aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Desire NUENTSA <desire.nuentsa_wakam@inria.fr>2012-06-13 18:26:05 +0200
committerGravatar Desire NUENTSA <desire.nuentsa_wakam@inria.fr>2012-06-13 18:26:05 +0200
commitf8a0745cb0426eb3095dbea24288a64eddab04f0 (patch)
treeb140e55c0269f77114e69870f7558f5a348b4969
parentc0ad1094995e28a2d564e83a2ca1c6b76cfbd536 (diff)
Build process...
-rw-r--r--Eigen/OrderingMethods2
-rw-r--r--Eigen/SparseLU17
-rw-r--r--Eigen/src/OrderingMethods/Ordering.h166
-rw-r--r--Eigen/src/SparseLU/CMakeLists.txt6
-rw-r--r--Eigen/src/SparseLU/SparseLU.h435
-rw-r--r--Eigen/src/SparseLU/SparseLU_Coletree.h97
-rw-r--r--Eigen/src/SparseLU/SparseLU_Matrix.h28
-rw-r--r--Eigen/src/SparseLU/SparseLU_Memory.h150
-rw-r--r--Eigen/src/SparseLU/SparseLU_Structs.h13
-rw-r--r--Eigen/src/SparseLU/SparseLU_Utils.h3
-rw-r--r--Eigen/src/SparseLU/SparseLU_column_bmod.h21
-rw-r--r--Eigen/src/SparseLU/SparseLU_column_dfs.h18
-rw-r--r--Eigen/src/SparseLU/SparseLU_copy_to_ucol.h20
-rw-r--r--Eigen/src/SparseLU/SparseLU_heap_relax_snode.h6
-rw-r--r--Eigen/src/SparseLU/SparseLU_panel_bmod.h14
-rw-r--r--Eigen/src/SparseLU/SparseLU_panel_dfs.h12
-rw-r--r--Eigen/src/SparseLU/SparseLU_pivotL.h15
-rw-r--r--Eigen/src/SparseLU/SparseLU_pruneL.h26
-rw-r--r--Eigen/src/SparseLU/SparseLU_relax_snode.h3
-rw-r--r--Eigen/src/SparseLU/SparseLU_snode_bmod.h17
-rw-r--r--Eigen/src/SparseLU/SparseLU_snode_dfs.h9
-rw-r--r--bench/spbench/CMakeLists.txt5
22 files changed, 547 insertions, 536 deletions
diff --git a/Eigen/OrderingMethods b/Eigen/OrderingMethods
index 1e2d87452..bb43220e8 100644
--- a/Eigen/OrderingMethods
+++ b/Eigen/OrderingMethods
@@ -17,7 +17,7 @@
*/
#include "src/OrderingMethods/Amd.h"
-
+#include "src/OrderingMethods/Ordering.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_ORDERINGMETHODS_MODULE_H
diff --git a/Eigen/SparseLU b/Eigen/SparseLU
new file mode 100644
index 000000000..452bc9f83
--- /dev/null
+++ b/Eigen/SparseLU
@@ -0,0 +1,17 @@
+#ifndef EIGEN_SPARSELU_MODULE_H
+#define EIGEN_SPARSELU_MODULE_H
+
+#include "SparseCore"
+
+
+/** \ingroup Sparse_modules
+ * \defgroup SparseLU_Module SparseLU module
+ *
+ */
+
+// Ordering interface
+#include "OrderingMethods"
+
+#include "src/SparseLU/SparseLU.h"
+
+#endif // EIGEN_SPARSELU_MODULE_H
diff --git a/Eigen/src/OrderingMethods/Ordering.h b/Eigen/src/OrderingMethods/Ordering.h
index c43c381a4..3a3e3f6fc 100644
--- a/Eigen/src/OrderingMethods/Ordering.h
+++ b/Eigen/src/OrderingMethods/Ordering.h
@@ -26,9 +26,7 @@
#ifndef EIGEN_ORDERING_H
#define EIGEN_ORDERING_H
-#include <Eigen_Colamd.h>
-#include <Amd.h>
-
+#include "Amd.h"
namespace Eigen {
template<class Derived>
class OrderingBase
@@ -68,8 +66,23 @@ class OrderingBase
if (m_isInitialized = true) return m_P;
else abort(); // FIXME Should find a smoother way to exit with error code
}
+
+ /**
+ * Get the symmetric pattern A^T+A from the input matrix A.
+ * FIXME: The values should not be considered here
+ */
template<typename MatrixType>
- void at_plus_a(const MatrixType& mat);
+ void at_plus_a(const MatrixType& mat)
+ {
+ MatrixType C;
+ C = mat.transpose(); // NOTE: Could be costly
+ for (int i = 0; i < C.rows(); i++)
+ {
+ for (typename MatrixType::InnerIterator it(C, i); it; ++it)
+ it.valueRef() = 0.0;
+ }
+ m_mat = C + mat;
+ }
/** keeps off-diagonal entries; drops diagonal entries */
struct keep_diag {
@@ -87,99 +100,30 @@ class OrderingBase
PermutationType m_P; // The computed permutation
mutable bool m_isInitialized;
SparseMatrix<Scalar,ColMajor,Index> m_mat; // Stores the (symmetrized) matrix to permute
-}
-/**
- * Get the symmetric pattern A^T+A from the input matrix A.
- * NOTE: The values should not be considered here
- */
-template<typename MatrixType>
-void OrderingBase::at_plus_a(const MatrixType& mat)
-{
- MatrixType C;
- C = mat.transpose(); // NOTE: Could be costly
- for (int i = 0; i < C.rows(); i++)
- {
- for (typename MatrixType::InnerIterator it(C, i); it; ++it)
- it.valueRef() = 0.0;
- }
- m_mat = C + mat;
-
-/**
- * Get the column approximate minimum degree ordering
- * The matrix should be in column-major format
- */
-template<typename Scalar, typename Index>
-class COLAMDOrdering: public OrderingBase< ColamdOrdering<Scalar, Index> >
-{
- public:
- typedef OrderingBase< ColamdOrdering<Scalar, Index> > Base;
- typedef SparseMatrix<Scalar,ColMajor,Index> MatrixType;
-
- public:
- COLAMDOrdering():Base() {}
-
- COLAMDOrdering(const MatrixType& matrix):Base()
- {
- compute(matrix);
- }
- COLAMDOrdering(const MatrixType& mat, PermutationType& perm_c):Base()
- {
- compute(matrix);
- perm_c = this.get_perm();
- }
- void compute(const MatrixType& mat)
- {
- // Test if the matrix is column major...
-
- int m = mat.rows();
- int n = mat.cols();
- int nnz = mat.nonZeros();
- // Get the recommended value of Alen to be used by colamd
- int Alen = colamd_recommended(nnz, m, n);
- // Set the default parameters
- double knobs[COLAMD_KNOBS];
- colamd_set_defaults(knobs);
-
- int info;
- VectorXi p(n), A(nnz);
- for(int i=0; i < n; i++) p(i) = mat.outerIndexPtr()(i);
- for(int i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()(i);
- // Call Colamd routine to compute the ordering
- info = colamd(m, n, Alen, A,p , knobs, stats)
- eigen_assert( (info != FALSE)&& "COLAMD failed " );
-
- m_P.resize(n);
- for (int i = 0; i < n; i++) m_P(p(i)) = i;
- m_isInitialized = true;
- }
- protected:
- using Base::m_isInitialized;
- using Base m_P;
-}
+};
/**
* Get the approximate minimum degree ordering
* If the matrix is not structurally symmetric, an ordering of A^T+A is computed
* \tparam Scalar The type of the scalar of the matrix for which the ordering is applied
* \tparam Index The type of indices of the matrix
- * \tparam _UpLo If the matrix is symmetric, indicates which part to use
*/
-template <typename Scalar, typename Index, typename _UpLo>
-class AMDordering : public OrderingBase<AMDOrdering<Scalar, Index> >
+template <typename Scalar, typename Index>
+class AMDOrdering : public OrderingBase<AMDOrdering<Scalar, Index> >
{
public:
- enum { UpLo = _UpLo };
typedef OrderingBase< AMDOrdering<Scalar, Index> > Base;
typedef SparseMatrix<Scalar, ColMajor,Index> MatrixType;
+ typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
public:
AMDOrdering():Base(){}
AMDOrdering(const MatrixType& mat):Base()
{
- compute(matrix);
+ compute(mat);
}
AMDOrdering(const MatrixType& mat, PermutationType& perm_c):Base()
{
- compute(matrix);
+ compute(mat);
perm_c = this.get_perm();
}
/** Compute the permutation vector from a column-major sparse matrix */
@@ -200,15 +144,75 @@ class AMDordering : public OrderingBase<AMDOrdering<Scalar, Index> >
m_mat = mat;
// Call the AMD routine
- m_mat.prune(keep_diag());
+ m_mat.prune(keep_diag()); //Remove the diagonal elements
internal::minimum_degree_ordering(m_mat, m_P);
if (m_P.size()>0) m_isInitialized = true;
}
protected:
+ struct keep_diag{
+ inline bool operator() (const Index& row, const Index& col, const Scalar&) const
+ {
+ return row!=col;
+ }
+ };
using Base::m_isInitialized;
using Base::m_P;
using Base::m_mat;
-}
+};
+
+
+/**
+ * Get the column approximate minimum degree ordering
+ * The matrix should be in column-major format
+ */
+// template<typename Scalar, typename Index>
+// class COLAMDOrdering: public OrderingBase< ColamdOrdering<Scalar, Index> >
+// {
+// public:
+// typedef OrderingBase< ColamdOrdering<Scalar, Index> > Base;
+// typedef SparseMatrix<Scalar,ColMajor,Index> MatrixType;
+//
+// public:
+// COLAMDOrdering():Base() {}
+//
+// COLAMDOrdering(const MatrixType& matrix):Base()
+// {
+// compute(matrix);
+// }
+// COLAMDOrdering(const MatrixType& mat, PermutationType& perm_c):Base()
+// {
+// compute(matrix);
+// perm_c = this.get_perm();
+// }
+// void compute(const MatrixType& mat)
+// {
+// // Test if the matrix is column major...
+//
+// int m = mat.rows();
+// int n = mat.cols();
+// int nnz = mat.nonZeros();
+// // Get the recommended value of Alen to be used by colamd
+// int Alen = colamd_recommended(nnz, m, n);
+// // Set the default parameters
+// double knobs[COLAMD_KNOBS];
+// colamd_set_defaults(knobs);
+//
+// int info;
+// VectorXi p(n), A(nnz);
+// for(int i=0; i < n; i++) p(i) = mat.outerIndexPtr()(i);
+// for(int i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()(i);
+// // Call Colamd routine to compute the ordering
+// info = colamd(m, n, Alen, A,p , knobs, stats)
+// eigen_assert( (info != FALSE)&& "COLAMD failed " );
+//
+// m_P.resize(n);
+// for (int i = 0; i < n; i++) m_P(p(i)) = i;
+// m_isInitialized = true;
+// }
+// protected:
+// using Base::m_isInitialized;
+// using Base m_P;
+// };
} // end namespace Eigen
#endif \ No newline at end of file
diff --git a/Eigen/src/SparseLU/CMakeLists.txt b/Eigen/src/SparseLU/CMakeLists.txt
new file mode 100644
index 000000000..69729ee89
--- /dev/null
+++ b/Eigen/src/SparseLU/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_SparseLU_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_SparseLU_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/SparseLU COMPONENT Devel
+ )
diff --git a/Eigen/src/SparseLU/SparseLU.h b/Eigen/src/SparseLU/SparseLU.h
index 36b1ce570..293dcd0b3 100644
--- a/Eigen/src/SparseLU/SparseLU.h
+++ b/Eigen/src/SparseLU/SparseLU.h
@@ -30,8 +30,8 @@ namespace Eigen {
// Data structure needed by all routines
-#include <SparseLU_Structs.h>
-#include <SparseLU_Matrix.h>
+#include "SparseLU_Structs.h"
+#include "SparseLU_Matrix.h"
/**
* \ingroup SparseLU_Module
@@ -41,18 +41,20 @@ namespace Eigen {
*
* \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
*/
-template <typename _MatrixType>
+template <typename _MatrixType, typename _OrderingType>
class SparseLU
{
public:
typedef _MatrixType MatrixType;
+ typedef _OrderingType OrderingType;
typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef SparseMatrix<Scalar,ColMajor,Index> NCMatrix;
typedef SuperNodalMatrix<Scalar, Index> SCMatrix;
- typedef GlobalLU_t<Scalar, Index> LU_GlobalLU_t;
typedef Matrix<Scalar,Dynamic,1> ScalarVector;
typedef Matrix<Index,Dynamic,1> IndexVector;
+// typedef GlobalLU_t<ScalarVector, IndexVector> LU_GlobalLU_t;
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
public:
SparseLU():m_isInitialized(true),m_symmetricmode(false),m_diagpivotthresh(1.0)
@@ -82,10 +84,10 @@ class SparseLU
analyzePattern(matrix);
//Factorize
factorize(matrix);
- }
- template<typename Rhs, typename Dest>
- bool SparseLU::_solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
+ }
+ inline Index rows() const { return m_mat.rows(); }
+ inline Index cols() const { return m_mat.cols(); }
/** Indicate that the pattern of the input matrix is symmetric */
void isSymmetric(bool sym)
{
@@ -99,45 +101,152 @@ class SparseLU
}
- /** \returns the solution X of \f$ A X = b \f$ using the current decomposition of A.
+ /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
*
* \sa compute()
*/
- template<typename Rhs>
- inline const internal::solve_retval<SparseLU, Rhs> solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
- eigen_assert(rows()==b.rows()
- && "SparseLU::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<SuperLUBase, Rhs>(*this, b.derived());
+// template<typename Rhs>
+// inline const solve_retval<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const
+// {
+// eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
+// eigen_assert(rows()==B.rows()
+// && "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
+// return solve_retval<SparseLU, Rhs>(*this, B.derived());
+// }
+
+ template<typename Rhs, typename Dest>
+ bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X) const
+ {
+ eigen_assert(m_isInitialized && "The matrix should be factorized first");
+ EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
+ THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
+
+ X = B; /* on return, X is overwritten by the computed solution */
+
+ int nrhs = B.cols();
+
+ // Permute the right hand side to form Pr*B
+ X = m_perm_r * X;
+
+ // Forward solve PLy = Pb;
+ Index n = B.rows();
+ Index fsupc; // First column of the current supernode
+ Index istart; // Pointer index to the subscript of the current column
+ Index nsupr; // Number of rows in the current supernode
+ Index nsupc; // Number of columns in the current supernode
+ Index nrow; // Number of rows in the non-diagonal part of the supernode
+ Index luptr; // Pointer index to the current nonzero value
+ Index iptr; // row index pointer iterator
+ Index irow; //Current index row
+ const Scalar * Lval = m_Lstore.valuePtr(); // Nonzero values
+ Matrix<Scalar,Dynamic,Dynamic> work(n, nrhs); // working vector
+ work.setZero();
+ int j, k, i, icol,jcol;
+ for (k = 0; k <= m_Lstore.nsuper(); k ++)
+ {
+ fsupc = m_Lstore.supToCol()[k];
+ istart = m_Lstore.rowIndexPtr()[fsupc];
+ nsupr = m_Lstore.rowIndexPtr()[fsupc+1] - istart;
+ nsupc = m_Lstore.supToCol()[k+1] - fsupc;
+ nrow = nsupr - nsupc;
+ luptr = m_Lstore.colIndexPtr()[fsupc];
+
+ if (nsupc == 1 )
+ {
+ for (j = 0; j < nrhs; j++)
+ {
+ for (iptr = istart+1; iptr < m_Lstore.rowIndexPtr()[fsupc+1]; iptr++)
+ {
+ irow = m_Lstore.rowIndex()[iptr];
+ ++luptr;
+ X(irow, j) -= X(fsupc, j) * Lval[luptr];
+ }
+ }
+ }
+ else
+ {
+ // The supernode has more than one column
+
+ // Triangular solve
+ Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
+ // Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride > u( &(X(fsupc,0)), nsupc, nrhs, OuterStride<>(X.rows()) );
+ Matrix<Scalar,Dynamic,Dynamic>& U = X.block(fsupc, 0, nsupc, nrhs); //FIXME Check this
+ U = A.template triangularView<Lower>().solve(U);
+
+ // Matrix-vector product
+ new (&A) Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > ( &(Lval[luptr+nsupc]), nrow, nsupc, OuterStride<>(nsupr) );
+ work.block(0, 0, nrow, nrhs) = A * U;
+
+ //Begin Scatter
+ for (j = 0; j < nrhs; j++)
+ {
+ iptr = istart + nsupc;
+ for (i = 0; i < nrow; i++)
+ {
+ irow = m_Lstore.rowIndex()[iptr];
+ X(irow, j) -= work(i, j); // Scatter operation
+ work(i, j) = Scalar(0);
+ iptr++;
+ }
+ }
+ }
+ } // end for all supernodes
+
+ // Back solve Ux = y
+ for (k = m_Lstore.nsuper(); k >= 0; k--)
+ {
+ fsupc = m_Lstore.supToCol()[k];
+ istart = m_Lstore.rowIndexPtr()[fsupc];
+ nsupr = m_Lstore.rowIndexPtr()[fsupc+1] - istart;
+ nsupc = m_Lstore.supToCol()[k+1] - fsupc;
+ luptr = m_Lstore.colIndexPtr()[fsupc];
+
+ if (nsupc == 1)
+ {
+ for (j = 0; j < nrhs; j++)
+ {
+ X(fsupc, j) /= Lval[luptr];
+ }
+ }
+ else
+ {
+ Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
+ Matrix<Scalar,Dynamic,Dynamic>& U = X.block(fsupc, 0, nsupc, nrhs);
+ U = A.template triangularView<Upper>().solve(U);
+ }
+
+ for (j = 0; j < nrhs; ++j)
+ {
+ for (jcol = fsupc; jcol < fsupc + nsupc; jcol++)
+ {
+ for (i = m_Ustore.outerIndexPtr()[jcol]; i < m_Ustore.outerIndexPtr()[jcol]; i++)
+ {
+ irow = m_Ustore.InnerIndices()[i];
+ X(irow, j) -= X(jcol, j) * m_Ustore.Values()[i];
+ }
+ }
+ }
+ } // End For U-solve
+
+ // Permute back the solution
+ X = m_perm_c * X;
+
+ return true;
}
+
protected:
// Functions
- void initperfvalues();
- int LU_snode_dfs(const int jcol, const int kcol, const IndexVector* asub,
- const IndexVector* colptr, IndexVector& xprune, IndexVector& marker, LU_GlobalLU_t& glu);
- int LU_dsnode_bmod (const Index jcol, const Index jsupno, const Index fsupc,
- ScalarVector& dense, LU_GlobalLU_t& Glu);
- int LU_pivotL(const int jcol, const RealScalar diagpivotthresh, IndexVector& perm_r,
- IndexVector& iperm_c, int& pivrow, GlobalLU_t& Glu);
- void LU_panel_dfs(const int m, const int w, const int jcol, MatrixType& A,
- IndexVector& perm_r, int& nseg, ScalarVector& dense, IndexVector& panel_lsub,
- IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, IndexVector& marker,
- IndexVector& parent, IndexVector& xplore, LU_GlobalLU_t& Glu);
- void LU_panel_bmod(const int m, const int w, const int jcol, const int nseg,
- ScalarVector& dense, ScalarVector& tempv, IndexVector& segrep,
- IndexVector& repfnz, LU_GlobalLU_t& glu);
- int LU_column_dfs(const int m, const int jcol, IndexVector& perm_r, IndexVector& nseg,
- IndexVector& lsub_col, IndexVector& segrep, IndexVector& repfnz,
- IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, LU_GlobalLU_t& glu);
- int LU_column_bmod(const int jcol, const int nseg, ScalarVector& dense, ScalarVector& tempv,
- IndexVector& segrep, IndexVector& repfnz, int fpanelc, LU_GlobalLU_t& Glu);
- int LU_copy_to_ucol(const int jcol, const int nseg, IndexVector& segrep, IndexVector& repfnz,
- IndexVector& perm_r, ScalarVector& dense, LU_GlobalLU_t& glu);
- void LU_pruneL(const int jcol, const IndexVector& perm_r, const int pivrow, const int nseg,
- const IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, GlobalLU_t& Glu)
-
+ void initperfvalues()
+ {
+ m_panel_size = 12;
+ m_relax = 1;
+ m_maxsuper = 100;
+ m_rowblk = 200;
+ m_colblk = 60;
+ m_fillfactor = 20;
+ }
+
// Variables
mutable ComputationInfo m_info;
bool m_isInitialized;
@@ -150,9 +259,7 @@ class SparseLU
PermutationType m_perm_r ; // Row permutation
IndexVector m_etree; // Column elimination tree
- ScalarVector m_work; // Scalar work vector
- IndexVector m_iwork; //Index work vector
- static LU_GlobalLU_t m_glu; // persistent data to facilitate multiple factors
+ static LU_GlobalLU_t<IndexVector, ScalarVector> m_glu; // persistent data to facilitate multiple factors
// FIXME All fields of this struct can be defined separately as class members
// SuperLU/SparseLU options
@@ -176,21 +283,9 @@ class SparseLU
}; // End class SparseLU
-/* Set the default values for performance */
-void SparseLU::initperfvalues()
-{
- m_panel_size = 12;
- m_relax = 1;
- m_maxsuper = 100;
- m_rowblk = 200;
- m_colblk = 60;
- m_fillfactor = 20;
-}
// Functions needed by the anaysis phase
-#include <SparseLU_Coletree.h>
-// Ordering interface
-#include <Ordering.h>
+#include "SparseLU_Coletree.h"
/**
* Compute the column permutation to minimize the fill-in (file amd.c )
*
@@ -202,7 +297,7 @@ void SparseLU::initperfvalues()
*
*/
template <typename MatrixType, typename OrderingType>
-void SparseLU::analyzePattern(const MatrixType& mat)
+void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
{
//TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
@@ -218,6 +313,7 @@ void SparseLU::analyzePattern(const MatrixType& mat)
// Apply the permutation to the column of the input matrix
m_mat = mat * m_perm_c;
+
// Compute the column elimination tree of the permuted matrix
if (m_etree.size() == 0) m_etree.resize(m_mat.cols());
@@ -230,8 +326,9 @@ void SparseLU::analyzePattern(const MatrixType& mat)
LU_TreePostorder(m_mat.cols(), m_etree, post);
// Renumber etree in postorder
- iwork.resize(n+1);
- for (i = 0; i < n; ++i) iwork(post(i)) = post(m_etree(i));
+ int m = m_mat.cols();
+ iwork.resize(m+1);
+ for (int i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
m_etree = iwork;
// Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
@@ -242,23 +339,23 @@ void SparseLU::analyzePattern(const MatrixType& mat)
m_perm_c = m_perm_c * post_perm;
} // end postordering
- m_analysisIsok = true;
+ m_analysisIsOk = true;
}
// Functions needed by the numerical factorization phase
-#include <SparseLU_Memory.h>
-#include <SparseLU_heap_relax_snode.h>
-#include <SparseLU_relax_snode.h>
-#include <SparseLU_snode_dfs.h>
-#include <SparseLU_snode_bmod.h>
-#include <SparseLU_pivotL.h>
-#include <SparseLU_panel_dfs.h>
-#include <SparseLU_panel_bmod.h>
-#include <SparseLU_column_dfs.h>
-#include <SparseLU_column_bmod.h>
-#include <SparseLU_copy_to_ucol.h>
-#include <SparseLU_pruneL.h>
-#include <SparseLU_Utils.h>
+#include "SparseLU_Memory.h"
+#include "SparseLU_heap_relax_snode.h"
+#include "SparseLU_relax_snode.h"
+#include "SparseLU_snode_dfs.h"
+#include "SparseLU_snode_bmod.h"
+#include "SparseLU_pivotL.h"
+#include "SparseLU_panel_dfs.h"
+#include "SparseLU_panel_bmod.h"
+#include "SparseLU_column_dfs.h"
+#include "SparseLU_column_bmod.h"
+#include "SparseLU_copy_to_ucol.h"
+#include "SparseLU_pruneL.h"
+#include "SparseLU_Utils.h"
/**
* - Numerical factorization
@@ -276,13 +373,17 @@ void SparseLU::analyzePattern(const MatrixType& mat)
* failure occurred, plus A->ncol. If lwork = -1, it is
* the estimated amount of space needed, plus A->ncol.
*/
-template <typename MatrixType>
-void SparseLU::factorize(const MatrixType& matrix)
+template <typename MatrixType, typename OrderingType>
+void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
{
- eigen_assert(m_analysisIsok && "analyzePattern() should be called first");
+ eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
+
+ ScalarVector work; // Scalar work vector
+ IndexVector iwork; //Index work vector
+
// Apply the column permutation computed in analyzepattern()
m_mat = matrix * m_perm_c;
m_mat.makeCompressed();
@@ -293,7 +394,7 @@ void SparseLU::factorize(const MatrixType& matrix)
int maxpanel = m_panel_size * m;
// Allocate storage common to the factor routines
int lwork = 0;
- int info = LUMemInit(m, n, nnz, m_work, m_iwork, lwork, m_fillratio, m_panel_size, m_maxsuper, m_rowblk, m_glu);
+ int info = LUMemInit(m, n, nnz, work, iwork, lwork, m_fillfactor, m_panel_size, m_maxsuper, m_rowblk, m_glu);
if (info)
{
std::cerr << "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
@@ -304,27 +405,27 @@ void SparseLU::factorize(const MatrixType& matrix)
// Set up pointers for integer working arrays
int idx = 0;
- VectorBlock<IndexVector> segrep(m_iwork, idx, m);
+ VectorBlock<IndexVector> segrep(iwork, idx, m);
idx += m;
- VectorBlock<IndexVector> parent(m_iwork, idx, m);
+ VectorBlock<IndexVector> parent(iwork, idx, m);
idx += m;
- VectorBlock<IndexVector> xplore(m_iwork, idx, m);
+ VectorBlock<IndexVector> xplore(iwork, idx, m);
idx += m;
- VectorBlock<IndexVector> repfnz(m_iwork, idx, maxpanel);
+ VectorBlock<IndexVector> repfnz(iwork, idx, maxpanel);
idx += maxpanel;
- VectorBlock<IndexVector> panel_lsub(m_iwork, idx, maxpanel)
+ VectorBlock<IndexVector> panel_lsub(iwork, idx, maxpanel);
idx += maxpanel;
- VectorBlock<IndexVector> xprune(m_iwork, idx, n);
+ VectorBlock<IndexVector> xprune(iwork, idx, n);
idx += n;
- VectorBlock<IndexVector> marker(m_iwork, idx, m * LU_NO_MARKER);
+ VectorBlock<IndexVector> marker(iwork, idx, m * LU_NO_MARKER);
repfnz.setConstant(-1);
panel_lsub.setConstant(-1);
// Set up pointers for scalar working arrays
- VectorBlock<ScalarVector> dense(m_work, 0, maxpanel);
+ VectorBlock<ScalarVector> dense(work, 0, maxpanel);
dense.setZero();
- VectorBlock<ScalarVector> tempv(m_work, maxpanel, LU_NUM_TEMPV(m, m_panel_size, m_maxsuper, m_rowblk) );
+ VectorBlock<ScalarVector> tempv(work, maxpanel, LU_NUM_TEMPV(m, m_panel_size, m_maxsuper, m_rowblk) );
tempv.setZero();
// Setup Permutation vectors
@@ -334,9 +435,9 @@ void SparseLU::factorize(const MatrixType& matrix)
// Identify initial relaxed snodes
IndexVector relax_end(n);
if ( m_symmetricmode = true )
- internal::LU_heap_relax_snode(n, m_etree, m_relax, marker, relax_end);
+ LU_heap_relax_snode(n, m_etree, m_relax, marker, relax_end);
else
- internal::LU_relax_snode(n, m_etree, m_relax, marker, relax_end);
+ LU_relax_snode(n, m_etree, m_relax, marker, relax_end);
m_perm_r.setConstant(-1);
marker.setConstant(-1);
@@ -346,6 +447,7 @@ void SparseLU::factorize(const MatrixType& matrix)
IndexVector& xlsub = m_glu.xlsub;
IndexVector& xlusup = m_glu.xlusup;
IndexVector& xusub = m_glu.xusub;
+ ScalarVector& lusup = m_glu.lusup;
Index& nzlumax = m_glu.nzlumax;
supno(0) = IND_EMPTY;
@@ -360,7 +462,8 @@ void SparseLU::factorize(const MatrixType& matrix)
Index pivrow; // Pivotal row number in the original row matrix
int nseg1; // Number of segments in U-column above panel row jcol
int nseg; // Number of segments in each U-column
- int irep,ir;
+ int irep,ir, icol;
+ int i, k, jj,j;
for (jcol = 0; jcol < n; )
{
if (relax_end(jcol) != IND_EMPTY)
@@ -382,9 +485,10 @@ void SparseLU::factorize(const MatrixType& matrix)
jsupno = supno(jcol); // Supernode number which column jcol belongs to
fsupc = xsup(jsupno); //First column number of the current supernode
new_next = nextlu + (xlsub(fsupc+1)-xlsub(fsupc)) * (kcol - jcol + 1);
+ int mem;
while (new_next > nzlumax )
{
- mem = LUMemXpand<Scalar>(lusup, nzlumax, nextlu, LUSUP, m_glu);
+ mem = LUMemXpand<Scalar>(lusup, nzlumax, nextlu, LUSUP, m_glu.num_expansions);
if (mem)
{
std::cerr << "MEMORY ALLOCATION FAILED FOR L FACTOR \n";
@@ -401,10 +505,10 @@ void SparseLU::factorize(const MatrixType& matrix)
dense(it.row()) = it.val();
// Numeric update within the snode
- LU_snode_bmod(icol, jsupno, fsupc, dense, glu);
+ LU_snode_bmod(icol, jsupno, fsupc, dense, m_glu);
// Eliminate the current column
- info = LU_pivotL(icol, m_diagpivotthresh, m_perm_r, m_iperm_c, pivrow, m_glu);
+ info = LU_pivotL(icol, m_diagpivotthresh, m_perm_r, iperm_c, pivrow, m_glu);
if ( info )
{
m_info = NumericalIssue;
@@ -419,7 +523,7 @@ void SparseLU::factorize(const MatrixType& matrix)
{ // Work on one panel of panel_size columns
// Adjust panel size so that a panel won't overlap with the next relaxed snode.
- int panel_size = wdef; // upper bound on panel width
+ int panel_size = m_panel_size; // upper bound on panel width
for (k = jcol + 1; k < std::min(jcol+panel_size, n); k++)
{
if (relax_end(k) != IND_EMPTY)
@@ -438,7 +542,7 @@ void SparseLU::factorize(const MatrixType& matrix)
LU_panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
// Sparse LU within the panel, and below the panel diagonal
- for ( jj = jcol, j< jcol + panel_size; jj++)
+ for ( jj = jcol; j< jcol + panel_size; jj++)
{
k = (jj - jcol) * m; // Column index for w-wide arrays
@@ -446,7 +550,7 @@ void SparseLU::factorize(const MatrixType& matrix)
//Depth-first-search for the current column
VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
- info = LU_column_dfs(m, jj, perm_r, nseg, panel_lsub(k), segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
+ info = LU_column_dfs(m, jj, m_perm_r, m_maxsuper, nseg, panel_lsub(k), segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
if ( !info )
{
std::cerr << "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() \n";
@@ -467,7 +571,7 @@ void SparseLU::factorize(const MatrixType& matrix)
}
// Copy the U-segments to ucol(*)
- info = LU_copy_to_col(jj, nseg, segrep, repfnz_k, perm_r, dense_k, m_glu);
+ info = LU_copy_to_col(jj, nseg, segrep, repfnz_k, m_perm_r, dense_k, m_glu);
if ( info )
{
std::cerr << "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() \n";
@@ -506,9 +610,9 @@ void SparseLU::factorize(const MatrixType& matrix)
k = 0;
for (i = 0; i < m; ++i)
{
- if ( perm_r(i) == IND_EMPTY )
+ if ( m_perm_r(i) == IND_EMPTY )
{
- perm_r(i) = n + k;
+ m_perm_r(i) = n + k;
++k;
}
}
@@ -518,140 +622,21 @@ void SparseLU::factorize(const MatrixType& matrix)
// Apply permutation to the L subscripts
LU_fixupL(n, m_perm_r, m_glu);
- // Free work space iwork and work
- //...
+
// Create supernode matrix L
- m_Lstore.setInfos(m, n, m_nnzL, Glu.lusup, Glu.xlusup, Glu.lsub, Glu.xlsub, Glu.supno; Glu.xsup);
- // Create the column major upper sparse matrix U
- new (&m_Ustore) Map<SparseMatrix<Scalar, ColumnMajor> > ( m, n, m_nnzU, Glu.xusub.data(), Glu.usub.data(), Glu.ucol.data() ); //FIXME
- this.m_Ustore = m_Ustore;
+ m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
+ // Create the column major upper sparse matrix U;
+ // it is assumed here that MatrixType = SparseMatrix<Scalar,ColumnMajor>
+ new (&m_Ustore) Map<MatrixType > ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
+ this.m_Ustore = m_Ustore; //FIXME Is it necessary
m_info = Success;
- m_factorizationIsOk = ok;
+ m_factorizationIsOk = true;
}
-template<typename Rhs, typename Dest>
-bool SparseLU::_solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &X) const
-{
- eigen_assert(m_isInitialized && "The matrix should be factorized first");
- EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
- THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
-
- X = b; /* on return, X is overwritten by the computed solution */
-
- int nrhs = b.cols();
-
- // Permute the right hand side to form Pr*B
- X = m_perm_r * X;
-
- // Forward solve PLy = Pb;
- Index fsupc; // First column of the current supernode
- Index istart; // Pointer index to the subscript of the current column
- Index nsupr; // Number of rows in the current supernode
- Index nsupc; // Number of columns in the current supernode
- Index nrow; // Number of rows in the non-diagonal part of the supernode
- Index luptr; // Pointer index to the current nonzero value
- Index iptr; // row index pointer iterator
- Index irow; //Current index row
- Scalar * Lval = m_Lstore.valuePtr(); // Nonzero values
- Matrix<Scalar,Dynamic,Dynamic> work(n,nrhs); // working vector
- work.setZero();
- int j;
- for (k = 0; k <= m_Lstore.nsuper(); k ++)
- {
- fsupc = m_Lstore.sup_to_col()[k];
- istart = m_Lstore.rowIndexPtr()[fsupc];
- nsupr = m_Lstore..rowIndexPtr()[fsupc+1] - istart;
- nsupc = m_Lstore.sup_to_col()[k+1] - fsupc;
- nrow = nsupr - nsupc;
-
- if (nsupc == 1 )
- {
- for (j = 0; j < nrhs; j++)
- {
- luptr = m_Lstore.colIndexPtr()[fsupc]; //FIXME Should be outside the for loop
- for (iptr = istart+1; iptr < m_Lstore.rowIndexPtr()[fsupc+1]; iptr++)
- {
- irow = m_Lstore.rowIndex()[iptr];
- ++luptr;
- X(irow, j) -= X(fsupc, j) * Lval[luptr];
- }
- }
- }
- else
- {
- // The supernode has more than one column
-
- // Triangular solve
- luptr = m_Lstore.colIndexPtr()[fsupc]; //FIXME Should be outside the loop
- Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
-// Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride > u( &(X(fsupc,0)), nsupc, nrhs, OuterStride<>(X.rows()) );
- Matrix<Scalar,Dynamic,Dynamic>& u = X.block(fsupc, 0, nsupc, nrhs); //FIXME Check this
- u = A.triangularView<Lower>().solve(u);
-
- // Matrix-vector product
- new (&A) Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > ( &(Lval[luptr+nsupc]), nrow, nsupc, OuterStride<>(nsupr) );
- work.block(0, 0, nrow, nrhs) = A * u;
-
- //Begin Scatter
- for (j = 0; j < nrhs; j++)
- {
- iptr = istart + nsupc;
- for (i = 0; i < nrow; i++)
- {
- irow = m_Lstore.rowIndex()[iptr];
- X(irow, j) -= work(i, j); // Scatter operation
- work(i, j) = Scalar(0);
- iptr++;
- }
- }
- }
- } // end for all supernodes
-
- // Back solve Ux = y
- for (k = m_Lstore.nsuper(); k >= 0; k--)
- {
- fsupc = m_Lstore.sup_to_col()[k];
- istart = m_Lstore.rowIndexPtr()[fsupc];
- nsupr = m_Lstore..rowIndexPtr()[fsupc+1] - istart;
- nsupc = m_Lstore.sup_to_col()[k+1] - fsupc;
- luptr = m_Lstore.colIndexPtr()[fsupc];
-
- if (nsupc == 1)
- {
- for (j = 0; j < nrhs; j++)
- {
- X(fsupc, j) /= Lval[luptr];
- }
- }
- else
- {
- Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
- Matrix<Scalar,Dynamic,Dynamic>& u = X.block(fsupc, 0, nsupc, nrhs);
- u = A.triangularView<Upper>().solve(u);
- }
-
- for (j = 0; j < nrhs; ++j)
- {
- for (jcol = fsupc; jcol < fsupc + nsupc; jcol++)
- {
- for (i = m_Ustore.outerIndexPtr()[jcol]; i < m_Ustore.outerIndexPtr()[jcol]; i++)
- {
- irow = m_Ustore.InnerIndices()[i];
- X(irow, j) -= X(irow, jcol) * m_Ustore.Values()[i];
- }
- }
- }
- } // End For U-solve
-
- // Permute back the solution
- X = m_perm_c * X;
-
- return true;
-}
-namespace internal {
+/*namespace internal {
template<typename _MatrixType, typename Derived, typename Rhs>
struct solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
@@ -666,7 +651,7 @@ struct solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
}
};
-} // end namespace internal
+}*/ // end namespace internal
diff --git a/Eigen/src/SparseLU/SparseLU_Coletree.h b/Eigen/src/SparseLU/SparseLU_Coletree.h
index 4c42387be..00bb97796 100644
--- a/Eigen/src/SparseLU/SparseLU_Coletree.h
+++ b/Eigen/src/SparseLU/SparseLU_Coletree.h
@@ -44,13 +44,28 @@
*/
#ifndef SPARSELU_COLETREE_H
#define SPARSELU_COLETREE_H
+/** Find the root of the tree/set containing the vertex i : Use Path halving */
+template<typename IndexVector>
+int etree_find (int i, IndexVector& pp)
+{
+ int p = pp(i); // Parent
+ int gp = pp(p); // Grand parent
+ while (gp != p)
+ {
+ pp(i) = gp; // Parent pointer on find path is changed to former grand parent
+ i = gp;
+ p = pp(i);
+ gp = pp(p);
+ }
+ return p;
+}
/** Compute the column elimination tree of a sparse matrix
* NOTE : The matrix is supposed to be in column-major format.
*
*/
template<typename MatrixType, typename IndexVector>
-int SparseLU::LU_sp_coletree(const MatrixType& mat, IndexVector& parent)
+int LU_sp_coletree(const MatrixType& mat, IndexVector& parent)
{
int nc = mat.cols(); // Number of columns
int nr = mat.rows(); // Number of rows
@@ -87,7 +102,7 @@ int SparseLU::LU_sp_coletree(const MatrixType& mat, IndexVector& parent)
{ // A sequence of interleaved find and union is performed
row = firstcol(it.row());
if (row >= col) continue;
- rset = internal::etree_find(row, pp); // Find the name of the set containing row
+ rset = etree_find(row, pp); // Find the name of the set containing row
rroot = root(rset);
if (rroot != col)
{
@@ -100,52 +115,6 @@ int SparseLU::LU_sp_coletree(const MatrixType& mat, IndexVector& parent)
return 0;
}
-/** Find the root of the tree/set containing the vertex i : Use Path halving */
-template<typename IndexVector>
-int etree_find (int i, IndexVector& pp)
-{
- int p = pp(i); // Parent
- int gp = pp(p); // Grand parent
- while (gp != p)
- {
- pp(i) = gp; // Parent pointer on find path is changed to former grand parent
- i = gp;
- p = pp(i);
- gp = pp(p);
- }
- return p;
-}
-
-/**
- * Post order a tree
- * \param parent Input tree
- * \param post postordered tree
- */
-template<typename IndexVector>
-void SparseLU::LU_TreePostorder(int n, IndexVector& parent, IndexVector& post)
-{
- IndexVector first_kid, next_kid; // Linked list of children
- int postnum;
- // Allocate storage for working arrays and results
- first_kid.resize(n+1);
- next_kid.setZero(n+1);
- post.setZero(n+1);
-
- // Set up structure describing children
- int v, dad;
- first_kid.setConstant(-1);
- for (v = n-1, v >= 0; v--)
- {
- dad = parent(v);
- next_kid(v) = first_kid(dad);
- first_kid(dad) = v;
- }
-
- // Depth-first search from dummy root vertex #n
- postnum = 0;
- internal::LU_nr_etdfs(n, parent, first_kid, next_kid, post, postnum);
- return post;
-}
/**
* Depth-first search from vertex n. No recursion.
* This routine was contributed by Cédric Doucet, CEDRAT Group, Meylan, France.
@@ -190,4 +159,36 @@ void LU_nr_etdfs (int n, IndexVector& parent, IndexVector& first_kid, IndexVecto
}
}
+
+/**
+ * Post order a tree
+ * \param parent Input tree
+ * \param post postordered tree
+ */
+template<typename IndexVector>
+void LU_TreePostorder(int n, IndexVector& parent, IndexVector& post)
+{
+ IndexVector first_kid, next_kid; // Linked list of children
+ int postnum;
+ // Allocate storage for working arrays and results
+ first_kid.resize(n+1);
+ next_kid.setZero(n+1);
+ post.setZero(n+1);
+
+ // Set up structure describing children
+ int v, dad;
+ first_kid.setConstant(-1);
+ for (v = n-1; v >= 0; v--)
+ {
+ dad = parent(v);
+ next_kid(v) = first_kid(dad);
+ first_kid(dad) = v;
+ }
+
+ // Depth-first search from dummy root vertex #n
+ postnum = 0;
+ LU_nr_etdfs(n, parent, first_kid, next_kid, post, postnum);
+ return post;
+}
+
#endif \ No newline at end of file
diff --git a/Eigen/src/SparseLU/SparseLU_Matrix.h b/Eigen/src/SparseLU/SparseLU_Matrix.h
index e4bf7eda8..70570ab9c 100644
--- a/Eigen/src/SparseLU/SparseLU_Matrix.h
+++ b/Eigen/src/SparseLU/SparseLU_Matrix.h
@@ -45,17 +45,17 @@ template <typename _Scalar, typename _Index>
class SuperNodalMatrix
{
public:
- typedef typename _Scalar Scalar;
- typedef typename _Index Index;
+ typedef _Scalar Scalar;
+ typedef _Index Index;
public:
SuperNodalMatrix()
{
}
- SuperNodalMatrix(Index m, Index n, Index nnz, Scalar *nzval, Index* nzval_colptr, Index* rowind,
+ SuperNodalMatrix(Index m, Index n, Scalar *nzval, Index* nzval_colptr, Index* rowind,
Index* rowind_colptr, Index* col_to_sup, Index* sup_to_col )
{
- setInfos(m, n, nnz, nzval, nzval_colptr, rowind, rowind_colptr, col_to_sup, sup_to_col);
+ setInfos(m, n, nzval, nzval_colptr, rowind, rowind_colptr, col_to_sup, sup_to_col);
}
~SuperNodalMatrix()
@@ -68,12 +68,11 @@ class SuperNodalMatrix
* FIXME This class will be modified such that it can be use in the course
* of the factorization.
*/
- void setInfos(Index m, Index n, Index nnz, Scalar *nzval, Index* nzval_colptr, Index* rowind,
+ void setInfos(Index m, Index n, Scalar *nzval, Index* nzval_colptr, Index* rowind,
Index* rowind_colptr, Index* col_to_sup, Index* sup_to_col )
{
m_row = m;
m_col = n;
- m_nnz = nnz;
m_nzval = nzval;
m_nzval_colptr = nzval_colptr;
m_rowind = rowind;
@@ -159,14 +158,14 @@ class SuperNodalMatrix
protected:
Index m_row; // Number of rows
Index m_col; // Number of columns
- Index m_nnz; // Number of nonzero values
+// Index m_nnz; // Number of nonzero values
Index m_nsuper; // Number of supernodes
Scalar* m_nzval; //array of nonzero values packed by column
Index* m_nzval_colptr; //nzval_colptr[j] Stores the location in nzval[] which starts column j
Index* m_rowind; // Array of compressed row indices of rectangular supernodes
Index* m_rowind_colptr; //rowind_colptr[j] stores the location in rowind[] which starts column j
- Index *m_col_to_sup; // col_to_sup[j] is the supernode number to which column j belongs
- Index *m_sup_to_col; //sup_to_col[s] points to the starting column of the s-th supernode
+ Index* m_col_to_sup; // col_to_sup[j] is the supernode number to which column j belongs
+ Index* m_sup_to_col; //sup_to_col[s] points to the starting column of the s-th supernode
private :
};
@@ -176,7 +175,7 @@ class SuperNodalMatrix
*
*/
template<typename Scalar, typename Index>
-class SuperNodalMatrix::InnerIterator
+class SuperNodalMatrix<Scalar,Index>::InnerIterator
{
public:
InnerIterator(const SuperNodalMatrix& mat, Index outer)
@@ -184,7 +183,7 @@ class SuperNodalMatrix::InnerIterator
m_outer(outer),
m_idval(mat.colIndexPtr()[outer]),
m_startval(m_idval),
- m_endval(mat.colIndexPtr()[outer+1])
+ m_endval(mat.colIndexPtr()[outer+1]),
m_idrow(mat.rowIndexPtr()[outer]),
m_startidrow(m_idrow),
m_endidrow(mat.rowIndexPtr()[outer+1])
@@ -197,7 +196,7 @@ class SuperNodalMatrix::InnerIterator
}
inline Scalar value() const { return m_matrix.valuePtr()[m_idval]; }
- inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.valuePtr()[m_idval]; }
+ inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.valuePtr()[m_idval]); }
inline Index index() const { return m_matrix.rowIndex()[m_idrow]; }
inline Index row() const { return index(); }
@@ -221,13 +220,14 @@ class SuperNodalMatrix::InnerIterator
const Index m_startidrow; // Start of the row indices of the current column value
const Index m_endidrow; // End of the row indices of the current column value
};
+
/**
- * \brief Iterator class to iterate over nonzeros Supernodes in the triangular supernodal matrix
+ * \brief Iterator class to iterate over Supernodes in the triangular supernodal matrix
*
* The final goal is to use this class when dealing with supernodes during numerical factorization
*/
template<typename Scalar, typename Index>
-class SuperNodalMatrix::SuperNodeIterator
+class SuperNodalMatrix<Scalar,Index>::SuperNodeIterator
{
public:
SuperNodeIterator(const SuperNodalMatrix& mat)
diff --git a/Eigen/src/SparseLU/SparseLU_Memory.h b/Eigen/src/SparseLU/SparseLU_Memory.h
index b2888e9a0..ea9ef6d89 100644
--- a/Eigen/src/SparseLU/SparseLU_Memory.h
+++ b/Eigen/src/SparseLU/SparseLU_Memory.h
@@ -54,9 +54,67 @@
#define LU_GluIntArray(n) (5* (n) + 5)
#define LU_TempSpace(m, w) ( (2*w + 4 + LU_NO_MARKER) * m * sizeof(Index) \
+ (w + 1) * m * sizeof(Scalar) )
-
-namespace internal {
+
+
+/**
+ * Expand the existing storage to accomodate more fill-ins
+ * \param vec Valid pointer to the vector to allocate or expand
+ * \param [in,out]length At input, contain the current length of the vector that is to be increased. At output, length of the newly allocated vector
+ * \param [in]len_to_copy Current number of elements in the factors
+ * \param keep_prev true: use length and do not expand the vector; false: compute new_len and expand
+ * \param [in,out]num_expansions Number of times the memory has been expanded
+ */
+template <typename VectorType >
+int expand(VectorType& vec, int& length, int len_to_copy, bool keep_prev, int& num_expansions)
+{
+
+ float alpha = 1.5; // Ratio of the memory increase
+ int new_len; // New size of the allocated memory
+ if(num_expansions == 0 || keep_prev)
+ new_len = length ; // First time allocate requested
+ else
+ new_len = alpha * length ;
+
+ VectorType old_vec; // Temporary vector to hold the previous values
+ if (len_to_copy > 0 )
+ old_vec = vec; // old_vec should be of size len_to_copy... to be checked
+
+ //expand the current vector //FIXME Should be in a try ... catch region
+ vec.resize(new_len);
+ /*
+ * Test if the memory has been well allocated
+ * otherwise reduce the size and try to reallocate
+ * copy data from previous vector (if exists) to the newly allocated vector
+ */
+ if ( num_expansions != 0 ) // The memory has been expanded before
+ {
+ int tries = 0;
+ if (keep_prev)
+ {
+ if (!vec.size()) return new_len ;
+ }
+ else
+ {
+ while (!vec.size())
+ {
+ // Reduce the size and allocate again
+ if ( ++tries > 10) return new_len;
+ alpha = LU_Reduce(alpha);
+ new_len = alpha * length ;
+ vec.resize(new_len); //FIXME Should be in a try catch section
+ }
+ } // end allocation
+
+ //Copy the previous values to the newly allocated space
+ if (len_to_copy > 0)
+ vec.segment(0, len_to_copy) = old_vec;
+ } // end expansion
+ length = new_len;
+ if(num_expansions) ++num_expansions;
+ return 0;
+}
+
/**
* \brief Allocate various working space for the numerical factorization phase.
* \param m number of rows of the input matrix
@@ -70,10 +128,10 @@ namespace internal {
* NOTE Unlike SuperLU, this routine does not support successive factorization with the same pattern and the row permutation
*/
template <typename ScalarVector,typename IndexVector>
-int LUMemInit(int m, int n, int annz, ScalarVector& work, IndexVector& iwork, int lwork, int fillratio, int panel_size, int maxsuper, int rowblk, GlobalLU_t<ScalarVector, IndexVector>& glu)
+int LUMemInit(int m, int n, int annz, ScalarVector& work, IndexVector& iwork, int lwork, int fillratio, int panel_size, int maxsuper, int rowblk, LU_GlobalLU_t<ScalarVector, IndexVector>& glu)
{
- typedef typename ScalarVector::Scalar;
- typedef typename IndexVector::Index;
+ typedef typename ScalarVector::Scalar Scalar;
+ typedef typename IndexVector::Index Index;
int& num_expansions = glu.num_expansions; //No memory expansions so far
num_expansions = 0;
@@ -82,14 +140,14 @@ int LUMemInit(int m, int n, int annz, ScalarVector& work, IndexVector& iwork, in
Index& nzumax = glu.nzumax;
Index& nzlumax = glu.nzlumax;
nzumax = nzlumax = fillratio * annz; // estimated number of nonzeros in U
- nzlmax = std::max(1, m_fill_ratio/4.) * annz; // estimated nnz in L factor
+ nzlmax = std::max(1., fillratio/4.) * annz; // estimated nnz in L factor
// Return the estimated size to the user if necessary
if (lwork == IND_EMPTY)
{
int estimated_size;
- estimated_size = LU_GluIntArray(n) * sizeof(Index) + LU_TempSpace(m, m_panel_size)
- + (nzlmax + nzumax) * sizeof(Index) + (nzlumax+nzumax) * sizeof(Scalar) + n);
+ estimated_size = LU_GluIntArray(n) * sizeof(Index) + LU_TempSpace(m, panel_size)
+ + (nzlmax + nzumax) * sizeof(Index) + (nzlumax+nzumax) * sizeof(Scalar) + n;
return estimated_size;
}
@@ -126,8 +184,8 @@ int LUMemInit(int m, int n, int annz, ScalarVector& work, IndexVector& iwork, in
}
// LUWorkInit : Now, allocate known working storage
- int isize = (2 * m_panel_size + 3 + LU_NO_MARKER) * m + n;
- int dsize = m * m_panel_size + LU_NUM_TEMPV(m, m_panel_size, m_maxsuper, m_rowblk);
+ int isize = (2 * panel_size + 3 + LU_NO_MARKER) * m + n;
+ int dsize = m * panel_size + LU_NUM_TEMPV(m, panel_size, maxsuper, rowblk);
iwork.resize(isize);
work.resize(isize);
@@ -137,65 +195,6 @@ int LUMemInit(int m, int n, int annz, ScalarVector& work, IndexVector& iwork, in
} // end LuMemInit
/**
- * Expand the existing storage to accomodate more fill-ins
- * \param vec Valid pointer to the vector to allocate or expand
- * \param [in,out]length At input, contain the current length of the vector that is to be increased. At output, length of the newly allocated vector
- * \param [in]len_to_copy Current number of elements in the factors
- * \param keep_prev true: use length and do not expand the vector; false: compute new_len and expand
- * \param [in,out]num_expansions Number of times the memory has been expanded
- */
-template <typename VectorType >
-int SparseLU::expand(VectorType& vec, int& length, int len_to_copy, bool keep_prev, int& num_expansions)
-{
-
- float alpha = 1.5; // Ratio of the memory increase
- int new_len; // New size of the allocated memory
-
- if(num_expansions == 0 || keep_prev)
- new_len = length ; // First time allocate requested
- else
- new_len = alpha * length ;
-
- VectorType old_vec; // Temporary vector to hold the previous values
- if (len_to_copy > 0 )
- old_vec = vec; // old_vec should be of size len_to_copy... to be checked
-
- //expand the current vector //FIXME Should be in a try ... catch region
- vec.resize(new_len);
- /*
- * Test if the memory has been well allocated
- * otherwise reduce the size and try to reallocate
- * copy data from previous vector (if exists) to the newly allocated vector
- */
- if ( num_expansions != 0 ) // The memory has been expanded before
- {
- int tries = 0;
- if (keep_prev)
- {
- if (!vec.size()) return new_len ;
- }
- else
- {
- while (!vec.size())
- {
- // Reduce the size and allocate again
- if ( ++tries > 10) return new_len;
- alpha = LU_Reduce(alpha);
- new_len = alpha * length ;
- vec.resize(new_len); //FIXME Should be in a try catch section
- }
- } // end allocation
-
- //Copy the previous values to the newly allocated space
- if (len_to_copy > 0)
- vec.segment(0, len_to_copy) = old_vec;
- } // end expansion
- length = new_len;
- if(num_expansions) ++num_expansions;
- return 0;
-}
-
-/**
* \brief Expand the existing storage
* \param vec vector to expand
* \param [in,out]maxlen On input, previous size of vec (Number of elements to copy ). on output, new size
@@ -203,18 +202,17 @@ int SparseLU::expand(VectorType& vec, int& length, int len_to_copy, bool keep_p
* \param glu Global data structure
* \return 0 on success, > 0 size of the memory allocated so far
*/
-template <typename IndexVector>
-int SparseLU::LUMemXpand(VectorType& vec, int& maxlen, int next, LU_MemType memtype, LU_GlobalLu_t& glu)
+template <typename VectorType>
+int LUMemXpand(VectorType& vec, int& maxlen, int next, LU_MemType memtype, int& num_expansions)
{
int failed_size;
- int& num_expansions = glu.num_expansions;
if (memtype == USUB)
- failed_size = expand<IndexVector>(vec, maxlen, next, 1, num_expansions);
+ failed_size = expand<VectorType>(vec, maxlen, next, 1, num_expansions);
else
- failed_size = expand<IndexVector>(vec, maxlen, next, 0, num_expansions);
+ failed_size = expand<VectorType>(vec, maxlen, next, 0, num_expansions);
if (failed_size)
- return faileld_size;
+ return failed_size;
// The following code is not really needed since maxlen is passed by reference
// and correspond to the appropriate field in glu
@@ -236,6 +234,4 @@ int SparseLU::LUMemXpand(VectorType& vec, int& maxlen, int next, LU_MemType memt
return 0 ;
}
-
-}// Namespace Internal
#endif \ No newline at end of file
diff --git a/Eigen/src/SparseLU/SparseLU_Structs.h b/Eigen/src/SparseLU/SparseLU_Structs.h
index 618d05eac..fd2a59a41 100644
--- a/Eigen/src/SparseLU/SparseLU_Structs.h
+++ b/Eigen/src/SparseLU/SparseLU_Structs.h
@@ -82,11 +82,11 @@
*/
#ifndef EIGEN_LU_STRUCTS
#define EIGEN_LU_STRUCTS
-typedef enum {LUSUP, UCOL, LSUB, USUB, LLVL, ULVL} MemType;
+typedef enum {LUSUP, UCOL, LSUB, USUB, LLVL, ULVL} LU_MemType;
-template <typename ScalarVector, typename IndexVector>
-struct {
+template <typename IndexVector, typename ScalarVector>
+struct LU_GlobalLU_t {
typedef typename IndexVector::Index Index;
IndexVector xsup; //First supernode column ... xsup(s) points to the beginning of the s-th supernode
IndexVector supno; // Supernode number corresponding to this column (column to supernode mapping)
@@ -96,14 +96,11 @@ struct {
IndexVector xlsub; // pointers to the beginning of each column in lsub
Index nzlmax; // Current max size of lsub
Index nzlumax; // Current max size of lusup
-
ScalarVector ucol; // nonzero values of U ordered by columns
IndexVector usub; // row indices of U columns in ucol
IndexVector xusub; // Pointers to the beginning of each column of U in ucol
Index nzumax; // Current max size of ucol
- Index n; // Number of columns in the matrix
-
+ Index n; // Number of columns in the matrix
int num_expansions;
-} GlobalLU_t;
-
+};
#endif \ No newline at end of file
diff --git a/Eigen/src/SparseLU/SparseLU_Utils.h b/Eigen/src/SparseLU/SparseLU_Utils.h
index 5c12b6243..9e63bf7e4 100644
--- a/Eigen/src/SparseLU/SparseLU_Utils.h
+++ b/Eigen/src/SparseLU/SparseLU_Utils.h
@@ -25,7 +25,6 @@
#ifdef EIGEN_SPARSELU_UTILS_H
#define EIGEN_SPARSELU_UTILS_H
-// Number of marker arrays used in the factorization each of size n
template <typename IndexVector>
void SparseLU::LU_countnz(const int n, IndexVector& xprune, int& nnzL, int& nnzU, GlobalLU_t& Glu)
@@ -34,7 +33,6 @@ void SparseLU::LU_countnz(const int n, IndexVector& xprune, int& nnzL, int& nnzU
IndexVector& xlsub = Glu.xlsub;
nnzL = 0;
nnzU = (Glu.xusub)(n);
- int nnzL0 = 0;
int nsuper = (Glu.supno)(n);
int jlen, irep;
@@ -52,7 +50,6 @@ void SparseLU::LU_countnz(const int n, IndexVector& xprune, int& nnzL, int& nnzU
jlen--;
}
irep = xsup(i+1) - 1;
- nnzL0 += xprune(irep) - xlsub(irep);
}
}
diff --git a/Eigen/src/SparseLU/SparseLU_column_bmod.h b/Eigen/src/SparseLU/SparseLU_column_bmod.h
index 965a0c0ad..da464cbfc 100644
--- a/Eigen/src/SparseLU/SparseLU_column_bmod.h
+++ b/Eigen/src/SparseLU/SparseLU_column_bmod.h
@@ -44,6 +44,7 @@
*/
#ifndef SPARSELU_COLUMN_BMOD_H
#define SPARSELU_COLUMN_BMOD_H
+
/**
* \brief Performs numeric block updates (sup-col) in topological order
*
@@ -59,11 +60,13 @@
* > 0 - number of bytes allocated when run out of space
*
*/
-template <typename ScalarVector, typename IndexVector>
-int SparseLU::LU_column_bmod(const int jcol, const int nseg, ScalarVector& dense, ScalarVector& tempv, IndexVector& segrep, IndexVector& repfnz, int fpanelc, LU_GlobalLU_t& glu)
+template <typename IndexVector, typename ScalarVector>
+int LU_column_bmod(const int jcol, const int nseg, ScalarVector& dense, ScalarVector& tempv, IndexVector& segrep, IndexVector& repfnz, int fpanelc, LU_GlobalLU_t<IndexVector, ScalarVector>& glu)
{
-
+ typedef typename IndexVector::Index Index;
+ typedef typename ScalarVector::Scalar Scalar;
int jsupno, k, ksub, krep, krep_ind, ksupno;
+ int lptr, nrow, isub, i, irow, nextlu, new_next, ufirst;
int fsupc, nsupc, nsupr, luptr, kfnz, no_zeros;
/* krep = representative of current k-th supernode
* fsupc = first supernodal column
@@ -81,7 +84,7 @@ int SparseLU::LU_column_bmod(const int jcol, const int nseg, ScalarVector& dense
ScalarVector& lusup = glu.lusup;
Index& nzlumax = glu.nzlumax;
- int jsupno = supno(jcol);
+ jsupno = supno(jcol);
// For each nonzero supernode segment of U[*,j] in topological order
k = nseg - 1;
int d_fsupc; // distance between the first column of the current panel and the
@@ -134,7 +137,7 @@ int SparseLU::LU_column_bmod(const int jcol, const int nseg, ScalarVector& dense
Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(lusup.data()[luptr]), segsize, segsize, OuterStride<>(nsupr) );
VectorBlock<ScalarVector> u(tempv, 0, segsize);
- u = A.triangularView<Lower>().solve(u);
+ u = A.template triangularView<Lower>().solve(u);
// Dense matrix-vector product y <-- A*x
luptr += segsize;
@@ -168,18 +171,18 @@ int SparseLU::LU_column_bmod(const int jcol, const int nseg, ScalarVector& dense
fsupc = xsup(jsupno);
// copy the SPA dense into L\U[*,j]
+ int mem;
new_next = nextlu + xlsub(fsupc + 1) - xlsub(fsupc);
while (new_next > nzlumax )
{
- mem = LUmemXpand<Scalar>(glu.lusup, nzlumax, nextlu, LUSUP, glu);
+ mem = LUMemXpand<ScalarVector>(glu.lusup, nzlumax, nextlu, LUSUP, glu.num_expansions);
if (mem) return mem;
- //lsub = glu.lsub; // Should not be updated here
}
for (isub = xlsub(fsupc); isub < xlsub(fsupc+1); isub++)
{
irow = lsub(isub);
- lusub(nextlu) = dense(irow);
+ lusup(nextlu) = dense(irow);
dense(irow) = Scalar(0.0);
++nextlu;
}
@@ -210,7 +213,7 @@ int SparseLU::LU_column_bmod(const int jcol, const int nseg, ScalarVector& dense
ufirst = xlusup(jcol) + d_fsupc;
Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(lusup.data()[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
VectorBlock<ScalarVector> u(lusup, ufirst, nsupc);
- u = A.triangularView().solve(u);
+ u = A.template triangularView().solve(u);
new (&A) Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > ( &(lusup.data()[luptr+nsupc]), nrow, nsupc, OuterStride<>(nsupr) );
VectorBlock<ScalarVector> l(lusup, ufirst+nsupc, nrow);
diff --git a/Eigen/src/SparseLU/SparseLU_column_dfs.h b/Eigen/src/SparseLU/SparseLU_column_dfs.h
index 7fda536a9..8c6202d67 100644
--- a/Eigen/src/SparseLU/SparseLU_column_dfs.h
+++ b/Eigen/src/SparseLU/SparseLU_column_dfs.h
@@ -44,6 +44,7 @@
*/
#ifndef SPARSELU_COLUMN_DFS_H
#define SPARSELU_COLUMN_DFS_H
+
/**
* \brief Performs a symbolic factorization on column jcol and decide the supernode boundary
*
@@ -57,6 +58,7 @@
* \param m number of rows in the matrix
* \param jcol Current column
* \param perm_r Row permutation
+ * \param maxsuper
* \param [in,out] nseg Number of segments in current U[*,j] - new segments appended
* \param lsub_col defines the rhs vector to start the dfs
* \param [in,out] segrep Segment representatives - new segments appended
@@ -71,9 +73,10 @@
*
*/
template <typename IndexVector, typename ScalarVector>
-int SparseLU::LU_column_dfs(const int m, const int jcol, IndexVector& perm_r, IndexVector& nseg IndexVector& lsub_col, IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, LU_GlobalLU_t& glu)
+int LU_column_dfs(const int m, const int jcol, IndexVector& perm_r, int maxsuper, IndexVector& nseg, IndexVector& lsub_col, IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, LU_GlobalLU_t<IndexVector, ScalarVector>& glu)
{
- typedef typename IndexVector::IndexVector;
+ typedef typename IndexVector::Index Index;
+ typedef typename ScalarVector::Scalar Scalar;
int jcolp1, jcolm1, jsuper, nsuper, nextl;
int krow; // Row index of the current element
@@ -95,6 +98,7 @@ int SparseLU::LU_column_dfs(const int m, const int jcol, IndexVector& perm_r, In
jsuper = nsuper;
nextl = xlsub(jcol);
VectorBlock<IndexVector> marker2(marker, 2*m, m);
+ int fsupc, jptr, jm1ptr, ito, ifrom, istop;
// For each nonzero in A(*,jcol) do dfs
for (k = 0; lsub_col[k] != IND_EMPTY; k++)
{
@@ -115,7 +119,7 @@ int SparseLU::LU_column_dfs(const int m, const int jcol, IndexVector& perm_r, In
lsub(nextl++) = krow; // krow is indexed into A
if ( nextl >= nzlmax )
{
- mem = LUMemXpand<IndexVector>(lsub, nzlmax, nextl, LSUB, glu);
+ mem = LUMemXpand<IndexVector>(lsub, nzlmax, nextl, LSUB, glu.num_expansions);
if ( mem ) return mem;
}
if (kmark != jcolm1) jsuper = IND_EMPTY; // Row index subset testing
@@ -163,7 +167,7 @@ int SparseLU::LU_column_dfs(const int m, const int jcol, IndexVector& perm_r, In
lsub(nextl++) = kchild;
if (nextl >= nzlmax)
{
- mem = LUMemXpand<IndexVector>(lsub, nzlmax, nextl, LSUB, glu);
+ mem = LUMemXpand<IndexVector>(lsub, nzlmax, nextl, LSUB, glu.num_expansions);
if (mem) return mem;
}
if (chmark != jcolm1) jsuper = IND_EMPTY;
@@ -186,7 +190,7 @@ int SparseLU::LU_column_dfs(const int m, const int jcol, IndexVector& perm_r, In
xplore(krep) = xdfs;
oldrep = krep;
krep = chrep; // Go deeped down G(L^t)
- parent(krep) = olddrep;
+ parent(krep) = oldrep;
repfnz(krep) = chperm;
xdfs = xlsub(krep);
maxdfs = xprune(krep);
@@ -230,7 +234,7 @@ int SparseLU::LU_column_dfs(const int m, const int jcol, IndexVector& perm_r, In
// Make sure the number of columns in a supernode doesn't
// exceed threshold
- if ( (jcol - fsupc) >= m_maxsuper) jsuper = IND_EMPTY;
+ if ( (jcol - fsupc) >= maxsuper) jsuper = IND_EMPTY;
/* If jcol starts a new supernode, reclaim storage space in
* lsub from previous supernode. Note we only store
@@ -241,7 +245,7 @@ int SparseLU::LU_column_dfs(const int m, const int jcol, IndexVector& perm_r, In
{ // starts a new supernode
if ( (fsupc < jcolm1-1) )
{ // >= 3 columns in nsuper
- ito = xlsub(fsupcc+1)
+ ito = xlsub(fsupc+1);
xlsub(jcolm1) = ito;
istop = ito + jptr - jm1ptr;
xprune(jcolm1) = istop; // intialize xprune(jcol-1)
diff --git a/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h b/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h
index c97bc6aa4..31411175c 100644
--- a/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h
+++ b/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h
@@ -44,6 +44,7 @@
*/
#ifndef SPARSELU_COPY_TO_UCOL_H
#define SPARSELU_COPY_TO_UCOL_H
+
/**
* \brief Performs numeric block updates (sup-col) in topological order
*
@@ -58,17 +59,18 @@
* > 0 - number of bytes allocated when run out of space
*
*/
-template <typename ScalarVector, typename IndexVector>
-int SparseLU::LU_copy_to_ucol(const int jcol, const int nseg, IndexVector& segrep, IndexVector& repfnz, IndexVector& perm_r, ScalarVector& dense, LU_GlobalLU_t& glu)
+template < typename IndexVector, typename ScalarVector>
+int LU_copy_to_ucol(const int jcol, const int nseg, IndexVector& segrep, IndexVector& repfnz, IndexVector& perm_r, ScalarVector& dense, LU_GlobalLU_t<IndexVector, ScalarVector>& glu)
{
- Index ksupno, k, ksub, krep, ksupno;
- typedef typename IndexVector::Index;
+ typedef typename IndexVector::Index Index;
+ typedef typename ScalarVector::Scalar Scalar;
+ Index ksub, krep, ksupno;
IndexVector& xsup = glu.xsup;
IndexVector& supno = glu.supno;
IndexVector& lsub = glu.lsub;
IndexVector& xlsub = glu.xlsub;
- ScalarVector& ucol = GLu.ucol;
+ ScalarVector& ucol = glu.ucol;
IndexVector& usub = glu.usub;
IndexVector& xusub = glu.xusub;
Index& nzumax = glu.nzumax;
@@ -76,10 +78,11 @@ int SparseLU::LU_copy_to_ucol(const int jcol, const int nseg, IndexVector& segre
Index jsupno = supno(jcol);
// For each nonzero supernode segment of U[*,j] in topological order
- k = nseg - 1;
+ int k = nseg - 1, i;
Index nextu = xusub(jcol);
Index kfnz, isub, segsize;
Index new_next,irow;
+ Index fsupc, mem;
for (ksub = 0; ksub < nseg; ksub++)
{
krep = segrep(k); k--;
@@ -95,9 +98,9 @@ int SparseLU::LU_copy_to_ucol(const int jcol, const int nseg, IndexVector& segre
new_next = nextu + segsize;
while (new_next > nzumax)
{
- mem = LU_MemXpand<ScalarVector>(ucol, nzumax, nextu, UCOL, glu);
+ mem = LUMemXpand<ScalarVector>(ucol, nzumax, nextu, UCOL, glu.num_expansions);
if (mem) return mem;
- mem = LU_MemXpand<Index>(usub, nzumax, nextu, USUB, glu);
+ mem = LUMemXpand<IndexVector>(usub, nzumax, nextu, USUB, glu.num_expansions);
if (mem) return mem;
}
@@ -120,4 +123,5 @@ int SparseLU::LU_copy_to_ucol(const int jcol, const int nseg, IndexVector& segre
xusub(jcol + 1) = nextu; // close U(*,jcol)
return 0;
}
+
#endif \ No newline at end of file
diff --git a/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h b/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h
index 4190e0462..1766c3c2b 100644
--- a/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h
+++ b/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h
@@ -42,8 +42,7 @@
#ifndef SPARSELU_HEAP_RELAX_SNODE_H
#define SPARSELU_HEAP_RELAX_SNODE_H
-#include <SparseLU_coletree.h>
-namespace internal {
+#include "SparseLU_Coletree.h"
/**
* \brief Identify the initial relaxed supernodes
*
@@ -85,12 +84,12 @@ void LU_heap_relax_snode (const int n, IndexVector& et, const int relax_columns,
if (parent != n) // not the dummy root
descendants(parent) += descendants(j) + 1;
}
-
// Identify the relaxed supernodes by postorder traversal of the etree
register int snode_start; // beginning of a snode
register int k;
int nsuper_et_post = 0; // Number of relaxed snodes in postordered etree
int nsuper_et = 0; // Number of relaxed snodes in the original etree
+ int l;
for (j = 0; j < n; )
{
parent = et(j);
@@ -132,5 +131,4 @@ void LU_heap_relax_snode (const int n, IndexVector& et, const int relax_columns,
// Recover the original etree
et = et_save;
}
-} // end namespace internal
#endif
diff --git a/Eigen/src/SparseLU/SparseLU_panel_bmod.h b/Eigen/src/SparseLU/SparseLU_panel_bmod.h
index 212ecfa6a..4f19b5ac8 100644
--- a/Eigen/src/SparseLU/SparseLU_panel_bmod.h
+++ b/Eigen/src/SparseLU/SparseLU_panel_bmod.h
@@ -63,8 +63,9 @@
*
*/
template <typename IndexVector, typename ScalarVector>
-void SparseLU::LU_panel_bmod(const int m, const int w, const int jcol, const int nseg, ScalarVector& dense, ScalarVector& tempv, IndexVector& segrep, IndexVector& repfnz, LU_GlobalLU_t& glu)
+void LU_panel_bmod(const int m, const int w, const int jcol, const int nseg, ScalarVector& dense, ScalarVector& tempv, IndexVector& segrep, IndexVector& repfnz, LU_GlobalLU_t<IndexVector,ScalarVector>& glu)
{
+ typedef typename ScalarVector::Scalar Scalar;
IndexVector& xsup = glu.xsup;
IndexVector& supno = glu.supno;
IndexVector& lsub = glu.lsub;
@@ -74,11 +75,10 @@ void SparseLU::LU_panel_bmod(const int m, const int w, const int jcol, const int
int i,ksub,jj,nextl_col,irow;
int fsupc, nsupc, nsupr, nrow;
- int krep, krep_ind;
- int nrow;
+ int krep, krep_ind, kfnz;
int lptr; // points to the row subscripts of a supernode
int luptr; // ...
- int segsze,no_zeros,irow ;
+ int segsize,no_zeros,isub ;
// For each nonz supernode segment of U[*,j] in topological order
int k = nseg - 1;
for (ksub = 0; ksub < nseg; ksub++)
@@ -105,7 +105,7 @@ void SparseLU::LU_panel_bmod(const int m, const int w, const int jcol, const int
{
nextl_col = (jj-jcol) * m;
VectorBlock<IndexVector> repfnz_col(repfnz.segment(nextl_col, m)); // First nonzero column index for each row
- VectorBLock<IndexVector> dense_col(dense.segment(nextl_col, m)); // Scatter/gather entire matrix column from/to here
+ VectorBlock<IndexVector> dense_col(dense.segment(nextl_col, m)); // Scatter/gather entire matrix column from/to here
kfnz = repfnz_col(krep);
if ( kfnz == IND_EMPTY )
@@ -134,14 +134,12 @@ void SparseLU::LU_panel_bmod(const int m, const int w, const int jcol, const int
luptr += nsupr * no_zeros + no_zeros;
// triangular solve with Eigen
Map<Matrix<Scalar,Dynamic, Dynamic>, 0, OuterStride<> > A( &(lusup.data()[luptr]), segsize, segsize, OuterStride<>(nsupr) );
-// Map<Matrix<Scalar,Dynamic,1> > u( tempv.data(), segsize);
VectorBlock<ScalarVector> u(tempv, 0, segsize);
- u = A.triangularView<Lower>().solve(u);
+ u = A.template triangularView<Lower>().solve(u);
luptr += segsize;
// Dense Matrix vector product y <-- A*x;
new (&A) Map<Matrix<Scalar,Dynamic, Dynamic>, 0, OuterStride<> > ( &(lusup.data()[luptr]), nrow, segsize, OuterStride<>(nsupr) );
-// Map<ScalarVector> l( &(tempv.data()[segsize]), nrow);
VectorBlock<ScalarVector> l(tempv, segsize, nrow);
l= A * u;
diff --git a/Eigen/src/SparseLU/SparseLU_panel_dfs.h b/Eigen/src/SparseLU/SparseLU_panel_dfs.h
index d3c2906b2..6f6922ee0 100644
--- a/Eigen/src/SparseLU/SparseLU_panel_dfs.h
+++ b/Eigen/src/SparseLU/SparseLU_panel_dfs.h
@@ -78,7 +78,7 @@
*
*/
template <typename MatrixType, typename IndexVector, typename ScalarVector>
-void SparseLU::LU_panel_dfs(const int m, const int w, const int jcol, MatrixType& A, IndexVector& perm_r, int& nseg, ScalarVector& dense, IndexVector& panel_lsub, IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, LU_GlobalLU_t& Glu)
+void LU_panel_dfs(const int m, const int w, const int jcol, MatrixType& A, IndexVector& perm_r, int& nseg, ScalarVector& dense, IndexVector& panel_lsub, IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, LU_GlobalLU_t<IndexVector, ScalarVector>& glu)
{
int jj; // Index through each column in the panel
@@ -95,10 +95,10 @@ void SparseLU::LU_panel_dfs(const int m, const int w, const int jcol, MatrixType
// IndexVector& marker1 = marker.block(m, m);
VectorBlock<IndexVector> marker1(marker, m, m);
nseg = 0;
- IndexVector& xsup = Glu.xsup;
- IndexVector& supno = Glu.supno;
- IndexVector& lsub = Glu.lsub;
- IndexVector& xlsub = Glu.xlsub;
+ IndexVector& xsup = glu.xsup;
+ IndexVector& supno = glu.supno;
+ IndexVector& lsub = glu.lsub;
+ IndexVector& xlsub = glu.xlsub;
// For each column in the panel
for (jj = jcol; jj < jcol + w; jj++)
{
@@ -109,7 +109,7 @@ void SparseLU::LU_panel_dfs(const int m, const int w, const int jcol, MatrixType
// For each nnz in A[*, jj] do depth first search
- for (MatrixType::InnerIterator it(A, jj); it; ++it)
+ for (typename MatrixType::InnerIterator it(A, jj); it; ++it)
{
krow = it.row();
dense_col(krow) = it.val();
diff --git a/Eigen/src/SparseLU/SparseLU_pivotL.h b/Eigen/src/SparseLU/SparseLU_pivotL.h
index 32da92481..4a50b2cca 100644
--- a/Eigen/src/SparseLU/SparseLU_pivotL.h
+++ b/Eigen/src/SparseLU/SparseLU_pivotL.h
@@ -63,22 +63,22 @@
* \param [in,out]perm_r Row permutation (threshold pivoting)
* \param [in] iperm_c column permutation - used to finf diagonal of Pc*A*Pc'
* \param [out]pivrow The pivot row
- * \param Glu Global LU data
+ * \param glu Global LU data
* \return 0 if success, i > 0 if U(i,i) is exactly zero
*
*/
template <typename IndexVector, typename ScalarVector>
-int SparseLU::LU_pivotL(const int jcol, const RealScalar diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, int& pivrow, GlobalLU_t& Glu)
+int LU_pivotL(const int jcol, const typename ScalarVector::RealScalar diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, int& pivrow, LU_GlobalLU_t<IndexVector, ScalarVector>& glu)
{
typedef typename IndexVector::Index Index;
typedef typename ScalarVector::Scalar Scalar;
// Initialize pointers
- IndexVector& lsub = Glu.lsub; // Compressed row subscripts of L rectangular supernodes.
- IndexVector& xlsub = Glu.xlsub; // pointers to the beginning of each column subscript in lsub
- ScalarVector& lusup = Glu.lusup; // Numerical values of L ordered by columns
- IndexVector& xlusup = Glu.xlusup; // pointers to the beginning of each colum in lusup
+ IndexVector& lsub = glu.lsub; // Compressed row subscripts of L rectangular supernodes.
+ IndexVector& xlsub = glu.xlsub; // pointers to the beginning of each column subscript in lsub
+ ScalarVector& lusup = glu.lusup; // Numerical values of L ordered by columns
+ IndexVector& xlusup = glu.xlusup; // pointers to the beginning of each colum in lusup
- Index fsupc = (Glu.xsup)((Glu.supno)(jcol)); // First column in the supernode containing the column jcol
+ Index fsupc = (glu.xsup)((glu.supno)(jcol)); // First column in the supernode containing the column jcol
Index nsupc = jcol - fsupc; // Number of columns in the supernode portion, excluding jcol; nsupc >=0
Index lptr = xlsub(fsupc); // pointer to the starting location of the row subscripts for this supernode portion
Index nsupr = xlsub(fsupc+1) - lptr; // Number of rows in the supernode
@@ -93,6 +93,7 @@ int SparseLU::LU_pivotL(const int jcol, const RealScalar diagpivotthresh, IndexV
Index diag = IND_EMPTY;
Index old_pivptr = nsupc;
Scalar rtemp;
+ Index isub, icol, itemp, k;
for (isub = nsupc; isub < nsupr; ++isub) {
rtemp = std::abs(lu_col_ptr[isub]);
if (rtemp > pivmax) {
diff --git a/Eigen/src/SparseLU/SparseLU_pruneL.h b/Eigen/src/SparseLU/SparseLU_pruneL.h
index dd092b778..c006f6707 100644
--- a/Eigen/src/SparseLU/SparseLU_pruneL.h
+++ b/Eigen/src/SparseLU/SparseLU_pruneL.h
@@ -44,6 +44,7 @@
*/
#ifndef SPARSELU_PRUNEL_H
#define SPARSELU_PRUNEL_H
+
/**
* \brief Prunes the L-structure.
*
@@ -57,25 +58,27 @@
* \param segrep
* \param repfnz
* \param [out]xprune
- * \param Glu Global LU data
+ * \param glu Global LU data
*
*/
template <typename IndexVector, typename ScalarVector>
-void SparseLU::LU_pruneL(const int jcol, const IndexVector& perm_r, const int pivrow, const int nseg, const IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, GlobalLU_t& Glu)
+void LU_pruneL(const int jcol, const IndexVector& perm_r, const int pivrow, const int nseg, const IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, LU_GlobalLU_t<IndexVector, ScalarVector>& glu)
{
+ typedef typename IndexVector::Index Index;
+ typedef typename ScalarVector::Scalar Scalar;
// Initialize pointers
- IndexVector& xsup = Glu.xsup;
- IndexVector& supno = Glu.supno;
- IndexVector& lsub = Glu.lsub;
- IndexVector& xlsub = Glu.xlsub;
- ScalarVector& lusup = Glu.lusup;
- IndexVector& xlusup = Glu.xlusup;
+ IndexVector& xsup = glu.xsup;
+ IndexVector& supno = glu.supno;
+ IndexVector& lsub = glu.lsub;
+ IndexVector& xlsub = glu.xlsub;
+ ScalarVector& lusup = glu.lusup;
+ IndexVector& xlusup = glu.xlusup;
// For each supernode-rep irep in U(*,j]
int jsupno = supno(jcol);
int i,irep,irep1;
bool movnum, do_prune = false;
- Index kmin, kmax, ktemp, minloc, maxloc;
+ Index kmin, kmax, ktemp, minloc, maxloc,krow;
for (i = 0; i < nseg; i++)
{
irep = segrep(i);
@@ -88,12 +91,12 @@ void SparseLU::LU_pruneL(const int jcol, const IndexVector& perm_r, const int pi
// If a snode overlaps with the next panel, then the U-segment
// is fragmented into two parts -- irep and irep1. We should let
// pruning occur at the rep-column in irep1s snode.
- if (supno(irep) == supno(irep1) continue; // don't prune
+ if (supno(irep) == supno(irep1) ) continue; // don't prune
// If it has not been pruned & it has a nonz in row L(pivrow,i)
if (supno(irep) != jsupno )
{
- if ( xprune (irep) >= xlsub(irep1)
+ if ( xprune (irep) >= xlsub(irep1) )
{
kmin = xlsub(irep);
kmax = xlsub(irep1) - 1;
@@ -147,4 +150,5 @@ void SparseLU::LU_pruneL(const int jcol, const IndexVector& perm_r, const int pi
} // end pruning
} // End for each U-segment
}
+
#endif \ No newline at end of file
diff --git a/Eigen/src/SparseLU/SparseLU_relax_snode.h b/Eigen/src/SparseLU/SparseLU_relax_snode.h
index f7b478560..0006dde33 100644
--- a/Eigen/src/SparseLU/SparseLU_relax_snode.h
+++ b/Eigen/src/SparseLU/SparseLU_relax_snode.h
@@ -42,7 +42,6 @@
#ifndef SPARSELU_RELAX_SNODE_H
#define SPARSELU_RELAX_SNODE_H
-namespace internal {
/**
* \brief Identify the initial relaxed supernodes
*
@@ -87,6 +86,4 @@ void LU_relax_snode (const int n, IndexVector& et, const int relax_columns, Inde
} // End postorder traversal of the etree
}
-
-} // end namespace internal
#endif
diff --git a/Eigen/src/SparseLU/SparseLU_snode_bmod.h b/Eigen/src/SparseLU/SparseLU_snode_bmod.h
index 1d6bed8bb..a7034e607 100644
--- a/Eigen/src/SparseLU/SparseLU_snode_bmod.h
+++ b/Eigen/src/SparseLU/SparseLU_snode_bmod.h
@@ -42,14 +42,13 @@
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
-namespace internal {
#ifndef SPARSELU_SNODE_BMOD_H
#define SPARSELU_SNODE_BMOD_H
-template <typename Index, typename ScalarVector>
-int SparseLU::LU_dsnode_bmod (const Index jcol, const Index jsupno, const Index fsupc,
- ScalarVector& dense, LU_GlobalLU_t& glu)
+template <typename IndexVector, typename ScalarVector>
+int LU_snode_bmod (const int jcol, const int jsupno, const int fsupc,
+ ScalarVector& dense, LU_GlobalLU_t<IndexVector,ScalarVector>& glu)
{
- typedef typename Matrix<Index, Dynamic, Dynamic> IndexVector;
+ typedef typename ScalarVector::Scalar Scalar;
IndexVector& lsub = glu.lsub; // Compressed row subscripts of ( rectangular supernodes ??)
IndexVector& xlsub = glu.xlsub; // xlsub[j] is the starting location of the j-th column in lsub(*)
ScalarVector& lusup = glu.lusup; // Numerical values of the rectangular supernodes
@@ -77,17 +76,15 @@ int SparseLU::LU_dsnode_bmod (const Index jcol, const Index jsupno, const Index
// Solve the triangular system for U(fsupc:jcol, jcol) with L(fspuc:jcol, fsupc:jcol)
Map<Matrix<Scalar,Dynamic,Dynamic>,0,OuterStride<> > A( &(lusup.data()[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
-// Map<Matrix<Scalar,Dynamic,1> > u(&(lusup.data()[ufirst]), nsupc);
VectorBlock<ScalarVector> u(lusup, ufirst, nsupc);
- u = A.triangularView<Lower>().solve(u); // Call the Eigen dense triangular solve interface
+ u = A.template triangularView<Lower>().solve(u); // Call the Eigen dense triangular solve interface
// Update the trailing part of the column jcol U(jcol:jcol+nrow, jcol) using L(jcol:jcol+nrow, fsupc:jcol) and U(fsupc:jcol)
new (&A) Map<Matrix<Scalar,Dynamic,Dynamic>,0,OuterStride<> > ( &(lusup.data()[luptr+nsupc]), nrow, nsupc, OuterStride<>(nsupr) );
// Map<Matrix<Scalar,Dynamic,1> > l(&(lusup.data()[ufirst+nsupc], nrow);
VectorBlock<ScalarVector> l(lusup, ufirst+nsupc, nrow);
l = l - A * u;
-
- return 0;
+ }
+ return 0;
}
-} // End namespace internal
#endif \ No newline at end of file
diff --git a/Eigen/src/SparseLU/SparseLU_snode_dfs.h b/Eigen/src/SparseLU/SparseLU_snode_dfs.h
index 669f172f5..c49fc1461 100644
--- a/Eigen/src/SparseLU/SparseLU_snode_dfs.h
+++ b/Eigen/src/SparseLU/SparseLU_snode_dfs.h
@@ -44,7 +44,6 @@
*/
#ifdef SPARSELU_SNODE_DFS_H
#define SPARSELU_SNODE_DFS_H
-namespace eigen {
/**
* \brief Determine the union of the row structures of those columns within the relaxed snode.
* NOTE: The relaxed snodes are leaves of the supernodal etree, therefore,
@@ -59,7 +58,7 @@ namespace eigen {
* \return 0 on success, > 0 size of the memory when memory allocation failed
*/
template <typename IndexVector, typename ScalarVector>
- int SparseLU::LU_snode_dfs(const int jcol, const int kcol, const IndexVector* asub, const IndexVector* colptr, IndexVector& xprune, IndexVector& marker, LU_GlobalLU_t& glu)
+ int LU_snode_dfs(const int jcol, const int kcol, const IndexVector* asub, const IndexVector* colptr, IndexVector& xprune, IndexVector& marker, LU_GlobalLU_t& glu)
{
typedef typename IndexVector::Index;
IndexVector& xsup = glu.xsup;
@@ -86,7 +85,7 @@ namespace eigen {
lsub(nextl++) = krow;
if( nextl >= nzlmax )
{
- mem = LUMemXpand<IndexVector>(lsub, nzlmax, nextl, LSUB, glu);
+ mem = LUMemXpand<IndexVector>(lsub, nzlmax, nextl, LSUB, glu.num_expansions);
if (mem) return mem;
}
}
@@ -100,7 +99,7 @@ namespace eigen {
Index new_next = nextl + (nextl - xlsub(jcol));
while (new_next > nzlmax)
{
- mem = LUMemXpand<IndexVector>(lsub, nzlmax, nextl, LSUB, glu);
+ mem = LUMemXpand<IndexVector>(lsub, nzlmax, nextl, LSUB, glu.num_expansions);
if (mem) return mem;
}
Index ifrom, ito = nextl;
@@ -115,6 +114,4 @@ namespace eigen {
xlsub(kcol+1) = nextl;
return 0;
}
-
-} // end namespace eigen
#endif \ No newline at end of file
diff --git a/bench/spbench/CMakeLists.txt b/bench/spbench/CMakeLists.txt
index 079912266..4b3c6f8e3 100644
--- a/bench/spbench/CMakeLists.txt
+++ b/bench/spbench/CMakeLists.txt
@@ -63,3 +63,8 @@ endif(RT_LIBRARY)
add_executable(spbenchsolver spbenchsolver.cpp)
target_link_libraries (spbenchsolver ${SPARSE_LIBS})
+add_executable(spsolver sp_solver.cpp)
+target_link_libraries (spsolver ${SPARSE_LIBS})
+
+add_executable(test_sparseLU test_sparseLU.cpp)
+target_link_libraries (test_sparseLU ${SPARSE_LIBS}) \ No newline at end of file