aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Rasmus Munk Larsen <rmlarsen@google.com>2016-02-06 16:32:00 -0800
committerGravatar Rasmus Munk Larsen <rmlarsen@google.com>2016-02-06 16:32:00 -0800
commitd904c8ac8f5963b0c6f2528f4ee1823350277713 (patch)
tree58a49b2ab896ec432af0bb744b165202f5b8196a
parent093f2b3c01518697fad88f9cfe91c576cd8e6f6e (diff)
Implement complete orthogonal decomposition in Eigen.
-rw-r--r--Eigen/QR1
-rw-r--r--Eigen/src/Core/MatrixBase.h25
-rw-r--r--Eigen/src/Core/util/ForwardDeclarations.h3
-rw-r--r--Eigen/src/QR/ColPivHouseholderQR.h2
-rw-r--r--Eigen/src/QR/CompleteOrthogonalDecomposition.h538
-rw-r--r--test/qr_colpivoting.cpp77
6 files changed, 633 insertions, 13 deletions
diff --git a/Eigen/QR b/Eigen/QR
index f74f365f1..25c781cc1 100644
--- a/Eigen/QR
+++ b/Eigen/QR
@@ -34,6 +34,7 @@
#include "src/QR/HouseholderQR.h"
#include "src/QR/FullPivHouseholderQR.h"
#include "src/QR/ColPivHouseholderQR.h"
+#include "src/QR/CompleteOrthogonalDecomposition.h"
#ifdef EIGEN_USE_LAPACKE
#include "src/QR/HouseholderQR_MKL.h"
#include "src/QR/ColPivHouseholderQR_MKL.h"
diff --git a/Eigen/src/Core/MatrixBase.h b/Eigen/src/Core/MatrixBase.h
index 3770ab257..1e66b4e1b 100644
--- a/Eigen/src/Core/MatrixBase.h
+++ b/Eigen/src/Core/MatrixBase.h
@@ -66,7 +66,7 @@ template<typename Derived> class MatrixBase
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
-
+
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
@@ -175,7 +175,7 @@ template<typename Derived> class MatrixBase
#endif
template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
+ EIGEN_DEVICE_FUNC
const Product<Derived,OtherDerived,LazyProduct>
lazyProduct(const MatrixBase<OtherDerived> &other) const;
@@ -214,7 +214,7 @@ template<typename Derived> class MatrixBase
typedef Diagonal<Derived> DiagonalReturnType;
EIGEN_DEVICE_FUNC
DiagonalReturnType diagonal();
-
+
typedef typename internal::add_const<Diagonal<const Derived> >::type ConstDiagonalReturnType;
EIGEN_DEVICE_FUNC
ConstDiagonalReturnType diagonal() const;
@@ -222,14 +222,14 @@ template<typename Derived> class MatrixBase
template<int Index> struct DiagonalIndexReturnType { typedef Diagonal<Derived,Index> Type; };
template<int Index> struct ConstDiagonalIndexReturnType { typedef const Diagonal<const Derived,Index> Type; };
- template<int Index>
+ template<int Index>
EIGEN_DEVICE_FUNC
typename DiagonalIndexReturnType<Index>::Type diagonal();
template<int Index>
EIGEN_DEVICE_FUNC
typename ConstDiagonalIndexReturnType<Index>::Type diagonal() const;
-
+
typedef Diagonal<Derived,DynamicIndex> DiagonalDynamicIndexReturnType;
typedef typename internal::add_const<Diagonal<const Derived,DynamicIndex> >::type ConstDiagonalDynamicIndexReturnType;
@@ -251,7 +251,7 @@ template<typename Derived> class MatrixBase
template<unsigned int UpLo> struct SelfAdjointViewReturnType { typedef SelfAdjointView<Derived, UpLo> Type; };
template<unsigned int UpLo> struct ConstSelfAdjointViewReturnType { typedef const SelfAdjointView<const Derived, UpLo> Type; };
- template<unsigned int UpLo>
+ template<unsigned int UpLo>
EIGEN_DEVICE_FUNC
typename SelfAdjointViewReturnType<UpLo>::Type selfadjointView();
template<unsigned int UpLo>
@@ -340,7 +340,7 @@ template<typename Derived> class MatrixBase
EIGEN_DEVICE_FUNC
inline const Inverse<Derived> inverse() const;
-
+
template<typename ResultType>
inline void computeInverseAndDetWithCheck(
ResultType& inverse,
@@ -366,6 +366,7 @@ template<typename Derived> class MatrixBase
inline const HouseholderQR<PlainObject> householderQr() const;
inline const ColPivHouseholderQR<PlainObject> colPivHouseholderQr() const;
inline const FullPivHouseholderQR<PlainObject> fullPivHouseholderQr() const;
+ inline const CompleteOrthogonalDecomposition<PlainObject> completeOrthogonalDecomposition() const;
/////////// Eigenvalues module ///////////
@@ -394,23 +395,23 @@ template<typename Derived> class MatrixBase
inline PlainObject
#endif
cross(const MatrixBase<OtherDerived>& other) const;
-
+
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
inline PlainObject cross3(const MatrixBase<OtherDerived>& other) const;
-
+
EIGEN_DEVICE_FUNC
inline PlainObject unitOrthogonal(void) const;
-
+
inline Matrix<Scalar,3,1> eulerAngles(Index a0, Index a1, Index a2) const;
-
+
inline ScalarMultipleReturnType operator*(const UniformScaling<Scalar>& s) const;
// put this as separate enum value to work around possible GCC 4.3 bug (?)
enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1&&RowsAtCompileTime==1 ? ((internal::traits<Derived>::Flags&RowMajorBit)==RowMajorBit ? Horizontal : Vertical)
: ColsAtCompileTime==1 ? Vertical : Horizontal };
typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> HomogeneousReturnType;
inline HomogeneousReturnType homogeneous() const;
-
+
enum {
SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1
};
diff --git a/Eigen/src/Core/util/ForwardDeclarations.h b/Eigen/src/Core/util/ForwardDeclarations.h
index 31c7088e7..f09632375 100644
--- a/Eigen/src/Core/util/ForwardDeclarations.h
+++ b/Eigen/src/Core/util/ForwardDeclarations.h
@@ -95,7 +95,7 @@ template<typename Decomposition, typename Rhstype> class Solve;
template<typename XprType> class Inverse;
template<typename Lhs, typename Rhs, int Option = DefaultProduct> class Product;
-
+
template<typename Derived> class DiagonalBase;
template<typename _DiagonalVectorType> class DiagonalWrapper;
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime=SizeAtCompileTime> class DiagonalMatrix;
@@ -248,6 +248,7 @@ template<typename MatrixType> struct inverse_impl;
template<typename MatrixType> class HouseholderQR;
template<typename MatrixType> class ColPivHouseholderQR;
template<typename MatrixType> class FullPivHouseholderQR;
+template<typename MatrixType> class CompleteOrthogonalDecomposition;
template<typename MatrixType, int QRPreconditioner = ColPivHouseholderQRPreconditioner> class JacobiSVD;
template<typename MatrixType> class BDCSVD;
template<typename MatrixType, int UpLo = Lower> class LLT;
diff --git a/Eigen/src/QR/ColPivHouseholderQR.h b/Eigen/src/QR/ColPivHouseholderQR.h
index efeb1f438..7c559f952 100644
--- a/Eigen/src/QR/ColPivHouseholderQR.h
+++ b/Eigen/src/QR/ColPivHouseholderQR.h
@@ -404,6 +404,8 @@ template<typename _MatrixType> class ColPivHouseholderQR
protected:
+ friend class CompleteOrthogonalDecomposition<MatrixType>;
+
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
diff --git a/Eigen/src/QR/CompleteOrthogonalDecomposition.h b/Eigen/src/QR/CompleteOrthogonalDecomposition.h
new file mode 100644
index 000000000..b81bb7433
--- /dev/null
+++ b/Eigen/src/QR/CompleteOrthogonalDecomposition.h
@@ -0,0 +1,538 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016 Rasmus Munk Larsen <rmlarsen@google.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
+#define EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
+
+namespace Eigen {
+
+namespace internal {
+template <typename _MatrixType>
+struct traits<CompleteOrthogonalDecomposition<_MatrixType> >
+ : traits<_MatrixType> {
+ enum { Flags = 0 };
+};
+
+} // end namespace internal
+
+/** \ingroup QR_Module
+ *
+ * \class CompleteOrthogonalDecomposition
+ *
+ * \brief Complete orthogonal decomposition (COD) of a matrix.
+ *
+ * \param MatrixType the type of the matrix of which we are computing the COD.
+ *
+ * This class performs a rank-revealing complete ortogonal decomposition of a
+ * matrix \b A into matrices \b P, \b Q, \b T, and \b Z such that
+ * \f[
+ * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \begin{matrix} \mathbf{T} &
+ * \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{matrix} \, \mathbf{Z}
+ * \f]
+ * by using Householder transformations. Here, \b P is a permutation matrix,
+ * \b Q and \b Z are unitary matrices and \b T an upper triangular matrix of
+ * size rank-by-rank. \b A may be rank deficient.
+ *
+ * \sa MatrixBase::completeOrthogonalDecomposition()
+ */
+template <typename _MatrixType>
+class CompleteOrthogonalDecomposition {
+ public:
+ typedef _MatrixType MatrixType;
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ Options = MatrixType::Options,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef typename MatrixType::StorageIndex StorageIndex;
+ typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options,
+ MaxRowsAtCompileTime, MaxRowsAtCompileTime>
+ MatrixQType;
+ typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
+ typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime>
+ PermutationType;
+ typedef typename internal::plain_row_type<MatrixType, Index>::type
+ IntRowVectorType;
+ typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
+ typedef typename internal::plain_row_type<MatrixType, RealScalar>::type
+ RealRowVectorType;
+ typedef HouseholderSequence<
+ MatrixType, typename internal::remove_all<
+ typename HCoeffsType::ConjugateReturnType>::type>
+ HouseholderSequenceType;
+
+ private:
+ typedef typename PermutationType::Index PermIndexType;
+
+ public:
+ /**
+ * \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via
+ * \c CompleteOrthogonalDecomposition::compute(const* MatrixType&).
+ */
+ CompleteOrthogonalDecomposition() : m_cpqr(), m_zCoeffs(), m_temp() {}
+
+ /** \brief Default Constructor with memory preallocation
+ *
+ * Like the default constructor but with preallocation of the internal data
+ * according to the specified problem \a size.
+ * \sa CompleteOrthogonalDecomposition()
+ */
+ CompleteOrthogonalDecomposition(Index rows, Index cols)
+ : m_cpqr(rows, cols), m_zCoeffs((std::min)(rows, cols)), m_temp(cols) {}
+
+ /** \brief Constructs a complete orthogonal decomposition from a given
+ * matrix.
+ *
+ * This constructor computes the complete orthogonal decomposition of the
+ * matrix \a matrix by calling the method compute(). The default
+ * threshold for rank determination will be used. It is a short cut for:
+ *
+ * \code
+ * CompleteOrthogonalDecomposition<MatrixType> cod(matrix.rows(),
+ * matrix.cols());
+ * cod.setThreshold(Default);
+ * cod.compute(matrix);
+ * \endcode
+ *
+ * \sa compute()
+ */
+ template <typename InputType>
+ explicit CompleteOrthogonalDecomposition(const EigenBase<InputType>& matrix)
+ : m_cpqr(matrix.rows(), matrix.cols()),
+ m_zCoeffs((std::min)(matrix.rows(), matrix.cols())),
+ m_temp(matrix.cols()) {
+ compute(matrix.derived());
+ }
+
+ /** This method computes the minimum-norm solution X to a least squares
+ * problem \f[\mathrm{minimize} ||A X - B|| \f], where \b A is the matrix of
+ * which \c *this is the complete orthogonal decomposition.
+ *
+ * \param B the right-hand sides of the problem to solve.
+ *
+ * \returns a solution.
+ *
+ */
+ template <typename Rhs>
+ inline const Solve<CompleteOrthogonalDecomposition, Rhs> solve(
+ const MatrixBase<Rhs>& b) const {
+ eigen_assert(m_cpqr.m_isInitialized &&
+ "CompleteOrthogonalDecomposition is not initialized.");
+ return Solve<CompleteOrthogonalDecomposition, Rhs>(*this, b.derived());
+ }
+
+ HouseholderSequenceType householderQ(void) const;
+ HouseholderSequenceType matrixQ(void) const { return m_cpqr.householderQ(); }
+
+ /** Overwrites \b rhs with \f$ \mathbf{Z}^* * \mathbf{rhs} \f$.
+ */
+ template <typename Rhs>
+ void applyZAdjointOnTheLeftInPlace(Rhs& rhs) const;
+
+ /** \returns the matrix \b Z.
+ */
+ MatrixType matrixZ() const {
+ MatrixType Z = MatrixType::Identity(m_cpqr.cols(), m_cpqr.cols());
+ applyZAdjointOnTheLeftInPlace(Z);
+ return Z.adjoint();
+ }
+
+ /** \returns a reference to the matrix where the complete orthogonal
+ * decomposition is stored
+ */
+ const MatrixType& matrixQTZ() const { return m_cpqr.matrixQR(); }
+
+ /** \returns a reference to the matrix where the complete orthogonal
+ * decomposition is stored.
+ * \warning The strict lower part and \code cols() - rank() \endcode right
+ * columns of this matrix contains internal values.
+ * Only the upper triangular part should be referenced. To get it, use
+ * \code matrixT().template triangularView<Upper>() \endcode
+ * For rank-deficient matrices, use
+ * \code
+ * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
+ * \endcode
+ */
+ const MatrixType& matrixT() const { return m_cpqr.matrixQR(); }
+
+ template <typename InputType>
+ CompleteOrthogonalDecomposition& compute(const EigenBase<InputType>& matrix);
+
+ /** \returns a const reference to the column permutation matrix */
+ const PermutationType& colsPermutation() const {
+ return m_cpqr.colsPermutation();
+ }
+
+ /** \returns the absolute value of the determinant of the matrix of which
+ * *this is the complete orthogonal decomposition. It has only linear
+ * complexity (that is, O(n) where n is the dimension of the square matrix)
+ * as the complete orthogonal decomposition has already been computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \warning a determinant can be very big or small, so for matrices
+ * of large enough dimension, there is a risk of overflow/underflow.
+ * One way to work around that is to use logAbsDeterminant() instead.
+ *
+ * \sa logAbsDeterminant(), MatrixBase::determinant()
+ */
+ typename MatrixType::RealScalar absDeterminant() const;
+
+ /** \returns the natural log of the absolute value of the determinant of the
+ * matrix of which *this is the complete orthogonal decomposition. It has
+ * only linear complexity (that is, O(n) where n is the dimension of the
+ * square matrix) as the complete orthogonal decomposition has already been
+ * computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \note This method is useful to work around the risk of overflow/underflow
+ * that's inherent to determinant computation.
+ *
+ * \sa absDeterminant(), MatrixBase::determinant()
+ */
+ typename MatrixType::RealScalar logAbsDeterminant() const;
+
+ /** \returns the rank of the matrix of which *this is the complete orthogonal
+ * decomposition.
+ *
+ * \note This method has to determine which pivots should be considered
+ * nonzero. For that, it uses the threshold value that you can control by
+ * calling setThreshold(const RealScalar&).
+ */
+ inline Index rank() const { return m_cpqr.rank(); }
+
+ /** \returns the dimension of the kernel of the matrix of which *this is the
+ * complete orthogonal decomposition.
+ *
+ * \note This method has to determine which pivots should be considered
+ * nonzero. For that, it uses the threshold value that you can control by
+ * calling setThreshold(const RealScalar&).
+ */
+ inline Index dimensionOfKernel() const { return m_cpqr.dimensionOfKernel(); }
+
+ /** \returns true if the matrix of which *this is the decomposition represents
+ * an injective linear map, i.e. has trivial kernel; false otherwise.
+ *
+ * \note This method has to determine which pivots should be considered
+ * nonzero. For that, it uses the threshold value that you can control by
+ * calling setThreshold(const RealScalar&).
+ */
+ inline bool isInjective() const { return m_cpqr.isInjective(); }
+
+ /** \returns true if the matrix of which *this is the decomposition represents
+ * a surjective linear map; false otherwise.
+ *
+ * \note This method has to determine which pivots should be considered
+ * nonzero. For that, it uses the threshold value that you can control by
+ * calling setThreshold(const RealScalar&).
+ */
+ inline bool isSurjective() const { return m_cpqr.isSurjective(); }
+
+ /** \returns true if the matrix of which *this is the complete orthogonal
+ * decomposition is invertible.
+ *
+ * \note This method has to determine which pivots should be considered
+ * nonzero. For that, it uses the threshold value that you can control by
+ * calling setThreshold(const RealScalar&).
+ */
+ inline bool isInvertible() const { return m_cpqr.isInvertible(); }
+
+ /** \returns the inverse of the matrix of which *this is the complete
+ * orthogonal decomposition.
+ *
+ * \note If this matrix is not invertible, the returned matrix has undefined
+ * coefficients. Use isInvertible() to first determine whether this matrix is
+ * invertible.
+ */
+
+ // TODO(rmlarsen): Add method for pseudo-inverse.
+ // inline const
+ // internal::solve_retval<CompleteOrthogonalDecomposition, typename
+ // MatrixType::IdentityReturnType>
+ // inverse() const
+ // {
+ // eigen_assert(m_isInitialized && "CompleteOrthogonalDecomposition is not
+ // initialized.");
+ // return internal::solve_retval<CompleteOrthogonalDecomposition,typename
+ // MatrixType::IdentityReturnType>
+ // (*this, MatrixType::Identity(m_cpqr.rows(), m_cpqr.cols()));
+ // }
+
+ inline Index rows() const { return m_cpqr.rows(); }
+ inline Index cols() const { return m_cpqr.cols(); }
+
+ /** \returns a const reference to the vector of Householder coefficients used
+ * to represent the factor \c Q.
+ *
+ * For advanced uses only.
+ */
+ inline const HCoeffsType& hCoeffs() const { return m_cpqr.hCoeffs(); }
+
+ /** \returns a const reference to the vector of Householder coefficients
+ * used to represent the factor \c Z.
+ *
+ * For advanced uses only.
+ */
+ const HCoeffsType& zCoeffs() const { return m_zCoeffs; }
+
+ /** Allows to prescribe a threshold to be used by certain methods, such as
+ * rank(), who need to determine when pivots are to be considered nonzero.
+ * Most be called before calling compute().
+ *
+ * When it needs to get the threshold value, Eigen calls threshold(). By
+ * default, this uses a formula to automatically determine a reasonable
+ * threshold. Once you have called the present method
+ * setThreshold(const RealScalar&), your value is used instead.
+ *
+ * \param threshold The new value to use as the threshold.
+ *
+ * A pivot will be considered nonzero if its absolute value is strictly
+ * greater than
+ * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
+ * where maxpivot is the biggest pivot.
+ *
+ * If you want to come back to the default behavior, call
+ * setThreshold(Default_t)
+ */
+ CompleteOrthogonalDecomposition& setThreshold(const RealScalar& threshold) {
+ m_cpqr.setThreshold(threshold);
+ return *this;
+ }
+
+ /** Allows to come back to the default behavior, letting Eigen use its default
+ * formula for determining the threshold.
+ *
+ * You should pass the special object Eigen::Default as parameter here.
+ * \code qr.setThreshold(Eigen::Default); \endcode
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ CompleteOrthogonalDecomposition& setThreshold(Default_t) {
+ m_cpqr.setThreshold(Default);
+ return *this;
+ }
+
+ /** Returns the threshold that will be used by certain methods such as rank().
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ RealScalar threshold() const { return m_cpqr.threshold(); }
+
+ /** \returns the number of nonzero pivots in the complete orthogonal
+ * decomposition.
+ * Here nonzero is meant in the exact sense, not in a fuzzy sense.
+ * So that notion isn't really intrinsically interesting, but it is
+ * still useful when implementing algorithms.
+ *
+ * \sa rank()
+ */
+ inline Index nonzeroPivots() const { return m_cpqr.nonzeroPivots(); }
+
+ /** \returns the absolute value of the biggest pivot, i.e. the biggest
+ * diagonal coefficient of R.
+ */
+ inline RealScalar maxPivot() const { return m_cpqr.maxPivot(); }
+
+ /** \brief Reports whether the complete orthogonal decomposition was
+ * succesful.
+ *
+ * \note This function always returns \c Success. It is provided for
+ * compatibility
+ * with other factorization routines.
+ * \returns \c Success
+ */
+ ComputationInfo info() const {
+ eigen_assert(m_cpqr.m_isInitialized && "Decomposition is not initialized.");
+ return Success;
+ }
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+ template <typename RhsType, typename DstType>
+ EIGEN_DEVICE_FUNC void _solve_impl(const RhsType& rhs, DstType& dst) const;
+#endif
+
+ protected:
+ static void check_template_parameters() {
+ EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
+ }
+
+ ColPivHouseholderQR<MatrixType> m_cpqr;
+ HCoeffsType m_zCoeffs;
+ RowVectorType m_temp;
+};
+
+template <typename MatrixType>
+typename MatrixType::RealScalar
+CompleteOrthogonalDecomposition<MatrixType>::absDeterminant() const {
+ return m_cpqr.absDeterminant();
+}
+
+template <typename MatrixType>
+typename MatrixType::RealScalar
+CompleteOrthogonalDecomposition<MatrixType>::logAbsDeterminant() const {
+ return m_cpqr.logAbsDeterminant();
+}
+
+/** Performs the complete orthogonal decomposition of the given matrix \a
+ * matrix. The result of the factorization is stored into \c *this, and a
+ * reference to \c *this is returned.
+ *
+ * \sa class CompleteOrthogonalDecomposition,
+ * CompleteOrthogonalDecomposition(const MatrixType&)
+ */
+template <typename MatrixType>
+template <typename InputType>
+CompleteOrthogonalDecomposition<MatrixType>& CompleteOrthogonalDecomposition<
+ MatrixType>::compute(const EigenBase<InputType>& matrix) {
+ check_template_parameters();
+
+ // the column permutation is stored as int indices, so just to be sure:
+ eigen_assert(matrix.cols() <= NumTraits<int>::highest());
+
+ // Compute the column pivoted QR factorization A P = Q R.
+ m_cpqr.compute(matrix);
+
+ const Index rank = m_cpqr.rank();
+ const Index cols = matrix.cols();
+ if (rank < cols) {
+ // We have reduced the (permuted) matrix to the form
+ // [R11 R12]
+ // [ 0 R22]
+ // where R11 is r-by-r (r = rank) upper triangular, R12 is
+ // r-by-(n-r), and R22 is empty or the norm of R22 is negligible.
+ // We now compute the complete orthogonal decomposition by applying
+ // Householder transformations from the right to the upper trapezoidal
+ // matrix X = [R11 R12] to zero out R12 and obtain the factorization
+ // [R11 R12] = [T11 0] * Z, where T11 is r-by-r upper triangular and
+ // Z = Z(0) * Z(1) ... Z(r-1) is an n-by-n orthogonal matrix.
+ // We store the data representing Z in R12 and m_zCoeffs.
+ for (Index k = rank - 1; k >= 0; --k) {
+ if (k != rank - 1) {
+ // Given the API for Householder reflectors, it is more convenient if
+ // we swap the leading parts of columns k and r-1 (zero-based) to form
+ // the matrix X_k = [X(0:k, k), X(0:k, r:n)]
+ m_cpqr.m_qr.col(k).head(k + 1).swap(
+ m_cpqr.m_qr.col(rank - 1).head(k + 1));
+ }
+ // Construct Householder reflector Z(k) to zero out the last row of X_k,
+ // i.e. choose Z(k) such that
+ // [X(k, k), X(k, r:n)] * Z(k) = [beta, 0, .., 0].
+ RealScalar beta;
+ m_cpqr.m_qr.row(k)
+ .tail(cols - rank + 1)
+ .makeHouseholderInPlace(m_zCoeffs(k), beta);
+ m_cpqr.m_qr(k, rank - 1) = beta;
+ if (k > 0) {
+ // Apply Z(k) to the first k rows of X_k
+ m_cpqr.m_qr.topRightCorner(k, cols - rank + 1)
+ .applyHouseholderOnTheRight(
+ m_cpqr.m_qr.row(k).tail(cols - rank).transpose(), m_zCoeffs(k),
+ &m_temp(0));
+ }
+ if (k != rank - 1) {
+ // Swap X(0:k,k) back to its proper location.
+ m_cpqr.m_qr.col(k).head(k + 1).swap(
+ m_cpqr.m_qr.col(rank - 1).head(k + 1));
+ }
+ }
+ }
+ return *this;
+}
+
+template <typename MatrixType>
+template <typename Rhs>
+void CompleteOrthogonalDecomposition<MatrixType>::applyZAdjointOnTheLeftInPlace(
+ Rhs& rhs) const {
+ const Index cols = this->cols();
+ const Index nrhs = rhs.cols();
+ const Index rank = this->rank();
+ Matrix<typename MatrixType::Scalar, Dynamic, 1> temp((std::max)(cols, nrhs));
+ for (Index k = 0; k < rank; ++k) {
+ if (k != rank - 1) {
+ rhs.row(k).swap(rhs.row(rank - 1));
+ }
+ rhs.middleRows(rank - 1, cols - rank + 1)
+ .applyHouseholderOnTheLeft(
+ matrixQTZ().row(k).tail(cols - rank).adjoint(), zCoeffs()(k),
+ &temp(0));
+ if (k != rank - 1) {
+ rhs.row(k).swap(rhs.row(rank - 1));
+ }
+ }
+}
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template <typename _MatrixType>
+template <typename RhsType, typename DstType>
+void CompleteOrthogonalDecomposition<_MatrixType>::_solve_impl(
+ const RhsType& rhs, DstType& dst) const {
+ eigen_assert(rhs().rows() == this->rows());
+
+ const Index rank = this->rank();
+ if (rank == 0) {
+ dst.setZero();
+ return;
+ }
+
+ // Compute c = Q^* * rhs
+ // Note that the matrix Q = H_0^* H_1^*... so its inverse is
+ // Q^* = (H_0 H_1 ...)^T
+ typename RhsType::PlainObject c(rhs());
+ c.applyOnTheLeft(
+ householderSequence(matrixQTZ(), hCoeffs()).setLength(rank).transpose());
+
+ // Solve T z = c(1:rank, :)
+ dst.topRows(rank) = matrixT()
+ .topLeftCorner(rank, rank)
+ .template triangularView<Upper>()
+ .solve(c.topRows(rank));
+
+ const Index cols = this->cols();
+ if (rank < cols) {
+ // Compute y = Z^* * [ z ]
+ // [ 0 ]
+ dst.bottomRows(cols - rank).setZero();
+ applyZAdjointOnTheLeftInPlace(dst);
+ }
+
+ // Undo permutation to get x = P^{-1} * y.
+ dst = colsPermutation() * dst;
+}
+#endif
+
+/** \returns the matrix Q as a sequence of householder transformations */
+template <typename MatrixType>
+typename CompleteOrthogonalDecomposition<MatrixType>::HouseholderSequenceType
+CompleteOrthogonalDecomposition<MatrixType>::householderQ() const {
+ return m_cpqr.householderQ();
+}
+
+#ifndef __CUDACC__
+/** \return the complete orthogonal decomposition of \c *this.
+ *
+ * \sa class CompleteOrthogonalDecomposition
+ */
+template <typename Derived>
+const CompleteOrthogonalDecomposition<typename MatrixBase<Derived>::PlainObject>
+MatrixBase<Derived>::completeOrthogonalDecomposition() const {
+ return CompleteOrthogonalDecomposition<PlainObject>(eval());
+}
+#endif // __CUDACC__
+
+} // end namespace Eigen
+
+#endif // EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
diff --git a/test/qr_colpivoting.cpp b/test/qr_colpivoting.cpp
index 9c989823e..648250af6 100644
--- a/test/qr_colpivoting.cpp
+++ b/test/qr_colpivoting.cpp
@@ -10,6 +10,83 @@
#include "main.h"
#include <Eigen/QR>
+#include <Eigen/SVD>
+
+template <typename MatrixType>
+void cod() {
+ typedef typename MatrixType::Index Index;
+
+ Index rows = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
+ Index cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
+ Index cols2 = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
+ Index rank = internal::random<Index>(1, (std::min)(rows, cols) - 1);
+
+ typedef typename MatrixType::Scalar Scalar;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime,
+ MatrixType::RowsAtCompileTime>
+ MatrixQType;
+ MatrixType matrix;
+ createRandomPIMatrixOfRank(rank, rows, cols, matrix);
+ CompleteOrthogonalDecomposition<MatrixType> cod(matrix);
+ VERIFY(rank == cod.rank());
+ VERIFY(cols - cod.rank() == cod.dimensionOfKernel());
+ VERIFY(!cod.isInjective());
+ VERIFY(!cod.isInvertible());
+ VERIFY(!cod.isSurjective());
+
+ MatrixQType q = cod.householderQ();
+ VERIFY_IS_UNITARY(q);
+
+ MatrixType z = cod.matrixZ();
+ VERIFY_IS_UNITARY(z);
+
+ MatrixType t;
+ t.setZero(rows, cols);
+ t.topLeftCorner(rank, rank) =
+ cod.matrixT().topLeftCorner(rank, rank).template triangularView<Upper>();
+
+ MatrixType c = q * t * z * cod.colsPermutation().inverse();
+ VERIFY_IS_APPROX(matrix, c);
+
+ MatrixType exact_solution = MatrixType::Random(cols, cols2);
+ MatrixType rhs = matrix * exact_solution;
+ MatrixType cod_solution = cod.solve(rhs);
+ VERIFY_IS_APPROX(rhs, matrix * cod_solution);
+
+ // Verify that we get the same minimum-norm solution as the SVD.
+ JacobiSVD<MatrixType> svd(matrix, ComputeThinU | ComputeThinV);
+ MatrixType svd_solution = svd.solve(rhs);
+ VERIFY_IS_APPROX(cod_solution, svd_solution);
+}
+
+template <typename MatrixType, int Cols2>
+void cod_fixedsize() {
+ enum {
+ Rows = MatrixType::RowsAtCompileTime,
+ Cols = MatrixType::ColsAtCompileTime
+ };
+ typedef typename MatrixType::Scalar Scalar;
+ int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols)) - 1);
+ Matrix<Scalar, Rows, Cols> matrix;
+ createRandomPIMatrixOfRank(rank, Rows, Cols, matrix);
+ CompleteOrthogonalDecomposition<Matrix<Scalar, Rows, Cols> > cod(matrix);
+ VERIFY(rank == cod.rank());
+ VERIFY(Cols - cod.rank() == cod.dimensionOfKernel());
+ VERIFY(cod.isInjective() == (rank == Rows));
+ VERIFY(cod.isSurjective() == (rank == Cols));
+ VERIFY(cod.isInvertible() == (cod.isInjective() && cod.isSurjective()));
+
+ Matrix<Scalar, Cols, Cols2> exact_solution;
+ exact_solution.setRandom(Cols, Cols2);
+ Matrix<Scalar, Rows, Cols2> rhs = matrix * exact_solution;
+ Matrix<Scalar, Cols, Cols2> cod_solution = cod.solve(rhs);
+ VERIFY_IS_APPROX(rhs, matrix * cod_solution);
+
+ // Verify that we get the same minimum-norm solution as the SVD.
+ JacobiSVD<MatrixType> svd(matrix, ComputeFullU | ComputeFullV);
+ Matrix<Scalar, Cols, Cols2> svd_solution = svd.solve(rhs);
+ VERIFY_IS_APPROX(cod_solution, svd_solution);
+}
template<typename MatrixType> void qr()
{