aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2010-06-03 22:22:14 +0200
committerGravatar Gael Guennebaud <g.gael@free.fr>2010-06-03 22:22:14 +0200
commite64460d5d003448e090bac23b9ddc93e7af2ca5a (patch)
treeacd2ec2edf05ffff69e112a62774d60b2422420f
parent4159db979d8a502d628f3ec7fd6f49ded84165d4 (diff)
LDLT: make it honors the Lower/Upper directive and make it works inplace
-rw-r--r--Eigen/src/Cholesky/LDLT.h227
-rw-r--r--Eigen/src/Cholesky/LLT.h1
-rw-r--r--Eigen/src/Core/SelfAdjointView.h2
-rw-r--r--Eigen/src/Core/util/ForwardDeclarations.h2
-rw-r--r--test/cholesky.cpp15
5 files changed, 160 insertions, 87 deletions
diff --git a/Eigen/src/Cholesky/LDLT.h b/Eigen/src/Cholesky/LDLT.h
index 81f3aaa32..60cb98307 100644
--- a/Eigen/src/Cholesky/LDLT.h
+++ b/Eigen/src/Cholesky/LDLT.h
@@ -27,6 +27,8 @@
#ifndef EIGEN_LDLT_H
#define EIGEN_LDLT_H
+template<typename MatrixType, int UpLo> struct LDLT_Traits;
+
/** \ingroup cholesky_Module
*
* \class LDLT
@@ -52,7 +54,7 @@
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values.
*/
-template<typename _MatrixType> class LDLT
+template<typename _MatrixType, int _UpLo> class LDLT
{
public:
typedef _MatrixType MatrixType;
@@ -61,7 +63,8 @@ template<typename _MatrixType> class LDLT
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
+ UpLo = _UpLo
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
@@ -69,6 +72,8 @@ template<typename _MatrixType> class LDLT
typedef typename ei_plain_col_type<MatrixType, Index>::type IntColVectorType;
typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;
+ typedef LDLT_Traits<MatrixType,UpLo> Traits;
+
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
@@ -100,11 +105,18 @@ template<typename _MatrixType> class LDLT
compute(matrix);
}
- /** \returns an expression of the lower triangular matrix L */
- inline TriangularView<MatrixType, UnitLower> matrixL(void) const
+ /** \returns a view of the upper triangular matrix U */
+ inline typename Traits::MatrixU matrixU() const
{
ei_assert(m_isInitialized && "LDLT is not initialized.");
- return m_matrix;
+ return Traits::getU(m_matrix);
+ }
+
+ /** \returns a view of the lower triangular matrix L */
+ inline typename Traits::MatrixL matrixL() const
+ {
+ ei_assert(m_isInitialized && "LDLT is not initialized.");
+ return Traits::getL(m_matrix);
}
/** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed,
@@ -186,14 +198,115 @@ template<typename _MatrixType> class LDLT
IntColVectorType m_p;
IntColVectorType m_transpositions; // FIXME do we really need to store permanently the transpositions?
TmpMatrixType m_temporary;
- Index m_sign;
+ int m_sign;
bool m_isInitialized;
};
+template<int UpLo> struct ei_ldlt_inplace;
+
+template<> struct ei_ldlt_inplace<Lower>
+{
+ template<typename MatrixType, typename Transpositions, typename Workspace>
+ static bool unblocked(MatrixType& mat, Transpositions& transpositions, Workspace& temp, int* sign=0)
+ {
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef typename MatrixType::Index Index;
+ ei_assert(mat.rows()==mat.cols());
+ const Index size = mat.rows();
+
+ if (size <= 1)
+ {
+ transpositions.setZero();
+ if(sign)
+ *sign = ei_real(mat.coeff(0,0))>0 ? 1:-1;
+ return true;
+ }
+
+ RealScalar cutoff = 0, biggest_in_corner;
+
+ for (Index k = 0; k < size; ++k)
+ {
+ // Find largest diagonal element
+ Index index_of_biggest_in_corner;
+ biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
+ index_of_biggest_in_corner += k;
+
+ if(k == 0)
+ {
+ // The biggest overall is the point of reference to which further diagonals
+ // are compared; if any diagonal is negligible compared
+ // to the largest overall, the algorithm bails.
+ cutoff = ei_abs(NumTraits<Scalar>::epsilon() * biggest_in_corner);
+
+ if(sign)
+ *sign = ei_real(mat.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1;
+ }
+
+ // Finish early if the matrix is not full rank.
+ if(biggest_in_corner < cutoff)
+ {
+ for(Index i = k; i < size; i++) transpositions.coeffRef(i) = i;
+ break;
+ }
+
+ transpositions.coeffRef(k) = index_of_biggest_in_corner;
+ if(k != index_of_biggest_in_corner)
+ {
+ mat.row(k).swap(mat.row(index_of_biggest_in_corner));
+ mat.col(k).swap(mat.col(index_of_biggest_in_corner));
+ }
+
+ Index rs = size - k - 1;
+ Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
+ Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
+ Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
+
+ if(k>0)
+ {
+ temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint();
+ mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
+ if(rs>0)
+ A21.noalias() -= A20 * temp.head(k);
+ }
+ if((rs>0) && (ei_abs(mat.coeffRef(k,k)) > cutoff))
+ A21 /= mat.coeffRef(k,k);
+ }
+
+ return true;
+ }
+};
+
+template<> struct ei_ldlt_inplace<Upper>
+{
+ template<typename MatrixType, typename Transpositions, typename Workspace>
+ static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, Transpositions& transpositions, Workspace& temp, int* sign=0)
+ {
+ Transpose<MatrixType> matt(mat);
+ return ei_ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
+ }
+};
+
+template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
+{
+ typedef TriangularView<MatrixType, UnitLower> MatrixL;
+ typedef TriangularView<typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
+ inline static MatrixL getL(const MatrixType& m) { return m; }
+ inline static MatrixU getU(const MatrixType& m) { return m.adjoint(); }
+};
+
+template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
+{
+ typedef TriangularView<typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
+ typedef TriangularView<MatrixType, UnitUpper> MatrixU;
+ inline static MatrixL getL(const MatrixType& m) { return m.adjoint(); }
+ inline static MatrixU getU(const MatrixType& m) { return m; }
+};
+
/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
*/
-template<typename MatrixType>
-LDLT<MatrixType>& LDLT<MatrixType>::compute(const MatrixType& a)
+template<typename MatrixType, int _UpLo>
+LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
{
ei_assert(a.rows()==a.cols());
const Index size = a.rows();
@@ -203,85 +316,29 @@ LDLT<MatrixType>& LDLT<MatrixType>::compute(const MatrixType& a)
m_p.resize(size);
m_transpositions.resize(size);
m_isInitialized = false;
-
- if (size <= 1)
- {
- m_p.setZero();
- m_transpositions.setZero();
- m_sign = ei_real(a.coeff(0,0))>0 ? 1:-1;
- m_isInitialized = true;
- return *this;
- }
-
- RealScalar cutoff = 0, biggest_in_corner;
-
- // By using a temporary, packet-aligned products are guarenteed. In the LLT
- // case this is unnecessary because the diagonal is included and will always
- // have optimal alignment.
m_temporary.resize(size);
- for (Index j = 0; j < size; ++j)
- {
-
- // Find largest diagonal element
- Index index_of_biggest_in_corner;
- biggest_in_corner = m_matrix.diagonal().tail(size-j).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
- index_of_biggest_in_corner += j;
-
- if(j == 0)
- {
- // The biggest overall is the point of reference to which further diagonals
- // are compared; if any diagonal is negligible compared
- // to the largest overall, the algorithm bails.
- cutoff = ei_abs(NumTraits<Scalar>::epsilon() * biggest_in_corner);
-
- m_sign = ei_real(m_matrix.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1;
- }
-
- // Finish early if the matrix is not full rank.
- if(biggest_in_corner < cutoff)
- {
- for(Index i = j; i < size; i++) m_transpositions.coeffRef(i) = i;
- break;
- }
-
- m_transpositions.coeffRef(j) = index_of_biggest_in_corner;
- if(j != index_of_biggest_in_corner)
- {
- m_matrix.row(j).swap(m_matrix.row(index_of_biggest_in_corner));
- m_matrix.col(j).swap(m_matrix.col(index_of_biggest_in_corner));
- }
- Index rs = size - j - 1;
- Block<MatrixType,Dynamic,1> A21(m_matrix,j+1,j,rs,1);
- Block<MatrixType,1,Dynamic> A10(m_matrix,j,0,1,j);
- Block<MatrixType,Dynamic,Dynamic> A20(m_matrix,j+1,0,rs,j);
+ ei_ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, &m_sign);
- if(j>0)
- {
- m_temporary.head(j) = m_matrix.diagonal().head(j).asDiagonal() * A10.adjoint();
- m_matrix.coeffRef(j,j) -= (A10 * m_temporary.head(j)).value();
- if(rs>0)
- A21.noalias() -= A20 * m_temporary.head(j);
- }
- if((rs>0) && (ei_abs(m_matrix.coeffRef(j,j)) > cutoff))
- A21 /= m_matrix.coeffRef(j,j);
- }
+ if(size==0)
+ m_p.setZero();
// Reverse applied swaps to get P matrix.
for(Index k = 0; k < size; ++k) m_p.coeffRef(k) = k;
for(Index k = size-1; k >= 0; --k) {
std::swap(m_p.coeffRef(k), m_p.coeffRef(m_transpositions.coeff(k)));
}
-
+
m_isInitialized = true;
return *this;
}
-template<typename _MatrixType, typename Rhs>
-struct ei_solve_retval<LDLT<_MatrixType>, Rhs>
- : ei_solve_retval_base<LDLT<_MatrixType>, Rhs>
+template<typename _MatrixType, int _UpLo, typename Rhs>
+struct ei_solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
+ : ei_solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
{
- EIGEN_MAKE_SOLVE_HELPERS(LDLT<_MatrixType>,Rhs)
+ typedef LDLT<_MatrixType,_UpLo> LDLTType;
+ EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
@@ -301,9 +358,9 @@ struct ei_solve_retval<LDLT<_MatrixType>, Rhs>
*
* \sa LDLT::solve(), MatrixBase::ldlt()
*/
-template<typename MatrixType>
+template<typename MatrixType,int _UpLo>
template<typename Derived>
-bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
+bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
ei_assert(m_isInitialized && "LDLT is not initialized.");
const Index size = m_matrix.rows();
@@ -314,13 +371,13 @@ bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
// y = L^-1 z
//matrixL().solveInPlace(bAndX);
- m_matrix.template triangularView<UnitLower>().solveInPlace(bAndX);
+ matrixL().solveInPlace(bAndX);
// w = D^-1 y
bAndX = m_matrix.diagonal().asDiagonal().inverse() * bAndX;
// u = L^-T w
- m_matrix.adjoint().template triangularView<UnitUpper>().solveInPlace(bAndX);
+ matrixU().solveInPlace(bAndX);
// x = P^T u
for (Index i = size-1; i >= 0; --i) bAndX.row(m_transpositions.coeff(i)).swap(bAndX.row(i));
@@ -331,8 +388,8 @@ bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: P^T L D L^* P.
* This function is provided for debug purpose. */
-template<typename MatrixType>
-MatrixType LDLT<MatrixType>::reconstructedMatrix() const
+template<typename MatrixType, int _UpLo>
+MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
{
ei_assert(m_isInitialized && "LDLT is not initialized.");
const Index size = m_matrix.rows();
@@ -342,7 +399,7 @@ MatrixType LDLT<MatrixType>::reconstructedMatrix() const
// PI
for(Index i = 0; i < size; ++i) res.row(m_transpositions.coeff(i)).swap(res.row(i));
// L^* P
- res = matrixL().adjoint() * res;
+ res = matrixU() * res;
// D(L^*P)
res = vectorD().asDiagonal() * res;
// L(DL^*P)
@@ -356,6 +413,16 @@ MatrixType LDLT<MatrixType>::reconstructedMatrix() const
/** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
*/
+template<typename MatrixType, unsigned int UpLo>
+inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
+SelfAdjointView<MatrixType, UpLo>::ldlt() const
+{
+ return LDLT<PlainObject,UpLo>(m_matrix);
+}
+
+/** \cholesky_module
+ * \returns the Cholesky decomposition with full pivoting without square root of \c *this
+ */
template<typename Derived>
inline const LDLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::ldlt() const
diff --git a/Eigen/src/Cholesky/LLT.h b/Eigen/src/Cholesky/LLT.h
index 29fa465e1..6e853436c 100644
--- a/Eigen/src/Cholesky/LLT.h
+++ b/Eigen/src/Cholesky/LLT.h
@@ -162,7 +162,6 @@ template<typename _MatrixType, int _UpLo> class LLT
bool m_isInitialized;
};
-// forward declaration (defined at the end of this file)
template<int UpLo> struct ei_llt_inplace;
template<> struct ei_llt_inplace<Lower>
diff --git a/Eigen/src/Core/SelfAdjointView.h b/Eigen/src/Core/SelfAdjointView.h
index eed3f9336..84c4dc521 100644
--- a/Eigen/src/Core/SelfAdjointView.h
+++ b/Eigen/src/Core/SelfAdjointView.h
@@ -153,7 +153,7 @@ template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
/////////// Cholesky module ///////////
const LLT<PlainObject, UpLo> llt() const;
- const LDLT<PlainObject> ldlt() const;
+ const LDLT<PlainObject, UpLo> ldlt() const;
/////////// Eigenvalue module ///////////
diff --git a/Eigen/src/Core/util/ForwardDeclarations.h b/Eigen/src/Core/util/ForwardDeclarations.h
index b3bc9c161..5cf62f4c6 100644
--- a/Eigen/src/Core/util/ForwardDeclarations.h
+++ b/Eigen/src/Core/util/ForwardDeclarations.h
@@ -158,7 +158,7 @@ template<typename MatrixType> class FullPivHouseholderQR;
template<typename MatrixType> class SVD;
template<typename MatrixType, unsigned int Options = 0> class JacobiSVD;
template<typename MatrixType, int UpLo = Lower> class LLT;
-template<typename MatrixType> class LDLT;
+template<typename MatrixType, int UpLo = Lower> class LDLT;
template<typename VectorsType, typename CoeffsType, int Side=OnTheLeft> class HouseholderSequence;
template<typename Scalar> class PlanarRotation;
diff --git a/test/cholesky.cpp b/test/cholesky.cpp
index 0ae26c7d5..d403af7ba 100644
--- a/test/cholesky.cpp
+++ b/test/cholesky.cpp
@@ -118,11 +118,18 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
}
{
- LDLT<SquareMatrixType> ldlt(symm);
- VERIFY_IS_APPROX(symm, ldlt.reconstructedMatrix());
- vecX = ldlt.solve(vecB);
+ LDLT<SquareMatrixType,Lower> ldltlo(symm);
+ VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix());
+ vecX = ldltlo.solve(vecB);
VERIFY_IS_APPROX(symm * vecX, vecB);
- matX = ldlt.solve(matB);
+ matX = ldltlo.solve(matB);
+ VERIFY_IS_APPROX(symm * matX, matB);
+
+ LDLT<SquareMatrixType,Upper> ldltup(symm);
+ VERIFY_IS_APPROX(symm, ldltup.reconstructedMatrix());
+ vecX = ldltup.solve(vecB);
+ VERIFY_IS_APPROX(symm * vecX, vecB);
+ matX = ldltup.solve(matB);
VERIFY_IS_APPROX(symm * matX, matB);
}