aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Eugene Zhulenev <ezhulenev@google.com>2018-07-23 15:50:55 -0700
committerGravatar Eugene Zhulenev <ezhulenev@google.com>2018-07-23 15:50:55 -0700
commitd55efa6f0f9ab9ec758c6b40204be476c01b7528 (patch)
treea779840d7eb3990ff7da5681dcc3858a48d6fdb6
parent34a75c3c5cec4e2bfe5c68164f8c3372f6ae5ecb (diff)
TensorBlockIO
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h546
-rw-r--r--unsupported/test/cxx11_tensor_block_access.cpp791
2 files changed, 1303 insertions, 34 deletions
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h b/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h
index 59535cd91..8ffc9d093 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h
@@ -14,6 +14,32 @@
namespace Eigen {
namespace internal {
+namespace {
+
+// Helper template to choose between ColMajor and RowMajor values.
+template <int Layout>
+struct cond;
+
+template <>
+struct cond<ColMajor> {
+ template <typename T>
+ EIGEN_STRONG_INLINE const T& operator()(const T& col,
+ const T& /*row*/) const {
+ return col;
+ }
+};
+
+template <>
+struct cond<RowMajor> {
+ template <typename T>
+ EIGEN_STRONG_INLINE const T& operator()(const T& /*col*/,
+ const T& row) const {
+ return row;
+ }
+};
+
+} // namespace
+
/**
* \class TensorBlockShapeType
* \ingroup CXX11_Tensor_Module
@@ -82,6 +108,512 @@ class TensorBlock {
Scalar* m_data; // Not owned.
};
+template <typename Scalar, typename Index, bool Vectorizable>
+struct TensorBlockCopyOp {
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
+ const Index num_coeff_to_copy, const Index dst_index,
+ const Index dst_stride, Scalar* EIGEN_RESTRICT dst_data,
+ const Index src_index, const Index src_stride,
+ const Scalar* EIGEN_RESTRICT src_data) {
+ for (Index i = 0; i < num_coeff_to_copy; ++i) {
+ dst_data[dst_index + i * dst_stride] =
+ src_data[src_index + i * src_stride];
+ }
+ }
+};
+
+// NOTE: Benchmarks run on an implementation of this that broke each of the
+// loops in these conditionals into it's own template specialization (to
+// avoid conditionals in the caller's loop) did not show an improvement.
+template <typename Scalar, typename Index>
+struct TensorBlockCopyOp<Scalar, Index, true> {
+ typedef typename packet_traits<Scalar>::type Packet;
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
+ const Index num_coeff_to_copy, const Index dst_index,
+ const Index dst_stride, Scalar* EIGEN_RESTRICT dst_data,
+ const Index src_index, const Index src_stride,
+ const Scalar* EIGEN_RESTRICT src_data) {
+ if (src_stride == 1) {
+ const Index packet_size = internal::unpacket_traits<Packet>::size;
+ const Index vectorized_size =
+ (num_coeff_to_copy / packet_size) * packet_size;
+ if (dst_stride == 1) {
+ // LINEAR
+ for (Index i = 0; i < vectorized_size; i += packet_size) {
+ Packet p = internal::ploadu<Packet>(src_data + src_index + i);
+ internal::pstoreu<Scalar, Packet>(dst_data + dst_index + i, p);
+ }
+ for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) {
+ dst_data[dst_index + i] = src_data[src_index + i];
+ }
+ } else {
+ // SCATTER
+ for (Index i = 0; i < vectorized_size; i += packet_size) {
+ Packet p = internal::ploadu<Packet>(src_data + src_index + i);
+ internal::pscatter<Scalar, Packet>(
+ dst_data + dst_index + i * dst_stride, p, dst_stride);
+ }
+ for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) {
+ dst_data[dst_index + i * dst_stride] = src_data[src_index + i];
+ }
+ }
+ } else if (src_stride == 0) {
+ const Index packet_size = internal::unpacket_traits<Packet>::size;
+ const Index vectorized_size =
+ (num_coeff_to_copy / packet_size) * packet_size;
+ if (dst_stride == 1) {
+ // LINEAR
+ for (Index i = 0; i < vectorized_size; i += packet_size) {
+ Packet p = internal::pload1<Packet>(src_data + src_index);
+ internal::pstoreu<Scalar, Packet>(dst_data + dst_index + i, p);
+ }
+ for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) {
+ dst_data[dst_index + i] = src_data[src_index];
+ }
+ } else {
+ // SCATTER
+ for (Index i = 0; i < vectorized_size; i += packet_size) {
+ Packet p = internal::pload1<Packet>(src_data + src_index);
+ internal::pscatter<Scalar, Packet>(
+ dst_data + dst_index + i * dst_stride, p, dst_stride);
+ }
+ for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) {
+ dst_data[dst_index + i * dst_stride] = src_data[src_index];
+ }
+ }
+ } else {
+ if (dst_stride == 1) {
+ // GATHER
+ const Index packet_size = internal::unpacket_traits<Packet>::size;
+ const Index vectorized_size =
+ (num_coeff_to_copy / packet_size) * packet_size;
+ for (Index i = 0; i < vectorized_size; i += packet_size) {
+ Packet p = internal::pgather<Scalar, Packet>(
+ src_data + src_index + i * src_stride, src_stride);
+ internal::pstoreu<Scalar, Packet>(dst_data + dst_index + i, p);
+ }
+ for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) {
+ dst_data[dst_index + i] = src_data[src_index + i * src_stride];
+ }
+ } else {
+ // RANDOM
+ for (Index i = 0; i < num_coeff_to_copy; ++i) {
+ dst_data[dst_index + i * dst_stride] =
+ src_data[src_index + i * src_stride];
+ }
+ }
+ }
+ }
+};
+
+/**
+ * \class TensorBlockIO
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor block IO class.
+ *
+ * This class is responsible for copying data between a tensor and a tensor
+ * block.
+ */
+template <typename Scalar, typename Index, int NumDims, int Layout,
+ bool Vectorizable, bool BlockRead>
+class TensorBlockIO {
+ public:
+ typedef typename internal::TensorBlock<Scalar, Index, NumDims, Layout>
+ TensorBlock;
+ typedef typename internal::TensorBlockCopyOp<Scalar, Index, Vectorizable>
+ TensorBlockCopyOp;
+
+ protected:
+ struct BlockIteratorState {
+ Index input_stride;
+ Index output_stride;
+ Index input_span;
+ Index output_span;
+ Index size;
+ Index count;
+ };
+
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Copy(
+ const TensorBlock& block, Index first_coeff_index,
+ const array<Index, NumDims>& tensor_to_block_dim_map,
+ const array<Index, NumDims>& tensor_strides, const Scalar* src_data,
+ Scalar* dst_data) {
+ // Find the innermost tensor dimension whose size is not 1. This is the
+ // effective inner dim. If all dimensions are of size 1, then fallback to
+ // using the actual innermost dim to avoid out-of-bound access.
+ Index num_size_one_inner_dims = 0;
+ for (int i = 0; i < NumDims; ++i) {
+ const int dim = cond<Layout>()(i, NumDims - i - 1);
+ if (block.block_sizes()[tensor_to_block_dim_map[dim]] != 1) {
+ num_size_one_inner_dims = i;
+ break;
+ }
+ }
+ // Calculate strides and dimensions.
+ const Index tensor_stride1_dim = cond<Layout>()(
+ num_size_one_inner_dims, NumDims - num_size_one_inner_dims - 1);
+ const Index block_dim_for_tensor_stride1_dim =
+ NumDims == 0 ? 1 : tensor_to_block_dim_map[tensor_stride1_dim];
+ size_t block_inner_dim_size =
+ NumDims == 0 ? 1
+ : block.block_sizes()[block_dim_for_tensor_stride1_dim];
+ for (int i = num_size_one_inner_dims + 1; i < NumDims; ++i) {
+ const int dim = cond<Layout>()(i, NumDims - i - 1);
+ const Index block_stride =
+ block.block_strides()[tensor_to_block_dim_map[dim]];
+ if (block_inner_dim_size == block_stride &&
+ block_stride == tensor_strides[dim]) {
+ block_inner_dim_size *=
+ block.block_sizes()[tensor_to_block_dim_map[dim]];
+ ++num_size_one_inner_dims;
+ } else {
+ break;
+ }
+ }
+
+ Index inputIndex;
+ Index outputIndex;
+ Index input_stride;
+ Index output_stride;
+
+ // Setup strides to read/write along the tensor's stride1 dimension.
+ if (BlockRead) {
+ inputIndex = first_coeff_index;
+ outputIndex = 0;
+ input_stride = NumDims == 0 ? 1 : tensor_strides[tensor_stride1_dim];
+ output_stride =
+ NumDims == 0
+ ? 1
+ : block.block_strides()[block_dim_for_tensor_stride1_dim];
+ } else {
+ inputIndex = 0;
+ outputIndex = first_coeff_index;
+ input_stride =
+ NumDims == 0
+ ? 1
+ : block.block_strides()[block_dim_for_tensor_stride1_dim];
+ output_stride = NumDims == 0 ? 1 : tensor_strides[tensor_stride1_dim];
+ }
+
+ const int at_least_1_dim = NumDims <= 1 ? 1 : NumDims - 1;
+ array<BlockIteratorState, at_least_1_dim> block_iter_state;
+
+ // Initialize block iterator state. Squeeze away any dimension of size 1.
+ int num_squeezed_dims = 0;
+ for (int i = num_size_one_inner_dims; i < NumDims - 1; ++i) {
+ const int dim = cond<Layout>()(i + 1, NumDims - i - 2);
+ const Index size = block.block_sizes()[tensor_to_block_dim_map[dim]];
+ if (size == 1) {
+ continue;
+ }
+ block_iter_state[num_squeezed_dims].size = size;
+ if (BlockRead) {
+ block_iter_state[num_squeezed_dims].input_stride = tensor_strides[dim];
+ block_iter_state[num_squeezed_dims].output_stride =
+ block.block_strides()[tensor_to_block_dim_map[dim]];
+ } else {
+ block_iter_state[num_squeezed_dims].input_stride =
+ block.block_strides()[tensor_to_block_dim_map[dim]];
+ block_iter_state[num_squeezed_dims].output_stride = tensor_strides[dim];
+ }
+ block_iter_state[num_squeezed_dims].input_span =
+ block_iter_state[num_squeezed_dims].input_stride *
+ (block_iter_state[num_squeezed_dims].size - 1);
+ block_iter_state[num_squeezed_dims].output_span =
+ block_iter_state[num_squeezed_dims].output_stride *
+ (block_iter_state[num_squeezed_dims].size - 1);
+ block_iter_state[num_squeezed_dims].count = 0;
+ ++num_squeezed_dims;
+ }
+
+ // Iterate copying data from src to dst.
+ const Index block_total_size =
+ NumDims == 0 ? 1 : block.block_sizes().TotalSize();
+ for (Index i = 0; i < block_total_size; i += block_inner_dim_size) {
+ TensorBlockCopyOp::Run(block_inner_dim_size, outputIndex, output_stride,
+ dst_data, inputIndex, input_stride, src_data);
+ // Update index.
+ for (int j = 0; j < num_squeezed_dims; ++j) {
+ if (++block_iter_state[j].count < block_iter_state[j].size) {
+ inputIndex += block_iter_state[j].input_stride;
+ outputIndex += block_iter_state[j].output_stride;
+ break;
+ }
+ block_iter_state[j].count = 0;
+ inputIndex -= block_iter_state[j].input_span;
+ outputIndex -= block_iter_state[j].output_span;
+ }
+ }
+ }
+};
+
+/**
+ * \class TensorBlockReader
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor block reader class.
+ *
+ * This class is responsible for reading a tensor block.
+ *
+ */
+template <typename Scalar, typename Index, int NumDims, int Layout,
+ bool Vectorizable>
+class TensorBlockReader
+ : public TensorBlockIO<Scalar, Index, NumDims, Layout, Vectorizable, true> {
+ public:
+ typedef typename internal::TensorBlock<Scalar, Index, NumDims, Layout>
+ TensorBlock;
+ typedef TensorBlockIO<Scalar, Index, NumDims, Layout, Vectorizable, true>
+ Base;
+
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
+ TensorBlock* block, const Scalar* src_data) {
+ array<Index, NumDims> tensor_to_block_dim_map;
+ for (int i = 0; i < NumDims; ++i) {
+ tensor_to_block_dim_map[i] = i;
+ }
+ Base::Copy(*block, block->first_coeff_index(), tensor_to_block_dim_map,
+ block->tensor_strides(), src_data, block->data());
+ }
+
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
+ TensorBlock* block, Index first_coeff_index,
+ const array<Index, NumDims>& tensor_to_block_dim_map,
+ const array<Index, NumDims>& tensor_strides, const Scalar* src_data) {
+ Base::Copy(*block, first_coeff_index, tensor_to_block_dim_map,
+ tensor_strides, src_data, block->data());
+ }
+};
+
+/**
+ * \class TensorBlockWriter
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor block writer class.
+ *
+ * This class is responsible for writing a tensor block.
+ *
+ */
+template <typename Scalar, typename Index, int NumDims, int Layout,
+ bool Vectorizable>
+class TensorBlockWriter : public TensorBlockIO<Scalar, Index, NumDims, Layout,
+ Vectorizable, false> {
+ public:
+ typedef typename internal::TensorBlock<Scalar, Index, NumDims, Layout>
+ TensorBlock;
+ typedef TensorBlockIO<Scalar, Index, NumDims, Layout, Vectorizable, false>
+ Base;
+
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
+ const TensorBlock& block, Scalar* dst_data) {
+ array<Index, NumDims> tensor_to_block_dim_map;
+ for (int i = 0; i < NumDims; ++i) {
+ tensor_to_block_dim_map[i] = i;
+ }
+ Base::Copy(block, block.first_coeff_index(), tensor_to_block_dim_map,
+ block.tensor_strides(), block.data(), dst_data);
+ }
+
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
+ const TensorBlock& block, Index first_coeff_index,
+ const array<Index, NumDims>& tensor_to_block_dim_map,
+ const array<Index, NumDims>& tensor_strides, Scalar* dst_data) {
+ Base::Copy(block, first_coeff_index, tensor_to_block_dim_map,
+ tensor_strides, block.data(), dst_data);
+ }
+};
+
+/**
+ * \class TensorBlockCwiseBinaryOp
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Carries out a cwise binary op on a number of coefficients.
+ *
+ * This class reads strided inputs from left and right operands, and writes the
+ * result of the cwise binary op to the strided output array.
+ *
+ */
+template <bool Vectorizable>
+struct TensorBlockCwiseBinaryOp {
+ template <typename Index, typename BinaryFunctor, typename OutputScalar,
+ typename LeftScalar, typename RightScalar>
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
+ const BinaryFunctor& functor, const Index num_coeff,
+ const Index output_index, const Index output_stride,
+ OutputScalar* output_data, const Index left_index,
+ const Index left_stride, const LeftScalar* left_data,
+ const Index right_index, const Index right_stride,
+ const RightScalar* right_data) {
+ for (Index i = 0; i < num_coeff; ++i) {
+ output_data[output_index + i * output_stride] =
+ functor(left_data[left_index + i * left_stride],
+ right_data[right_index + i * right_stride]);
+ }
+ }
+};
+
+template <>
+struct TensorBlockCwiseBinaryOp<true> {
+ template <typename Index, typename BinaryFunctor, typename OutputScalar,
+ typename LeftScalar, typename RightScalar>
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
+ const BinaryFunctor& functor, const Index num_coeff,
+ const Index output_index, const Index output_stride,
+ OutputScalar* output_data, const Index left_index,
+ const Index left_stride, const LeftScalar* left_data,
+ const Index right_index, const Index right_stride,
+ const RightScalar* right_data) {
+ EIGEN_STATIC_ASSERT(functor_traits<BinaryFunctor>::PacketAccess,
+ YOU_MADE_A_PROGRAMMING_MISTAKE);
+ typedef typename packet_traits<OutputScalar>::type OutputPacket;
+ typedef typename packet_traits<LeftScalar>::type LeftPacket;
+ typedef typename packet_traits<RightScalar>::type RightPacket;
+ const Index packet_size = unpacket_traits<OutputPacket>::size;
+ EIGEN_STATIC_ASSERT(unpacket_traits<LeftPacket>::size == packet_size,
+ YOU_MADE_A_PROGRAMMING_MISTAKE);
+ EIGEN_STATIC_ASSERT(unpacket_traits<RightPacket>::size == packet_size,
+ YOU_MADE_A_PROGRAMMING_MISTAKE);
+ const Index vectorized_size = (num_coeff / packet_size) * packet_size;
+ if (output_stride != 1 || left_stride != 1 || right_stride != 1) {
+ TensorBlockCwiseBinaryOp<false>::Run(
+ functor, num_coeff, output_index, output_stride, output_data,
+ left_index, left_stride, left_data, right_index, right_stride,
+ right_data);
+ return;
+ }
+ // Vectorization for the most common case.
+ for (Index i = 0; i < vectorized_size; i += packet_size) {
+ LeftPacket l = internal::ploadu<LeftPacket>(left_data + left_index + i);
+ RightPacket r =
+ internal::ploadu<RightPacket>(right_data + right_index + i);
+ OutputPacket p = functor.packetOp(l, r);
+ internal::pstoreu<OutputScalar, OutputPacket>(
+ output_data + output_index + i, p);
+ }
+ for (Index i = vectorized_size; i < num_coeff; ++i) {
+ output_data[output_index + i] =
+ functor(left_data[left_index + i], right_data[right_index + i]);
+ }
+ }
+};
+
+/**
+ * \class TensorBlockCwiseBinaryIO
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor block IO class for carrying out cwise binary ops.
+ *
+ * This class carries out the binary op on given blocks.
+ *
+ */
+template <typename BinaryFunctor, typename Index, typename OutputScalar,
+ int NumDims, int Layout>
+struct TensorBlockCwiseBinaryIO {
+ typedef typename internal::TensorBlock<OutputScalar, Index, NumDims,
+ Layout>::Dimensions Dimensions;
+ typedef internal::TensorBlockCwiseBinaryOp<
+ functor_traits<BinaryFunctor>::PacketAccess>
+ TensorBlockCwiseBinaryOp;
+
+ struct BlockIteratorState {
+ Index output_stride, output_span;
+ Index left_stride, left_span;
+ Index right_stride, right_span;
+ Index size, count;
+ };
+
+ template <typename LeftScalar, typename RightScalar>
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
+ const BinaryFunctor& functor, const Dimensions& block_sizes,
+ const Dimensions& block_strides, OutputScalar* output_data,
+ const array<Index, NumDims>& left_strides, const LeftScalar* left_data,
+ const array<Index, NumDims>& right_strides,
+ const RightScalar* right_data) {
+ // Find the innermost dimension whose size is not 1. This is the effective
+ // inner dim. If all dimensions are of size 1, fallback to using the actual
+ // innermost dim to avoid out-of-bound access.
+ int num_size_one_inner_dims = 0;
+ for (int i = 0; i < NumDims; ++i) {
+ const int dim = cond<Layout>()(i, NumDims - i - 1);
+ if (block_sizes[dim] != 1) {
+ num_size_one_inner_dims = i;
+ break;
+ }
+ }
+ // Calculate strides and dimensions.
+ const int inner_dim =
+ NumDims == 0 ? 1
+ : cond<Layout>()(num_size_one_inner_dims,
+ NumDims - num_size_one_inner_dims - 1);
+ Index inner_dim_size = NumDims == 0 ? 1 : block_sizes[inner_dim];
+ for (int i = num_size_one_inner_dims + 1; i < NumDims; ++i) {
+ const int dim = cond<Layout>()(i, NumDims - i - 1);
+ // Merge multiple inner dims into one for larger inner dim size (i.e.
+ // fewer calls to TensorBlockCwiseBinaryOp::Run()).
+ if (inner_dim_size == block_strides[dim] &&
+ block_strides[dim] == left_strides[dim] &&
+ block_strides[dim] == right_strides[dim]) {
+ inner_dim_size *= block_sizes[dim];
+ ++num_size_one_inner_dims;
+ } else {
+ break;
+ }
+ }
+
+ Index output_index = 0, left_index = 0, right_index = 0;
+ const Index output_stride = NumDims == 0 ? 1 : block_strides[inner_dim];
+ const Index left_stride = NumDims == 0 ? 1 : left_strides[inner_dim];
+ const Index right_stride = NumDims == 0 ? 1 : right_strides[inner_dim];
+
+ const int at_least_1_dim = NumDims <= 1 ? 1 : NumDims - 1;
+ array<BlockIteratorState, at_least_1_dim> block_iter_state;
+
+ // Initialize block iterator state. Squeeze away any dimension of size 1.
+ int num_squeezed_dims = 0;
+ for (int i = num_size_one_inner_dims; i < NumDims - 1; ++i) {
+ const int dim = cond<Layout>()(i + 1, NumDims - i - 2);
+ const Index size = block_sizes[dim];
+ if (size == 1) {
+ continue;
+ }
+ auto& state = block_iter_state[num_squeezed_dims];
+ state.output_stride = block_strides[dim];
+ state.left_stride = left_strides[dim];
+ state.right_stride = right_strides[dim];
+ state.size = size;
+ state.output_span = state.output_stride * (size - 1);
+ state.left_span = state.left_stride * (size - 1);
+ state.right_span = state.right_stride * (size - 1);
+ state.count = 0;
+ ++num_squeezed_dims;
+ }
+
+ // Compute cwise binary op.
+ const Index block_total_size = NumDims == 0 ? 1 : block_sizes.TotalSize();
+ for (Index i = 0; i < block_total_size; i += inner_dim_size) {
+ TensorBlockCwiseBinaryOp::Run(functor, inner_dim_size, output_index,
+ output_stride, output_data, left_index,
+ left_stride, left_data, right_index,
+ right_stride, right_data);
+ // Update index.
+ for (int j = 0; j < num_squeezed_dims; ++j) {
+ auto& state = block_iter_state[j];
+ if (++state.count < state.size) {
+ output_index += state.output_stride;
+ left_index += state.left_stride;
+ right_index += state.right_stride;
+ break;
+ }
+ state.count = 0;
+ output_index -= state.output_span;
+ left_index -= state.left_span;
+ right_index -= state.right_span;
+ }
+ }
+ }
+};
+
/**
* \class TensorBlockMapper
* \ingroup CXX11_Tensor_Module
@@ -90,7 +622,7 @@ class TensorBlock {
*
* This class is responsible for iterating over the blocks of a tensor.
*/
-template <typename Scalar, typename Index, std::size_t NumDims, int Layout>
+template <typename Scalar, typename Index, int NumDims, int Layout>
class TensorBlockMapper {
public:
typedef typename internal::TensorBlock<Scalar, Index, NumDims, Layout>
@@ -190,10 +722,6 @@ class TensorBlockMapper {
}
private:
- static int InnerDimIndex(Index i) {
- return Layout == static_cast<int>(ColMajor) ? i : NumDims - i - 1;
- }
-
static Dimensions BlockDimensions(const Dimensions& tensor_dims,
const TensorBlockShapeType block_shape,
size_t min_target_size) {
@@ -228,7 +756,7 @@ class TensorBlockMapper {
// Add any un-allocated coefficients to inner dimension(s).
Index total_size = block_dim_sizes.TotalSize();
for (int i = 0; i < NumDims; ++i) {
- const int dim = InnerDimIndex(i);
+ const int dim = cond<Layout>()(i, NumDims - i - 1);
if (block_dim_sizes[dim] < tensor_dims[dim]) {
const Index total_size_other_dims =
total_size / block_dim_sizes[dim];
@@ -245,7 +773,7 @@ class TensorBlockMapper {
} else if (block_shape == TensorBlockShapeType::kSkewedInnerDims) {
Index coeff_to_allocate = min_target_size;
for (int i = 0; i < NumDims; ++i) {
- const int dim = InnerDimIndex(i);
+ const int dim = cond<Layout>()(i, NumDims - i - 1);
block_dim_sizes[dim] =
numext::mini(coeff_to_allocate, tensor_dims[dim]);
coeff_to_allocate =
@@ -284,7 +812,7 @@ class TensorBlockMapper {
* processed together.
*
*/
-template <typename Scalar, typename Index, std::size_t NumDims, int Layout>
+template <typename Scalar, typename Index, int NumDims, int Layout>
class TensorSliceBlockMapper {
public:
typedef typename internal::TensorBlock<Scalar, Index, NumDims, Layout>
@@ -360,7 +888,7 @@ class TensorSliceBlockMapper {
prev_dim = curr_dim;
}
} else {
- for (int i = 0; i < static_cast<int>(NumDims) - 1; ++i) {
+ for (int i = 0; i < NumDims - 1; ++i) {
const Index idx = block_index / m_block_strides[i];
coords[i] = m_tensor_slice_offsets[i] + idx * m_block_dim_sizes[i];
sizes[i] = numext::mini(
diff --git a/unsupported/test/cxx11_tensor_block_access.cpp b/unsupported/test/cxx11_tensor_block_access.cpp
index 66e61aef1..15f2392a3 100644
--- a/unsupported/test/cxx11_tensor_block_access.cpp
+++ b/unsupported/test/cxx11_tensor_block_access.cpp
@@ -19,11 +19,33 @@ using Eigen::Index;
using Eigen::RowMajor;
using Eigen::ColMajor;
+using internal::TensorBlockShapeType;
+
template<typename T>
static const T& choose(int layout, const T& col, const T& row) {
return layout == ColMajor ? col : row;
}
+static const TensorBlockShapeType RandomShape() {
+ return internal::random<bool>()
+ ? internal::TensorBlockShapeType::kUniformAllDims
+ : internal::TensorBlockShapeType::kSkewedInnerDims;
+}
+
+template <int NumDims>
+static std::size_t RandomTargetSize(const DSizes<Index, NumDims>& dims) {
+ return internal::random<int>(1, dims.TotalSize());
+}
+
+template <typename T>
+static T* GenerateRandomData(const Index& size) {
+ T* data = new T[size];
+ for (int i = 0; i < size; ++i) {
+ data[i] = internal::random<T>();
+ }
+ return data;
+}
+
template <int Layout>
static void test_block_mapper_sanity()
{
@@ -75,9 +97,7 @@ static void test_block_mapper_sanity()
template <typename T, int Layout, int NumDims>
static void UpdateCoeffSet(
const internal::TensorBlock<T, Index, 4, Layout>& block,
- Index first_coeff_index,
- int dim_index,
- std::set<Index>* visited_coeffs) {
+ Index first_coeff_index, int dim_index, std::set<Index>* visited_coeffs) {
const DSizes<Index, NumDims> block_sizes = block.block_sizes();
const DSizes<Index, NumDims> tensor_strides = block.tensor_strides();
@@ -103,18 +123,11 @@ static void test_block_mapper_maps_every_element()
DSizes<Index, 4> dims(5, 7, 11, 17);
- auto total_coeffs = static_cast<int>(dims.TotalSize());
-
// Keep track of elements indices available via block access.
std::set<Index> coeff_set;
// Try different combinations of block types and sizes.
- auto block_shape_type =
- internal::random<bool>()
- ? internal::TensorBlockShapeType::kUniformAllDims
- : internal::TensorBlockShapeType::kSkewedInnerDims;
- auto block_target_size = internal::random<int>(1, total_coeffs);
- TensorBlockMapper block_mapper(dims, block_shape_type, block_target_size);
+ TensorBlockMapper block_mapper(dims, RandomShape(), RandomTargetSize(dims));
for (int i = 0; i < block_mapper.total_block_count(); ++i) {
TensorBlock block = block_mapper.GetBlockForIndex(i, nullptr);
@@ -124,6 +137,7 @@ static void test_block_mapper_maps_every_element()
// Verify that every coefficient in the original Tensor is accessible through
// TensorBlock only once.
+ auto total_coeffs = static_cast<int>(dims.TotalSize());
VERIFY_IS_EQUAL(coeff_set.size(), total_coeffs);
VERIFY_IS_EQUAL(*coeff_set.begin(), static_cast<Index>(0));
VERIFY_IS_EQUAL(*coeff_set.rbegin(), static_cast<Index>(total_coeffs - 1));
@@ -146,13 +160,6 @@ static void test_slice_block_mapper_maps_every_element()
auto total_coeffs = static_cast<int>(tensor_slice_extents.TotalSize());
- // Try different combinations of block types and sizes.
- auto block_shape_type =
- internal::random<bool>()
- ? internal::TensorBlockShapeType::kUniformAllDims
- : internal::TensorBlockShapeType::kSkewedInnerDims;
- auto block_target_size = internal::random<int>(1, total_coeffs);
-
// Pick a random dimension sizes for the tensor blocks.
DSizes<Index, 4> block_sizes;
for (int i = 0; i < 4; ++i) {
@@ -164,7 +171,7 @@ static void test_slice_block_mapper_maps_every_element()
DimensionList<Index, 4>());
for (int i = 0; i < block_mapper.total_block_count(); ++i) {
- TensorBlock block = block_mapper.GetBlockForIndex(i, NULL);
+ TensorBlock block = block_mapper.GetBlockForIndex(i, nullptr);
UpdateCoeffSet<T, Layout, 4>(block, block.first_coeff_index(),
choose(Layout, 3, 0), &coeff_set);
}
@@ -172,11 +179,745 @@ static void test_slice_block_mapper_maps_every_element()
VERIFY_IS_EQUAL(coeff_set.size(), total_coeffs);
}
+template <int Layout>
+static void test_block_io_copy_data_from_source_to_target()
+{
+ using T = float;
+
+ typedef internal::TensorBlock<T, Index, 5, Layout> TensorBlock;
+ typedef internal::TensorBlockMapper<T, Index, 5, Layout> TensorBlockMapper;
+
+ typedef internal::TensorBlockReader<T, Index, 5, Layout, true>
+ TensorBlockReader;
+ typedef internal::TensorBlockWriter<T, Index, 5, Layout, true>
+ TensorBlockWriter;
+
+ typedef std::vector<T, aligned_allocator<T>> DataVector;
+
+ DSizes<Index, 5> input_tensor_dims(5, 7, 11, 17, 3);
+ const auto input_tensor_size = input_tensor_dims.TotalSize();
+ DataVector input_data(input_tensor_size, 0);
+ for (int i = 0; i < input_tensor_size; ++i) {
+ input_data[i] = internal::random<T>();
+ }
+
+ DataVector output_data(input_tensor_size, 0);
+
+ TensorBlockMapper block_mapper(input_tensor_dims, RandomShape(),
+ RandomTargetSize(input_tensor_dims));
+
+ DataVector block_data(block_mapper.block_dims_total_size(), 0);
+ for (int i = 0; i < block_mapper.total_block_count(); ++i) {
+ TensorBlock block = block_mapper.GetBlockForIndex(i, block_data.data());
+ TensorBlockReader::Run(&block, input_data.data());
+ TensorBlockWriter::Run(block, output_data.data());
+ }
+
+ for (int i = 0; i < input_tensor_size; ++i) {
+ VERIFY_IS_EQUAL(input_data[i], output_data[i]);
+ }
+}
+
+template <int Layout, int NumDims>
+static int GetInputIndex(Index output_index,
+ const array<Index, NumDims>& output_to_input_dim_map,
+ const array<Index, NumDims>& input_strides,
+ const array<Index, NumDims>& output_strides) {
+ int input_index = 0;
+ if (Layout == ColMajor) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ const int idx = output_index / output_strides[i];
+ input_index += idx * input_strides[output_to_input_dim_map[i]];
+ output_index -= idx * output_strides[i];
+ }
+ return input_index +
+ output_index * input_strides[output_to_input_dim_map[0]];
+ } else {
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const int idx = output_index / output_strides[i];
+ input_index += idx * input_strides[output_to_input_dim_map[i]];
+ output_index -= idx * output_strides[i];
+ }
+ return input_index +
+ output_index * input_strides[output_to_input_dim_map[NumDims - 1]];
+ }
+}
+
+template <int Layout, int NumDims>
+static array<Index, NumDims> ComputeStrides(
+ const array<Index, NumDims>& sizes) {
+ array<Index, NumDims> strides;
+ if (Layout == ColMajor) {
+ strides[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ strides[i] = strides[i - 1] * sizes[i - 1];
+ }
+ } else {
+ strides[NumDims - 1] = 1;
+ for (int i = NumDims - 2; i >= 0; --i) {
+ strides[i] = strides[i + 1] * sizes[i + 1];
+ }
+ }
+ return strides;
+}
+
+template <int Layout>
+static void test_block_io_copy_using_reordered_dimensions() {
+ typedef internal::TensorBlock<float, Index, 5, Layout> TensorBlock;
+ typedef internal::TensorBlockMapper<float, Index, 5, Layout>
+ TensorBlockMapper;
+
+ typedef internal::TensorBlockReader<float, Index, 5, Layout, false>
+ TensorBlockReader;
+ typedef internal::TensorBlockWriter<float, Index, 5, Layout, false>
+ TensorBlockWriter;
+
+ DSizes<Index, 5> input_tensor_dims(5, 7, 11, 17, 3);
+ const auto input_tensor_size = input_tensor_dims.TotalSize();
+
+ // Create a random input tensor.
+ auto* input_data = GenerateRandomData<float>(input_tensor_size);
+
+ // Create a random dimension re-ordering/shuffle.
+ std::vector<Index> shuffle = {0, 1, 2, 3, 4};
+ std::shuffle(shuffle.begin(), shuffle.end(), std::mt19937());
+
+ DSizes<Index, 5> output_tensor_dims;
+ array<Index, 5> input_to_output_dim_map;
+ array<Index, 5> output_to_input_dim_map;
+ for (Index i = 0; i < 5; ++i) {
+ output_tensor_dims[shuffle[i]] = input_tensor_dims[i];
+ input_to_output_dim_map[i] = shuffle[i];
+ output_to_input_dim_map[shuffle[i]] = i;
+ }
+
+ // Random block shape and size.
+ TensorBlockMapper block_mapper(output_tensor_dims, RandomShape(),
+ RandomTargetSize(input_tensor_dims));
+
+ auto* block_data = new float[block_mapper.block_dims_total_size()];
+ auto* output_data = new float[input_tensor_size];
+
+ array<Index, 5> input_tensor_strides =
+ ComputeStrides<Layout, 5>(input_tensor_dims);
+ array<Index, 5> output_tensor_strides =
+ ComputeStrides<Layout, 5>(output_tensor_dims);
+
+ for (Index i = 0; i < block_mapper.total_block_count(); ++i) {
+ TensorBlock block = block_mapper.GetBlockForIndex(i, block_data);
+ const Index first_coeff_index = GetInputIndex<Layout, 5>(
+ block.first_coeff_index(), output_to_input_dim_map,
+ input_tensor_strides, output_tensor_strides);
+ TensorBlockReader::Run(&block, first_coeff_index, input_to_output_dim_map,
+ input_tensor_strides, input_data);
+ TensorBlockWriter::Run(block, first_coeff_index, input_to_output_dim_map,
+ input_tensor_strides, output_data);
+ }
+
+ for (int i = 0; i < input_tensor_size; ++i) {
+ VERIFY_IS_EQUAL(input_data[i], output_data[i]);
+ }
+
+ delete[] input_data;
+ delete[] block_data;
+ delete[] output_data;
+}
+
+template <int Layout>
+static void test_block_io_zero_stride()
+{
+ typedef internal::TensorBlock<float, Index, 5, Layout> TensorBlock;
+ typedef internal::TensorBlockReader<float, Index, 5, Layout, true>
+ TensorBlockReader;
+ typedef internal::TensorBlockWriter<float, Index, 5, Layout, true>
+ TensorBlockWriter;
+
+ DSizes<Index, 5> input_tensor_dims(1, 2, 1, 3, 1);
+ const auto input_tensor_size = input_tensor_dims.TotalSize();
+
+ // Create a random input tensor.
+ auto* input_data = GenerateRandomData<float>(input_tensor_size);
+
+ DSizes<Index, 5> output_tensor_dims(3, 2, 3, 3, 2);
+
+ DSizes<Index, 5> input_tensor_strides(
+ ComputeStrides<Layout, 5>(input_tensor_dims));
+ DSizes<Index, 5> output_tensor_strides(
+ ComputeStrides<Layout, 5>(output_tensor_dims));
+
+ DSizes<Index, 5> input_tensor_strides_with_zeros(input_tensor_strides);
+ input_tensor_strides_with_zeros[0] = 0;
+ input_tensor_strides_with_zeros[2] = 0;
+ input_tensor_strides_with_zeros[4] = 0;
+
+ // Verify that data was correctly read/written from/into the block.
+ const auto verify_is_equal = [&](const float* output_data) {
+ for (int i = 0; i < output_tensor_dims[0]; ++i) {
+ for (int j = 0; j < output_tensor_dims[1]; ++j) {
+ for (int k = 0; k < output_tensor_dims[2]; ++k) {
+ for (int l = 0; l < output_tensor_dims[3]; ++l) {
+ for (int m = 0; m < output_tensor_dims[4]; ++m) {
+ const Index output_offset =
+ i * output_tensor_strides[0] + j * output_tensor_strides[1] +
+ k * output_tensor_strides[2] + l * output_tensor_strides[3] +
+ m * output_tensor_strides[4];
+ const Index input_offset =
+ i % input_tensor_dims[0] * input_tensor_strides[0] +
+ j % input_tensor_dims[1] * input_tensor_strides[1] +
+ k % input_tensor_dims[2] * input_tensor_strides[2] +
+ l % input_tensor_dims[3] * input_tensor_strides[3] +
+ m % input_tensor_dims[4] * input_tensor_strides[4];
+ VERIFY_IS_EQUAL(output_data[output_offset],
+ input_data[input_offset]);
+ }
+ }
+ }
+ }
+ }
+ };
+
+ {
+ auto* output_data = new float[output_tensor_dims.TotalSize()];
+ TensorBlock read_block(0, output_tensor_dims, output_tensor_strides,
+ input_tensor_strides_with_zeros, output_data);
+ TensorBlockReader::Run(&read_block, input_data);
+ verify_is_equal(output_data);
+ delete[] output_data;
+ }
+
+ {
+ auto* output_data = new float[output_tensor_dims.TotalSize()];
+ TensorBlock write_block(0, output_tensor_dims,
+ input_tensor_strides_with_zeros,
+ output_tensor_strides, input_data);
+ TensorBlockWriter::Run(write_block, output_data);
+ verify_is_equal(output_data);
+ delete[] output_data;
+ }
+
+ delete[] input_data;
+}
+
+template <int Layout>
+static void test_block_io_squeeze_ones() {
+ typedef internal::TensorBlock<float, Index, 5, Layout> TensorBlock;
+ typedef internal::TensorBlockReader<float, Index, 5, Layout, true>
+ TensorBlockReader;
+ typedef internal::TensorBlockWriter<float, Index, 5, Layout, true>
+ TensorBlockWriter;
+
+ // Total size > 1.
+ {
+ DSizes<Index, 5> block_sizes(1, 2, 1, 2, 1);
+ const auto total_size = block_sizes.TotalSize();
+
+ // Create a random input tensor.
+ auto* input_data = GenerateRandomData<float>(total_size);
+ DSizes<Index, 5> strides(ComputeStrides<Layout, 5>(block_sizes));
+
+ {
+ auto* output_data = new float[block_sizes.TotalSize()];
+ TensorBlock read_block(0, block_sizes, strides, strides, output_data);
+ TensorBlockReader::Run(&read_block, input_data);
+ for (int i = 0; i < total_size; ++i) {
+ VERIFY_IS_EQUAL(output_data[i], input_data[i]);
+ }
+ delete[] output_data;
+ }
+
+ {
+ auto* output_data = new float[block_sizes.TotalSize()];
+ TensorBlock write_block(0, block_sizes, strides, strides, input_data);
+ TensorBlockWriter::Run(write_block, output_data);
+ for (int i = 0; i < total_size; ++i) {
+ VERIFY_IS_EQUAL(output_data[i], input_data[i]);
+ }
+ delete[] output_data;
+ }
+ }
+
+ // Total size == 1.
+ {
+ DSizes<Index, 5> block_sizes(1, 1, 1, 1, 1);
+ const auto total_size = block_sizes.TotalSize();
+
+ // Create a random input tensor.
+ auto* input_data = GenerateRandomData<float>(total_size);
+ DSizes<Index, 5> strides(ComputeStrides<Layout, 5>(block_sizes));
+
+ {
+ auto* output_data = new float[block_sizes.TotalSize()];
+ TensorBlock read_block(0, block_sizes, strides, strides, output_data);
+ TensorBlockReader::Run(&read_block, input_data);
+ for (int i = 0; i < total_size; ++i) {
+ VERIFY_IS_EQUAL(output_data[i], input_data[i]);
+ }
+ delete[] output_data;
+ }
+
+ {
+ auto* output_data = new float[block_sizes.TotalSize()];
+ TensorBlock write_block(0, block_sizes, strides, strides, input_data);
+ TensorBlockWriter::Run(write_block, output_data);
+ for (int i = 0; i < total_size; ++i) {
+ VERIFY_IS_EQUAL(output_data[i], input_data[i]);
+ }
+ delete[] output_data;
+ }
+ }
+}
+
+template <int Layout>
+static void test_block_cwise_binary_io_basic() {
+ typedef internal::scalar_sum_op<float> BinaryFunctor;
+ typedef internal::TensorBlockCwiseBinaryIO<BinaryFunctor, Index, float, 5,
+ Layout>
+ TensorBlockCwiseBinaryIO;
+
+ DSizes<Index, 5> block_sizes(2, 3, 5, 7, 11);
+ DSizes<Index, 5> strides(ComputeStrides<Layout, 5>(block_sizes));
+
+ const auto total_size = block_sizes.TotalSize();
+
+ // Create a random input tensors.
+ auto* left_data = GenerateRandomData<float>(total_size);
+ auto* right_data = GenerateRandomData<float>(total_size);
+
+ auto* output_data = new float[total_size];
+ BinaryFunctor functor;
+ TensorBlockCwiseBinaryIO::Run(functor, block_sizes, strides, output_data,
+ strides, left_data, strides, right_data);
+ for (int i = 0; i < total_size; ++i) {
+ VERIFY_IS_EQUAL(output_data[i], functor(left_data[i], right_data[i]));
+ }
+
+ delete[] left_data;
+ delete[] right_data;
+ delete[] output_data;
+}
+
+template <int Layout>
+static void test_block_cwise_binary_io_squeeze_ones() {
+ typedef internal::scalar_sum_op<float> BinaryFunctor;
+ typedef internal::TensorBlockCwiseBinaryIO<BinaryFunctor, Index, float, 5,
+ Layout>
+ TensorBlockCwiseBinaryIO;
+
+ DSizes<Index, 5> block_sizes(1, 2, 1, 3, 1);
+ DSizes<Index, 5> strides(ComputeStrides<Layout, 5>(block_sizes));
+
+ const auto total_size = block_sizes.TotalSize();
+
+ // Create a random input tensors.
+ auto* left_data = GenerateRandomData<float>(total_size);
+ auto* right_data = GenerateRandomData<float>(total_size);
+
+ auto* output_data = new float[total_size];
+ BinaryFunctor functor;
+ TensorBlockCwiseBinaryIO::Run(functor, block_sizes, strides, output_data,
+ strides, left_data, strides, right_data);
+ for (int i = 0; i < total_size; ++i) {
+ VERIFY_IS_EQUAL(output_data[i], functor(left_data[i], right_data[i]));
+ }
+
+ delete[] left_data;
+ delete[] right_data;
+ delete[] output_data;
+}
+
+template <int Layout>
+static void test_block_cwise_binary_io_zero_strides() {
+ typedef internal::scalar_sum_op<float> BinaryFunctor;
+ typedef internal::TensorBlockCwiseBinaryIO<BinaryFunctor, Index, float, 5,
+ Layout>
+ TensorBlockCwiseBinaryIO;
+
+ DSizes<Index, 5> left_sizes(1, 3, 1, 7, 1);
+ DSizes<Index, 5> left_strides(ComputeStrides<Layout, 5>(left_sizes));
+ left_strides[0] = 0;
+ left_strides[2] = 0;
+ left_strides[4] = 0;
+
+ DSizes<Index, 5> right_sizes(2, 1, 5, 1, 11);
+ DSizes<Index, 5> right_strides(ComputeStrides<Layout, 5>(right_sizes));
+ right_strides[1] = 0;
+ right_strides[3] = 0;
+
+ // Generate random data.
+ auto* left_data = GenerateRandomData<float>(left_sizes.TotalSize());
+ auto* right_data = GenerateRandomData<float>(right_sizes.TotalSize());
+
+ DSizes<Index, 5> output_sizes(2, 3, 5, 7, 11);
+ DSizes<Index, 5> output_strides(ComputeStrides<Layout, 5>(output_sizes));
+
+ const auto output_total_size = output_sizes.TotalSize();
+ auto* output_data = new float[output_total_size];
+
+ BinaryFunctor functor;
+ TensorBlockCwiseBinaryIO::Run(functor, output_sizes, output_strides,
+ output_data, left_strides, left_data,
+ right_strides, right_data);
+ for (int i = 0; i < 2; ++i) {
+ for (int j = 0; j < 3; ++j) {
+ for (int k = 0; k < 5; ++k) {
+ for (int l = 0; l < 7; ++l) {
+ for (int m = 0; m < 11; ++m) {
+ Index output_index = i * output_strides[0] + j * output_strides[1] +
+ k * output_strides[2] + l * output_strides[3] +
+ m * output_strides[4];
+ Index left_index = i * left_strides[0] + j * left_strides[1] +
+ k * left_strides[2] + l * left_strides[3] +
+ m * left_strides[4];
+ Index right_index = i * right_strides[0] + j * right_strides[1] +
+ k * right_strides[2] + l * right_strides[3] +
+ m * right_strides[4];
+ VERIFY_IS_EQUAL(
+ output_data[output_index],
+ functor(left_data[left_index], right_data[right_index]));
+ }
+ }
+ }
+ }
+ }
+
+ delete[] left_data;
+ delete[] right_data;
+ delete[] output_data;
+}
+
+template <int Layout>
+static void test_uniform_block_shape()
+{
+ using T = int;
+ typedef internal::TensorBlock<T, Index, 5, Layout> TensorBlock;
+ typedef internal::TensorBlockMapper<T, Index, 5, Layout> TensorBlockMapper;
+
+ {
+ // Test shape 'UniformAllDims' with uniform 'max_coeff count'.
+ DSizes<Index, 5> dims(11, 5, 6, 17, 7);
+ const size_t max_coeff_count = 5 * 5 * 5 * 5 * 5;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ for (int i = 0; i < 5; ++i) {
+ VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
+ }
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ }
+
+ // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills
+ // partially into first inner-most dimension.
+ if (Layout == ColMajor) {
+ DSizes<Index, 5> dims(11, 5, 6, 17, 7);
+ const size_t max_coeff_count = 7 * 5 * 5 * 5 * 5;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(7, block.block_sizes()[0]);
+ for (int i = 1; i < 5; ++i) {
+ VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
+ }
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ } else {
+ DSizes<Index, 5> dims(11, 5, 6, 17, 7);
+ const size_t max_coeff_count = 5 * 5 * 5 * 5 * 6;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(6, block.block_sizes()[4]);
+ for (int i = 3; i >= 0; --i) {
+ VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
+ }
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ }
+
+ // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills
+ // fully into first inner-most dimension.
+ if (Layout == ColMajor) {
+ DSizes<Index, 5> dims(11, 5, 6, 17, 7);
+ const size_t max_coeff_count = 11 * 5 * 5 * 5 * 5;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
+ for (int i = 1; i < 5; ++i) {
+ VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
+ }
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ } else {
+ DSizes<Index, 5> dims(11, 5, 6, 17, 7);
+ const size_t max_coeff_count = 5 * 5 * 5 * 5 * 7;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
+ for (int i = 3; i >= 0; --i) {
+ VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
+ }
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ }
+
+ // Test shape 'UniformAllDims' with larger 'max_coeff count' which spills
+ // fully into first few inner-most dimensions.
+ if (Layout == ColMajor) {
+ DSizes<Index, 5> dims(7, 5, 6, 17, 7);
+ const size_t max_coeff_count = 7 * 5 * 6 * 7 * 5;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(7, block.block_sizes()[0]);
+ VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
+ VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
+ VERIFY_IS_EQUAL(7, block.block_sizes()[3]);
+ VERIFY_IS_EQUAL(5, block.block_sizes()[4]);
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ } else {
+ DSizes<Index, 5> dims(7, 5, 6, 9, 7);
+ const size_t max_coeff_count = 5 * 5 * 5 * 6 * 7;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
+ VERIFY_IS_EQUAL(6, block.block_sizes()[3]);
+ VERIFY_IS_EQUAL(5, block.block_sizes()[2]);
+ VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
+ VERIFY_IS_EQUAL(5, block.block_sizes()[0]);
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ }
+
+ // Test shape 'UniformAllDims' with full allocation to all dims.
+ if (Layout == ColMajor) {
+ DSizes<Index, 5> dims(7, 5, 6, 17, 7);
+ const size_t max_coeff_count = 7 * 5 * 6 * 17 * 7;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(7, block.block_sizes()[0]);
+ VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
+ VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
+ VERIFY_IS_EQUAL(17, block.block_sizes()[3]);
+ VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ } else {
+ DSizes<Index, 5> dims(7, 5, 6, 9, 7);
+ const size_t max_coeff_count = 7 * 5 * 6 * 9 * 7;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
+ VERIFY_IS_EQUAL(9, block.block_sizes()[3]);
+ VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
+ VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
+ VERIFY_IS_EQUAL(7, block.block_sizes()[0]);
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ }
+}
+
+template <int Layout>
+static void test_skewed_inner_dim_block_shape()
+{
+ using T = int;
+ typedef internal::TensorBlock<T, Index, 5, Layout> TensorBlock;
+ typedef internal::TensorBlockMapper<T, Index, 5, Layout> TensorBlockMapper;
+
+ // Test shape 'SkewedInnerDims' with partial allocation to inner-most dim.
+ if (Layout == ColMajor) {
+ DSizes<Index, 5> dims(11, 5, 6, 17, 7);
+ const size_t max_coeff_count = 10 * 1 * 1 * 1 * 1;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(10, block.block_sizes()[0]);
+ for (int i = 1; i < 5; ++i) {
+ VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
+ }
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ } else {
+ DSizes<Index, 5> dims(11, 5, 6, 17, 7);
+ const size_t max_coeff_count = 1 * 1 * 1 * 1 * 6;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(6, block.block_sizes()[4]);
+ for (int i = 3; i >= 0; --i) {
+ VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
+ }
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ }
+
+ // Test shape 'SkewedInnerDims' with full allocation to inner-most dim.
+ if (Layout == ColMajor) {
+ DSizes<Index, 5> dims(11, 5, 6, 17, 7);
+ const size_t max_coeff_count = 11 * 1 * 1 * 1 * 1;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
+ for (int i = 1; i < 5; ++i) {
+ VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
+ }
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ } else {
+ DSizes<Index, 5> dims(11, 5, 6, 17, 7);
+ const size_t max_coeff_count = 1 * 1 * 1 * 1 * 7;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
+ for (int i = 3; i >= 0; --i) {
+ VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
+ }
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ }
+
+ // Test shape 'SkewedInnerDims' with full allocation to inner-most dim,
+ // and partial allocation to second inner-dim.
+ if (Layout == ColMajor) {
+ DSizes<Index, 5> dims(11, 5, 6, 17, 7);
+ const size_t max_coeff_count = 11 * 3 * 1 * 1 * 1;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
+ VERIFY_IS_EQUAL(3, block.block_sizes()[1]);
+ for (int i = 2; i < 5; ++i) {
+ VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
+ }
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ } else {
+ DSizes<Index, 5> dims(11, 5, 6, 17, 7);
+ const size_t max_coeff_count = 1 * 1 * 1 * 15 * 7;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
+ VERIFY_IS_EQUAL(15, block.block_sizes()[3]);
+ for (int i = 2; i >= 0; --i) {
+ VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
+ }
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ }
+
+ // Test shape 'SkewedInnerDims' with full allocation to inner-most dim,
+ // and partial allocation to third inner-dim.
+ if (Layout == ColMajor) {
+ DSizes<Index, 5> dims(11, 5, 6, 17, 7);
+ const size_t max_coeff_count = 11 * 5 * 5 * 1 * 1;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
+ VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
+ VERIFY_IS_EQUAL(5, block.block_sizes()[2]);
+ for (int i = 3; i < 5; ++i) {
+ VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
+ }
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ } else {
+ DSizes<Index, 5> dims(11, 5, 6, 17, 7);
+ const size_t max_coeff_count = 1 * 1 * 5 * 17 * 7;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
+ VERIFY_IS_EQUAL(17, block.block_sizes()[3]);
+ VERIFY_IS_EQUAL(5, block.block_sizes()[2]);
+ for (int i = 1; i >= 0; --i) {
+ VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
+ }
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ }
+
+ // Test shape 'SkewedInnerDims' with full allocation to all dims.
+ if (Layout == ColMajor) {
+ DSizes<Index, 5> dims(11, 5, 6, 17, 7);
+ const size_t max_coeff_count = 11 * 5 * 6 * 17 * 7;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
+ VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
+ VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
+ VERIFY_IS_EQUAL(17, block.block_sizes()[3]);
+ VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ } else {
+ DSizes<Index, 5> dims(11, 5, 6, 17, 7);
+ const size_t max_coeff_count = 11 * 5 * 6 * 17 * 7;
+ TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
+ max_coeff_count);
+ TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
+ VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
+ VERIFY_IS_EQUAL(17, block.block_sizes()[3]);
+ VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
+ VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
+ VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
+ VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
+ }
+}
+
+template <int Layout>
+static void test_empty_dims(const internal::TensorBlockShapeType block_shape)
+{
+ using T = int;
+
+ // Test blocking of tensors with zero dimensions:
+ // - we must not crash on asserts and divisions by zero
+ // - we must not return block with zero dimensions
+ // (recipe for overflows/underflows, divisions by zero and NaNs later)
+ // - total block count must be zero
+ {
+ typedef internal::TensorBlockMapper<T, Index, 1, Layout> TensorBlockMapper;
+ DSizes<Index, 1> dims(0);
+ for (int max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) {
+ TensorBlockMapper block_mapper(dims, block_shape, max_coeff_count);
+ VERIFY_IS_EQUAL(block_mapper.total_block_count(), 0);
+ VERIFY(block_mapper.block_dims_total_size() >= 1);
+ }
+ }
+
+ {
+ typedef internal::TensorBlockMapper<T, Index, 2, Layout> TensorBlockMapper;
+ for (int dim1 = 0; dim1 < 3; ++dim1) {
+ for (int dim2 = 0; dim2 < 3; ++dim2) {
+ DSizes<Index, 2> dims(dim1, dim2);
+ for (int max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) {
+ TensorBlockMapper block_mapper(dims, block_shape, max_coeff_count);
+ if (dim1 * dim2 == 0) {
+ VERIFY_IS_EQUAL(block_mapper.total_block_count(), 0);
+ }
+ VERIFY(block_mapper.block_dims_total_size() >= 1);
+ }
+ }
+ }
+ }
+}
+
+#define CALL_SUBTEST_LAYOUTS(NAME) \
+ CALL_SUBTEST(NAME<ColMajor>()); \
+ CALL_SUBTEST(NAME<RowMajor>())
+
+#define CALL_SUBTEST_LAYOUTS_WITH_ARG(NAME, ARG) \
+ CALL_SUBTEST(NAME<ColMajor>(ARG)); \
+ CALL_SUBTEST(NAME<RowMajor>(ARG))
+
EIGEN_DECLARE_TEST(cxx11_tensor_assign) {
- CALL_SUBTEST(test_block_mapper_sanity<ColMajor>());
- CALL_SUBTEST(test_block_mapper_sanity<RowMajor>());
- CALL_SUBTEST(test_block_mapper_maps_every_element<ColMajor>());
- CALL_SUBTEST(test_block_mapper_maps_every_element<RowMajor>());
- CALL_SUBTEST(test_slice_block_mapper_maps_every_element<ColMajor>());
- CALL_SUBTEST(test_slice_block_mapper_maps_every_element<RowMajor>());
+ CALL_SUBTEST_LAYOUTS(test_block_mapper_sanity);
+ CALL_SUBTEST_LAYOUTS(test_block_mapper_maps_every_element);
+ CALL_SUBTEST_LAYOUTS(test_slice_block_mapper_maps_every_element);
+ CALL_SUBTEST_LAYOUTS(test_block_io_copy_data_from_source_to_target);
+ CALL_SUBTEST_LAYOUTS(test_block_io_copy_using_reordered_dimensions);
+ CALL_SUBTEST_LAYOUTS(test_block_io_zero_stride);
+ CALL_SUBTEST_LAYOUTS(test_block_io_squeeze_ones);
+ CALL_SUBTEST_LAYOUTS(test_block_cwise_binary_io_basic);
+ CALL_SUBTEST_LAYOUTS(test_block_cwise_binary_io_squeeze_ones);
+ CALL_SUBTEST_LAYOUTS(test_block_cwise_binary_io_zero_strides);
+ CALL_SUBTEST_LAYOUTS(test_uniform_block_shape);
+ CALL_SUBTEST_LAYOUTS(test_skewed_inner_dim_block_shape);
+
+ CALL_SUBTEST_LAYOUTS_WITH_ARG(test_empty_dims, TensorBlockShapeType::kUniformAllDims);
+ CALL_SUBTEST_LAYOUTS_WITH_ARG(test_empty_dims, TensorBlockShapeType::kSkewedInnerDims);
}
+
+#undef CALL_SUBTEST_LAYOUTS
+#undef CALL_SUBTEST_LAYOUTS_WITH_ARG \ No newline at end of file