aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/CholmodSupport
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2012-06-04 13:24:41 +0200
committerGravatar Gael Guennebaud <g.gael@free.fr>2012-06-04 13:24:41 +0200
commit945179b26c952f12ca6ea9ad293330cdde7554a0 (patch)
tree46248287e6deea2c321a62051ee3150bc0d0e069 /Eigen/src/CholmodSupport
parent5f5a4d4546f785821612a53efafba3552ecb048e (diff)
CholmodDecomposition now has explicit variants. These variants will allow to provide access to the underlying factors.
Diffstat (limited to 'Eigen/src/CholmodSupport')
-rw-r--r--Eigen/src/CholmodSupport/CholmodSupport.h296
1 files changed, 235 insertions, 61 deletions
diff --git a/Eigen/src/CholmodSupport/CholmodSupport.h b/Eigen/src/CholmodSupport/CholmodSupport.h
index 5b0c34959..a06c429f0 100644
--- a/Eigen/src/CholmodSupport/CholmodSupport.h
+++ b/Eigen/src/CholmodSupport/CholmodSupport.h
@@ -160,24 +160,14 @@ enum CholmodMode {
CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
};
+
/** \ingroup CholmodSupport_Module
- * \class CholmodDecomposition
- * \brief A Cholesky factorization and solver based on Cholmod
- *
- * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
- * using the Cholmod library. The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
- * X and B can be either dense or sparse.
- *
- * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
- * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- *
- * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; isCompressed() or unisCompressed().
- *
- * \sa \ref TutorialSparseDirectSolvers
+ * \class CholmodBase
+ * \brief The base class for the direct Cholesky factorization of Cholmod
+ * \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
*/
-template<typename _MatrixType, int _UpLo = Lower>
-class CholmodDecomposition
+template<typename _MatrixType, int _UpLo, typename Derived>
+class CholmodBase : internal::noncopyable
{
public:
typedef _MatrixType MatrixType;
@@ -189,21 +179,20 @@ class CholmodDecomposition
public:
- CholmodDecomposition()
+ CholmodBase()
: m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
{
cholmod_start(&m_cholmod);
- setMode(CholmodLDLt);
}
- CholmodDecomposition(const MatrixType& matrix)
+ CholmodBase(const MatrixType& matrix)
: m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
{
cholmod_start(&m_cholmod);
compute(matrix);
}
- ~CholmodDecomposition()
+ ~CholmodBase()
{
if(m_cholmodFactor)
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
@@ -213,31 +202,8 @@ class CholmodDecomposition
inline Index cols() const { return m_cholmodFactor->n; }
inline Index rows() const { return m_cholmodFactor->n; }
- void setMode(CholmodMode mode)
- {
- switch(mode)
- {
- case CholmodAuto:
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_AUTO;
- break;
- case CholmodSimplicialLLt:
- m_cholmod.final_asis = 0;
- m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
- m_cholmod.final_ll = 1;
- break;
- case CholmodSupernodalLLt:
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
- break;
- case CholmodLDLt:
- m_cholmod.final_asis = 1;
- m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
- break;
- default:
- break;
- }
- }
+ Derived& derived() { return *static_cast<Derived*>(this); }
+ const Derived& derived() const { return *static_cast<const Derived*>(this); }
/** \brief Reports whether previous computation was successful.
*
@@ -251,10 +217,11 @@ class CholmodDecomposition
}
/** Computes the sparse Cholesky decomposition of \a matrix */
- void compute(const MatrixType& matrix)
+ Derived& compute(const MatrixType& matrix)
{
analyzePattern(matrix);
factorize(matrix);
+ return derived();
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
@@ -262,13 +229,13 @@ class CholmodDecomposition
* \sa compute()
*/
template<typename Rhs>
- inline const internal::solve_retval<CholmodDecomposition, Rhs>
+ inline const internal::solve_retval<CholmodBase, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(rows()==b.rows()
&& "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<CholmodDecomposition, Rhs>(*this, b.derived());
+ return internal::solve_retval<CholmodBase, Rhs>(*this, b.derived());
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
@@ -276,13 +243,13 @@ class CholmodDecomposition
* \sa compute()
*/
template<typename Rhs>
- inline const internal::sparse_solve_retval<CholmodDecomposition, Rhs>
+ inline const internal::sparse_solve_retval<CholmodBase, Rhs>
solve(const SparseMatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(rows()==b.rows()
&& "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<CholmodDecomposition, Rhs>(*this, b.derived());
+ return internal::sparse_solve_retval<CholmodBase, Rhs>(*this, b.derived());
}
/** Performs a symbolic decomposition on the sparcity of \a matrix.
@@ -372,7 +339,7 @@ class CholmodDecomposition
template<typename Stream>
void dumpMemory(Stream& s)
{}
-
+
protected:
mutable cholmod_common m_cholmod;
cholmod_factor* m_cholmodFactor;
@@ -380,18 +347,225 @@ class CholmodDecomposition
bool m_isInitialized;
int m_factorizationIsOk;
int m_analysisIsOk;
+};
+
+/** \ingroup CholmodSupport_Module
+ * \class CholmodSimplicialLLT
+ * \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod
+ *
+ * This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization
+ * using the Cholmod library.
+ * This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Thefore, it has little practical interest.
+ * The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
+ * X and B can be either dense or sparse.
+ *
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
+ * or Upper. Default is Lower.
+ *
+ * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
+ *
+ * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLLT
+ */
+template<typename _MatrixType, int _UpLo = Lower>
+class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
+{
+ typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
+ using Base::m_cholmod;
- private:
- CholmodDecomposition(CholmodDecomposition& ) {}
+ public:
+
+ typedef _MatrixType MatrixType;
+
+ CholmodSimplicialLLT() : Base() { init(); }
+
+ CholmodSimplicialLLT(const MatrixType& matrix) : Base()
+ {
+ init();
+ compute(matrix);
+ }
+
+ ~CholmodSimplicialLLT() {}
+ protected:
+ void init()
+ {
+ m_cholmod.final_asis = 0;
+ m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
+ m_cholmod.final_ll = 1;
+ }
+};
+
+
+/** \ingroup CholmodSupport_Module
+ * \class CholmodSimplicialLDLT
+ * \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod
+ *
+ * This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization
+ * using the Cholmod library.
+ * This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Thefore, it has little practical interest.
+ * The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
+ * X and B can be either dense or sparse.
+ *
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
+ * or Upper. Default is Lower.
+ *
+ * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
+ *
+ * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLDLT
+ */
+template<typename _MatrixType, int _UpLo = Lower>
+class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
+{
+ typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
+ using Base::m_cholmod;
+
+ public:
+
+ typedef _MatrixType MatrixType;
+
+ CholmodSimplicialLDLT() : Base() { init(); }
+
+ CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
+ {
+ init();
+ compute(matrix);
+ }
+
+ ~CholmodSimplicialLDLT() {}
+ protected:
+ void init()
+ {
+ m_cholmod.final_asis = 1;
+ m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
+ }
+};
+
+/** \ingroup CholmodSupport_Module
+ * \class CholmodSupernodalLLT
+ * \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod
+ *
+ * This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization
+ * using the Cholmod library.
+ * This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM.
+ * The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
+ * X and B can be either dense or sparse.
+ *
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
+ * or Upper. Default is Lower.
+ *
+ * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
+ *
+ * \sa \ref TutorialSparseDirectSolvers
+ */
+template<typename _MatrixType, int _UpLo = Lower>
+class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
+{
+ typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
+ using Base::m_cholmod;
+
+ public:
+
+ typedef _MatrixType MatrixType;
+
+ CholmodSupernodalLLT() : Base() { init(); }
+
+ CholmodSupernodalLLT(const MatrixType& matrix) : Base()
+ {
+ init();
+ compute(matrix);
+ }
+
+ ~CholmodSupernodalLLT() {}
+ protected:
+ void init()
+ {
+ m_cholmod.final_asis = 1;
+ m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
+ }
+};
+
+/** \ingroup CholmodSupport_Module
+ * \class CholmodDecomposition
+ * \brief A general Cholesky factorization and solver based on Cholmod
+ *
+ * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
+ * using the Cholmod library. The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
+ * X and B can be either dense or sparse.
+ *
+ * This variant permits to change the underlying Cholesky method at runtime.
+ * On the other hand, it does not provide access to the result of the factorization.
+ * The default is to let Cholmod automatically choose between a simplicial and supernodal factorization.
+ *
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
+ * or Upper. Default is Lower.
+ *
+ * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
+ *
+ * \sa \ref TutorialSparseDirectSolvers
+ */
+template<typename _MatrixType, int _UpLo = Lower>
+class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
+{
+ typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
+ using Base::m_cholmod;
+
+ public:
+
+ typedef _MatrixType MatrixType;
+
+ CholmodDecomposition() : Base() { init(); }
+
+ CholmodDecomposition(const MatrixType& matrix) : Base()
+ {
+ init();
+ compute(matrix);
+ }
+
+ ~CholmodDecomposition() {}
+
+ void setMode(CholmodMode mode)
+ {
+ switch(mode)
+ {
+ case CholmodAuto:
+ m_cholmod.final_asis = 1;
+ m_cholmod.supernodal = CHOLMOD_AUTO;
+ break;
+ case CholmodSimplicialLLt:
+ m_cholmod.final_asis = 0;
+ m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
+ m_cholmod.final_ll = 1;
+ break;
+ case CholmodSupernodalLLt:
+ m_cholmod.final_asis = 1;
+ m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
+ break;
+ case CholmodLDLt:
+ m_cholmod.final_asis = 1;
+ m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
+ break;
+ default:
+ break;
+ }
+ }
+ protected:
+ void init()
+ {
+ m_cholmod.final_asis = 1;
+ m_cholmod.supernodal = CHOLMOD_AUTO;
+ }
};
namespace internal {
-template<typename _MatrixType, int _UpLo, typename Rhs>
-struct solve_retval<CholmodDecomposition<_MatrixType,_UpLo>, Rhs>
- : solve_retval_base<CholmodDecomposition<_MatrixType,_UpLo>, Rhs>
+template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
+struct solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
+ : solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
{
- typedef CholmodDecomposition<_MatrixType,_UpLo> Dec;
+ typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
@@ -400,11 +574,11 @@ struct solve_retval<CholmodDecomposition<_MatrixType,_UpLo>, Rhs>
}
};
-template<typename _MatrixType, int _UpLo, typename Rhs>
-struct sparse_solve_retval<CholmodDecomposition<_MatrixType,_UpLo>, Rhs>
- : sparse_solve_retval_base<CholmodDecomposition<_MatrixType,_UpLo>, Rhs>
+template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
+struct sparse_solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
+ : sparse_solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
{
- typedef CholmodDecomposition<_MatrixType,_UpLo> Dec;
+ typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const