ||v||_1, which is equal to
- * the greatest absolute column sum.
- */
- static inline Scalar MatrixL1Norm(const MatrixType& matrix) {
- return matrix.cwiseAbs().colwise().sum().maxCoeff();
+ if (matrix_norm == 0) {
+ return 0;
}
-};
-
-namespace internal {
-
-template <typename Decomposition, typename Vector, bool IsSelfAdjoint = false>
-struct solve_helper {
- static inline Vector solve_adjoint(const Decomposition& dec,
- const Vector& v) {
- return dec.adjoint().solve(v);
- }
-};
-
-// Partial specialization for self_adjoint matrices.
-template <typename Decomposition, typename Vector>
-struct solve_helper<Decomposition, Vector, true> {
- static inline Vector solve_adjoint(const Decomposition& dec,
- const Vector& v) {
- return dec.solve(v);
- }
-};
-
-
-// Partial specialization for real matrices.
-template <typename Decomposition, bool IsSelfAdjoint>
-struct EstimateInverseMatrixL1NormImpl<Decomposition, IsSelfAdjoint, false> {
+ const typename Decomposition::RealScalar inverse_matrix_norm = InverseMatrixL1NormEstimate(dec);
+ return inverse_matrix_norm == 0 ? 0 : (1 / inverse_matrix_norm) / matrix_norm;
+}
+
+/**
+ * \returns an estimate of ||inv(matrix)||_1 given a decomposition of
+ * matrix that implements .solve() and .adjoint().solve() methods.
+ *
+ * The method implements Algorithms 4.1 and 5.1 from
+ * http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf
+ * which also forms the basis for the condition number estimators in
+ * LAPACK. Since at most 10 calls to the solve method of dec are
+ * performed, the total cost is O(dims^2), as opposed to O(dims^3)
+ * needed to compute the inverse matrix explicitly.
+ *
+ * The most common usage is in estimating the condition number
+ * ||matrix||_1 * ||inv(matrix)||_1. The first term ||matrix||_1 can be
+ * computed directly in O(n^2) operations.
+ */
+template <typename Decomposition>
+typename Decomposition::RealScalar InverseMatrixL1NormEstimate(
+ const Decomposition& dec) {
typedef typename Decomposition::MatrixType MatrixType;
- typedef typename internal::traits<MatrixType>::Scalar Scalar;
+ typedef typename Decomposition::Scalar Scalar;
+ typedef typename Decomposition::RealScalar RealScalar;
typedef typename internal::plain_col_type<MatrixType>::type Vector;
+ typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVector;
+ const bool is_complex = (NumTraits<Scalar>::IsComplex != 0);
- // Shorthand for vector L1 norm in Eigen.
- static inline Scalar VectorL1Norm(const Vector& v) {
- return v.template lpNorm<1>();
+ eigen_assert(dec.rows() == dec.cols());
+ const int n = dec.rows();
+ if (n == 0) {
+ return 0;
}
-
- static inline Scalar compute(const Decomposition& dec) {
- const int n = dec.rows();
- const Vector plus = Vector::Ones(n);
- Vector v = plus / n;
- v = dec.solve(v);
- Scalar lower_bound = VectorL1Norm(v);
- if (n == 1) {
- return lower_bound;
- }
- // lower_bound is a lower bound on
- // ||inv(matrix)||_1 = sup_v ||inv(matrix) v||_1 / ||v||_1
- // and is the objective maximized by the ("super-") gradient ascent
- // algorithm.
- // Basic idea: We know that the optimum is achieved at one of the simplices
- // v = e_i, so in each iteration we follow a super-gradient to move towards
- // the optimal one.
- Scalar old_lower_bound = lower_bound;
- const Vector minus = -Vector::Ones(n);
- Vector sign_vector = (v.cwiseAbs().array() == 0).select(plus, minus);
- Vector old_sign_vector = sign_vector;
- int v_max_abs_index = -1;
- int old_v_max_abs_index = v_max_abs_index;
- for (int k = 0; k < 4; ++k) {
- // argmax |inv(matrix)^T * sign_vector|
- v = solve_helper<Decomposition, Vector, IsSelfAdjoint>::solve_adjoint(dec, sign_vector);
- v.cwiseAbs().maxCoeff(&v_max_abs_index);
- if (v_max_abs_index == old_v_max_abs_index) {
- // Break if the solution stagnated.
- break;
- }
- // Move to the new simplex e_j, where j = v_max_abs_index.
- v.setZero();
- v[v_max_abs_index] = 1;
- v = dec.solve(v); // v = inv(matrix) * e_j.
- lower_bound = VectorL1Norm(v);
- if (lower_bound <= old_lower_bound) {
- // Break if the gradient step did not increase the lower_bound.
- break;
- }
- sign_vector = (v.array() < 0).select(plus, minus);
+ Vector v = Vector::Ones(n) / n;
+ v = dec.solve(v);
+
+ // lower_bound is a lower bound on
+ // ||inv(matrix)||_1 = sup_v ||inv(matrix) v||_1 / ||v||_1
+ // and is the objective maximized by the ("super-") gradient ascent
+ // algorithm below.
+ RealScalar lower_bound = internal::VectorL1Norm(v);
+ if (n == 1) {
+ return lower_bound;
+ }
+ // Gradient ascent algorithm follows: We know that the optimum is achieved at
+ // one of the simplices v = e_i, so in each iteration we follow a
+ // super-gradient to move towards the optimal one.
+ RealScalar old_lower_bound = lower_bound;
+ Vector sign_vector(n);
+ Vector old_sign_vector;
+ int v_max_abs_index = -1;
+ int old_v_max_abs_index = v_max_abs_index;
+ for (int k = 0; k < 4; ++k) {
+ sign_vector = internal::SignOrUnity<Vector, RealVector, is_complex>::run(v);
+ if (k > 0 && !is_complex) {
if (sign_vector == old_sign_vector) {
// Break if the solution stagnated.
break;
}
- old_sign_vector = sign_vector;
- old_v_max_abs_index = v_max_abs_index;
- old_lower_bound = lower_bound;
- }
- // The following calculates an independent estimate of ||matrix||_1 by
- // multiplying matrix by a vector with entries of slowly increasing
- // magnitude and alternating sign:
- // v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1.
- // This improvement to Hager's algorithm above is due to Higham. It was
- // added to make the algorithm more robust in certain corner cases where
- // large elements in the matrix might otherwise escape detection due to
- // exact cancellation (especially when op and op_adjoint correspond to a
- // sequence of backsubstitutions and permutations), which could cause
- // Hager's algorithm to vastly underestimate ||matrix||_1.
- Scalar alternating_sign = 1;
- for (int i = 0; i < n; ++i) {
- v[i] = alternating_sign * static_cast<Scalar>(1) +
- (static_cast<Scalar>(i) / (static_cast<Scalar>(n - 1)));
- alternating_sign = -alternating_sign;
}
- v = dec.solve(v);
- const Scalar alternate_lower_bound =
- (2 * VectorL1Norm(v)) / (3 * static_cast<Scalar>(n));
- return numext::maxi(lower_bound, alternate_lower_bound);
- }
-};
-
-// Partial specialization for complex matrices.
-template <typename Decomposition, bool IsSelfAdjoint>
-struct EstimateInverseMatrixL1NormImpl<Decomposition, IsSelfAdjoint, true> {
- typedef typename Decomposition::MatrixType MatrixType;
- typedef typename internal::traits<MatrixType>::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename internal::plain_col_type<MatrixType>::type Vector;
- typedef typename internal::plain_col_type<MatrixType, RealScalar>::type
- RealVector;
-
- // Shorthand for vector L1 norm in Eigen.
- static inline RealScalar VectorL1Norm(const Vector& v) {
- return v.template lpNorm<1>();
- }
-
- static inline RealScalar compute(const Decomposition& dec) {
- const int n = dec.rows();
- const Vector ones = Vector::Ones(n);
- Vector v = ones / n;
- v = dec.solve(v);
- RealScalar lower_bound = VectorL1Norm(v);
- if (n == 1) {
- return lower_bound;
+ // v_max_abs_index = argmax |real( inv(matrix)^T * sign_vector )|
+ v = dec.adjoint().solve(sign_vector);
+ v.real().cwiseAbs().maxCoeff(&v_max_abs_index);
+ if (v_max_abs_index == old_v_max_abs_index) {
+ // Break if the solution stagnated.
+ break;
}
- // lower_bound is a lower bound on
- // ||inv(matrix)||_1 = sup_v ||inv(matrix) v||_1 / ||v||_1
- // and is the objective maximized by the ("super-") gradient ascent
- // algorithm.
- // Basic idea: We know that the optimum is achieved at one of the simplices
- // v = e_i, so in each iteration we follow a super-gradient to move towards
- // the optimal one.
- RealScalar old_lower_bound = lower_bound;
- int v_max_abs_index = -1;
- int old_v_max_abs_index = v_max_abs_index;
- for (int k = 0; k < 4; ++k) {
- // argmax |inv(matrix)^* * sign_vector|
- RealVector abs_v = v.cwiseAbs();
- const Vector psi =
- (abs_v.array() == 0).select(v.cwiseQuotient(abs_v), ones);
- v = solve_helper<Decomposition, Vector, IsSelfAdjoint>::solve_adjoint(dec, psi);
- const RealVector z = v.real();
- z.cwiseAbs().maxCoeff(&v_max_abs_index);
- if (v_max_abs_index == old_v_max_abs_index) {
- // Break if the solution stagnated.
- break;
- }
- // Move to the new simplex e_j, where j = v_max_abs_index.
- v.setZero();
- v[v_max_abs_index] = 1;
- v = dec.solve(v); // v = inv(matrix) * e_j.
- lower_bound = VectorL1Norm(v);
- if (lower_bound <= old_lower_bound) {
- // Break if the gradient step did not increase the lower_bound.
- break;
- }
- old_v_max_abs_index = v_max_abs_index;
- old_lower_bound = lower_bound;
+ // Move to the new simplex e_j, where j = v_max_abs_index.
+ v = dec.solve(Vector::Unit(n, v_max_abs_index)); // v = inv(matrix) * e_j.
+ lower_bound = internal::VectorL1Norm(v);
+ if (lower_bound <= old_lower_bound) {
+ // Break if the gradient step did not increase the lower_bound.
+ break;
}
- // The following calculates an independent estimate of ||matrix||_1 by
- // multiplying matrix by a vector with entries of slowly increasing
- // magnitude and alternating sign:
- // v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1.
- // This improvement to Hager's algorithm above is due to Higham. It was
- // added to make the algorithm more robust in certain corner cases where
- // large elements in the matrix might otherwise escape detection due to
- // exact cancellation (especially when op and op_adjoint correspond to a
- // sequence of backsubstitutions and permutations), which could cause
- // Hager's algorithm to vastly underestimate ||matrix||_1.
- RealScalar alternating_sign = 1;
- for (int i = 0; i < n; ++i) {
- v[i] = alternating_sign * static_cast<RealScalar>(1) +
- (static_cast<RealScalar>(i) / (static_cast<RealScalar>(n - 1)));
- alternating_sign = -alternating_sign;
+ if (!is_complex) {
+ old_sign_vector = sign_vector;
}
- v = dec.solve(v);
- const RealScalar alternate_lower_bound =
- (2 * VectorL1Norm(v)) / (3 * static_cast<RealScalar>(n));
- return numext::maxi(lower_bound, alternate_lower_bound);
+ old_v_max_abs_index = v_max_abs_index;
+ old_lower_bound = lower_bound;
}
-};
+ // The following calculates an independent estimate of ||matrix||_1 by
+ // multiplying matrix by a vector with entries of slowly increasing
+ // magnitude and alternating sign:
+ // v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1.
+ // This improvement to Hager's algorithm above is due to Higham. It was
+ // added to make the algorithm more robust in certain corner cases where
+ // large elements in the matrix might otherwise escape detection due to
+ // exact cancellation (especially when op and op_adjoint correspond to a
+ // sequence of backsubstitutions and permutations), which could cause
+ // Hager's algorithm to vastly underestimate ||matrix||_1.
+ Scalar alternating_sign = 1;
+ for (int i = 0; i < n; ++i) {
+ v[i] = alternating_sign * static_cast<RealScalar>(1) +
+ (static_cast<RealScalar>(i) / (static_cast<RealScalar>(n - 1)));
+ alternating_sign = -alternating_sign;
+ }
+ v = dec.solve(v);
+ const RealScalar alternate_lower_bound =
+ (2 * internal::VectorL1Norm(v)) / (3 * static_cast<RealScalar>(n));
+ return numext::maxi(lower_bound, alternate_lower_bound);
+}
-} // namespace internal
} // namespace Eigen
#endif