aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Benoit Steiner <benoit.steiner.goog@gmail.com>2018-06-11 17:57:47 +0000
committerGravatar Benoit Steiner <benoit.steiner.goog@gmail.com>2018-06-11 17:57:47 +0000
commitd3a380af4d17513ab71630b59f390589fa7c207b (patch)
tree79232074a195315447d1a06d36b9a7bf46837a99
parentcb4c9a6a9459a1c9bee1b22cabb5e8aa154968d9 (diff)
parent30fa3d045440fe8345bccc34bad5a329abfaf5c3 (diff)
Merged in mfigurnov/eigen/gamma-der-a (pull request PR-403)
Derivative of the incomplete Gamma function and the sample of a Gamma random variable Approved-by: Benoit Steiner <benoit.steiner.goog@gmail.com>
-rw-r--r--Eigen/src/Core/GenericPacketMath.h2
-rw-r--r--Eigen/src/Core/arch/CUDA/PacketMath.h4
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorBase.h14
-rw-r--r--unsupported/Eigen/SpecialFunctions2
-rw-r--r--unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h42
-rw-r--r--unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h54
-rw-r--r--unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h8
-rw-r--r--unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h560
-rw-r--r--unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h15
-rw-r--r--unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h35
-rw-r--r--unsupported/test/cxx11_tensor_cuda.cu157
-rw-r--r--unsupported/test/special_functions.cpp94
12 files changed, 786 insertions, 201 deletions
diff --git a/Eigen/src/Core/GenericPacketMath.h b/Eigen/src/Core/GenericPacketMath.h
index 888a3f7ea..55b6a89e2 100644
--- a/Eigen/src/Core/GenericPacketMath.h
+++ b/Eigen/src/Core/GenericPacketMath.h
@@ -85,6 +85,8 @@ struct default_packet_traits
HasI0e = 0,
HasI1e = 0,
HasIGamma = 0,
+ HasIGammaDerA = 0,
+ HasGammaSampleDerAlpha = 0,
HasIGammac = 0,
HasBetaInc = 0,
diff --git a/Eigen/src/Core/arch/CUDA/PacketMath.h b/Eigen/src/Core/arch/CUDA/PacketMath.h
index 704a4e0d9..ab8e477f4 100644
--- a/Eigen/src/Core/arch/CUDA/PacketMath.h
+++ b/Eigen/src/Core/arch/CUDA/PacketMath.h
@@ -47,6 +47,8 @@ template<> struct packet_traits<float> : default_packet_traits
HasI0e = 1,
HasI1e = 1,
HasIGamma = 1,
+ HasIGammaDerA = 1,
+ HasGammaSampleDerAlpha = 1,
HasIGammac = 1,
HasBetaInc = 1,
@@ -78,6 +80,8 @@ template<> struct packet_traits<double> : default_packet_traits
HasI0e = 1,
HasI1e = 1,
HasIGamma = 1,
+ HasIGammaDerA = 1,
+ HasGammaSampleDerAlpha = 1,
HasIGammac = 1,
HasBetaInc = 1,
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h b/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
index d88e0df71..bdc1a17a7 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
@@ -152,6 +152,20 @@ class TensorBase<Derived, ReadOnlyAccessors>
return binaryExpr(other.derived(), internal::scalar_igamma_op<Scalar>());
}
+ // igamma_der_a(a = this, x = other)
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_igamma_der_a_op<Scalar>, const Derived, const OtherDerived>
+ igamma_der_a(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_igamma_der_a_op<Scalar>());
+ }
+
+ // gamma_sample_der_alpha(alpha = this, sample = other)
+ template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorCwiseBinaryOp<internal::scalar_gamma_sample_der_alpha_op<Scalar>, const Derived, const OtherDerived>
+ gamma_sample_der_alpha(const OtherDerived& other) const {
+ return binaryExpr(other.derived(), internal::scalar_gamma_sample_der_alpha_op<Scalar>());
+ }
+
// igammac(a = this, x = other)
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCwiseBinaryOp<internal::scalar_igammac_op<Scalar>, const Derived, const OtherDerived>
diff --git a/unsupported/Eigen/SpecialFunctions b/unsupported/Eigen/SpecialFunctions
index 482ec6e6f..9441ba8f5 100644
--- a/unsupported/Eigen/SpecialFunctions
+++ b/unsupported/Eigen/SpecialFunctions
@@ -29,6 +29,8 @@ namespace Eigen {
* - erfc
* - lgamma
* - igamma
+ * - igamma_der_a
+ * - gamma_sample_der_alpha
* - igammac
* - digamma
* - polygamma
diff --git a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h
index b7a9d035b..30cdf4751 100644
--- a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h
+++ b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h
@@ -33,6 +33,48 @@ igamma(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerive
);
}
+/** \cpp11 \returns an expression of the coefficient-wise igamma_der_a(\a a, \a x) to the given arrays.
+ *
+ * This function computes the coefficient-wise derivative of the incomplete
+ * gamma function with respect to the parameter a.
+ *
+ * \note This function supports only float and double scalar types in c++11
+ * mode. To support other scalar types,
+ * or float/double in non c++11 mode, the user has to provide implementations
+ * of igamma_der_a(T,T) for any scalar
+ * type T to be supported.
+ *
+ * \sa Eigen::igamma(), Eigen::lgamma()
+ */
+template <typename Derived, typename ExponentDerived>
+inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_der_a_op<typename Derived::Scalar>, const Derived, const ExponentDerived>
+igamma_der_a(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x) {
+ return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_der_a_op<typename Derived::Scalar>, const Derived, const ExponentDerived>(
+ a.derived(),
+ x.derived());
+}
+
+/** \cpp11 \returns an expression of the coefficient-wise gamma_sample_der_alpha(\a alpha, \a sample) to the given arrays.
+ *
+ * This function computes the coefficient-wise derivative of the sample
+ * of a Gamma(alpha, 1) random variable with respect to the parameter alpha.
+ *
+ * \note This function supports only float and double scalar types in c++11
+ * mode. To support other scalar types,
+ * or float/double in non c++11 mode, the user has to provide implementations
+ * of gamma_sample_der_alpha(T,T) for any scalar
+ * type T to be supported.
+ *
+ * \sa Eigen::igamma(), Eigen::lgamma()
+ */
+template <typename AlphaDerived, typename SampleDerived>
+inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_gamma_sample_der_alpha_op<typename AlphaDerived::Scalar>, const AlphaDerived, const SampleDerived>
+gamma_sample_der_alpha(const Eigen::ArrayBase<AlphaDerived>& alpha, const Eigen::ArrayBase<SampleDerived>& sample) {
+ return Eigen::CwiseBinaryOp<Eigen::internal::scalar_gamma_sample_der_alpha_op<typename AlphaDerived::Scalar>, const AlphaDerived, const SampleDerived>(
+ alpha.derived(),
+ sample.derived());
+}
+
/** \cpp11 \returns an expression of the coefficient-wise igammac(\a a, \a x) to the given arrays.
*
* This function computes the coefficient-wise complementary incomplete gamma function.
diff --git a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h
index 8420f0174..3a63dcdd6 100644
--- a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h
+++ b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h
@@ -41,6 +41,60 @@ struct functor_traits<scalar_igamma_op<Scalar> > {
};
};
+/** \internal
+ * \brief Template functor to compute the derivative of the incomplete gamma
+ * function igamma_der_a(a, x)
+ *
+ * \sa class CwiseBinaryOp, Cwise::igamma_der_a
+ */
+template <typename Scalar>
+struct scalar_igamma_der_a_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_igamma_der_a_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& a, const Scalar& x) const {
+ using numext::igamma_der_a;
+ return igamma_der_a(a, x);
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& x) const {
+ return internal::pigamma_der_a(a, x);
+ }
+};
+template <typename Scalar>
+struct functor_traits<scalar_igamma_der_a_op<Scalar> > {
+ enum {
+ // 2x the cost of igamma
+ Cost = 40 * NumTraits<Scalar>::MulCost + 20 * NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasIGammaDerA
+ };
+};
+
+/** \internal
+ * \brief Template functor to compute the derivative of the sample
+ * of a Gamma(alpha, 1) random variable with respect to the parameter alpha
+ * gamma_sample_der_alpha(alpha, sample)
+ *
+ * \sa class CwiseBinaryOp, Cwise::gamma_sample_der_alpha
+ */
+template <typename Scalar>
+struct scalar_gamma_sample_der_alpha_op {
+ EIGEN_EMPTY_STRUCT_CTOR(scalar_gamma_sample_der_alpha_op)
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator()(const Scalar& alpha, const Scalar& sample) const {
+ using numext::gamma_sample_der_alpha;
+ return gamma_sample_der_alpha(alpha, sample);
+ }
+ template <typename Packet>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& alpha, const Packet& sample) const {
+ return internal::pgamma_sample_der_alpha(alpha, sample);
+ }
+};
+template <typename Scalar>
+struct functor_traits<scalar_gamma_sample_der_alpha_op<Scalar> > {
+ enum {
+ // 2x the cost of igamma, minus the lgamma cost (the lgamma cancels out)
+ Cost = 30 * NumTraits<Scalar>::MulCost + 15 * NumTraits<Scalar>::AddCost,
+ PacketAccess = packet_traits<Scalar>::HasGammaSampleDerAlpha
+ };
+};
/** \internal
* \brief Template functor to compute the complementary incomplete gamma function igammac(a, x)
diff --git a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h
index c5867002e..fbdfd299e 100644
--- a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h
+++ b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h
@@ -33,6 +33,14 @@ template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half erfc(const Eigen::h
template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half igamma(const Eigen::half& a, const Eigen::half& x) {
return Eigen::half(Eigen::numext::igamma(static_cast<float>(a), static_cast<float>(x)));
}
+template <>
+EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half igamma_der_a(const Eigen::half& a, const Eigen::half& x) {
+ return Eigen::half(Eigen::numext::igamma_der_a(static_cast<float>(a), static_cast<float>(x)));
+}
+template <>
+EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half gamma_sample_der_alpha(const Eigen::half& alpha, const Eigen::half& sample) {
+ return Eigen::half(Eigen::numext::gamma_sample_der_alpha(static_cast<float>(alpha), static_cast<float>(sample)));
+}
template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half igammac(const Eigen::half& a, const Eigen::half& x) {
return Eigen::half(Eigen::numext::igammac(static_cast<float>(a), static_cast<float>(x)));
}
diff --git a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
index 293b0597b..444fd14d9 100644
--- a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
+++ b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
@@ -521,6 +521,197 @@ struct cephes_helper<double> {
}
};
+enum IgammaComputationMode { VALUE, DERIVATIVE, SAMPLE_DERIVATIVE };
+
+template <typename Scalar, IgammaComputationMode mode>
+EIGEN_DEVICE_FUNC
+int igamma_num_iterations() {
+ /* Returns the maximum number of internal iterations for igamma computation.
+ */
+ if (mode == VALUE) {
+ return 2000;
+ }
+
+ if (internal::is_same<Scalar, float>::value) {
+ return 200;
+ } else if (internal::is_same<Scalar, double>::value) {
+ return 500;
+ } else {
+ return 2000;
+ }
+}
+
+template <typename Scalar, IgammaComputationMode mode>
+struct igammac_cf_impl {
+ /* Computes igamc(a, x) or derivative (depending on the mode)
+ * using the continued fraction expansion of the complementary
+ * incomplete Gamma function.
+ *
+ * Preconditions:
+ * a > 0
+ * x >= 1
+ * x >= a
+ */
+ EIGEN_DEVICE_FUNC
+ static Scalar run(Scalar a, Scalar x) {
+ const Scalar zero = 0;
+ const Scalar one = 1;
+ const Scalar two = 2;
+ const Scalar machep = cephes_helper<Scalar>::machep();
+ const Scalar big = cephes_helper<Scalar>::big();
+ const Scalar biginv = cephes_helper<Scalar>::biginv();
+
+ if ((numext::isinf)(x)) {
+ return zero;
+ }
+
+ // continued fraction
+ Scalar y = one - a;
+ Scalar z = x + y + one;
+ Scalar c = zero;
+ Scalar pkm2 = one;
+ Scalar qkm2 = x;
+ Scalar pkm1 = x + one;
+ Scalar qkm1 = z * x;
+ Scalar ans = pkm1 / qkm1;
+
+ Scalar dpkm2_da = zero;
+ Scalar dqkm2_da = zero;
+ Scalar dpkm1_da = zero;
+ Scalar dqkm1_da = -x;
+ Scalar dans_da = (dpkm1_da - ans * dqkm1_da) / qkm1;
+
+ for (int i = 0; i < igamma_num_iterations<Scalar, mode>(); i++) {
+ c += one;
+ y += one;
+ z += two;
+
+ Scalar yc = y * c;
+ Scalar pk = pkm1 * z - pkm2 * yc;
+ Scalar qk = qkm1 * z - qkm2 * yc;
+
+ Scalar dpk_da = dpkm1_da * z - pkm1 - dpkm2_da * yc + pkm2 * c;
+ Scalar dqk_da = dqkm1_da * z - qkm1 - dqkm2_da * yc + qkm2 * c;
+
+ if (qk != zero) {
+ Scalar ans_prev = ans;
+ ans = pk / qk;
+
+ Scalar dans_da_prev = dans_da;
+ dans_da = (dpk_da - ans * dqk_da) / qk;
+
+ if (mode == VALUE) {
+ if (numext::abs(ans_prev - ans) <= machep * numext::abs(ans)) {
+ break;
+ }
+ } else {
+ if (numext::abs(dans_da - dans_da_prev) <= machep) {
+ break;
+ }
+ }
+ }
+
+ pkm2 = pkm1;
+ pkm1 = pk;
+ qkm2 = qkm1;
+ qkm1 = qk;
+
+ dpkm2_da = dpkm1_da;
+ dpkm1_da = dpk_da;
+ dqkm2_da = dqkm1_da;
+ dqkm1_da = dqk_da;
+
+ if (numext::abs(pk) > big) {
+ pkm2 *= biginv;
+ pkm1 *= biginv;
+ qkm2 *= biginv;
+ qkm1 *= biginv;
+
+ dpkm2_da *= biginv;
+ dpkm1_da *= biginv;
+ dqkm2_da *= biginv;
+ dqkm1_da *= biginv;
+ }
+ }
+
+ /* Compute x**a * exp(-x) / gamma(a) */
+ Scalar logax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
+ Scalar dlogax_da = numext::log(x) - digamma_impl<Scalar>::run(a);
+ Scalar ax = numext::exp(logax);
+ Scalar dax_da = ax * dlogax_da;
+
+ switch (mode) {
+ case VALUE:
+ return ans * ax;
+ case DERIVATIVE:
+ return ans * dax_da + dans_da * ax;
+ case SAMPLE_DERIVATIVE:
+ return -(dans_da + ans * dlogax_da) * x;
+ }
+ }
+};
+
+template <typename Scalar, IgammaComputationMode mode>
+struct igamma_series_impl {
+ /* Computes igam(a, x) or its derivative (depending on the mode)
+ * using the series expansion of the incomplete Gamma function.
+ *
+ * Preconditions:
+ * x > 0
+ * a > 0
+ * !(x > 1 && x > a)
+ */
+ EIGEN_DEVICE_FUNC
+ static Scalar run(Scalar a, Scalar x) {
+ const Scalar zero = 0;
+ const Scalar one = 1;
+ const Scalar machep = cephes_helper<Scalar>::machep();
+
+ /* power series */
+ Scalar r = a;
+ Scalar c = one;
+ Scalar ans = one;
+
+ Scalar dc_da = zero;
+ Scalar dans_da = zero;
+
+ for (int i = 0; i < igamma_num_iterations<Scalar, mode>(); i++) {
+ r += one;
+ Scalar term = x / r;
+ Scalar dterm_da = -x / (r * r);
+ dc_da = term * dc_da + dterm_da * c;
+ dans_da += dc_da;
+ c *= term;
+ ans += c;
+
+ if (mode == VALUE) {
+ if (c <= machep * ans) {
+ break;
+ }
+ } else {
+ if (numext::abs(dc_da) <= machep * numext::abs(dans_da)) {
+ break;
+ }
+ }
+ }
+
+ /* Compute x**a * exp(-x) / gamma(a + 1) */
+ Scalar logax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a + one);
+ Scalar dlogax_da = numext::log(x) - digamma_impl<Scalar>::run(a + one);
+ Scalar ax = numext::exp(logax);
+ Scalar dax_da = ax * dlogax_da;
+
+ switch (mode) {
+ case VALUE:
+ return ans * ax;
+ case DERIVATIVE:
+ return ans * dax_da + dans_da * ax;
+ case SAMPLE_DERIVATIVE:
+ return -(dans_da + ans * dlogax_da) * x / a;
+ }
+ }
+};
+
#if !EIGEN_HAS_C99_MATH
template <typename Scalar>
@@ -535,8 +726,6 @@ struct igammac_impl {
#else
-template <typename Scalar> struct igamma_impl; // predeclare igamma_impl
-
template <typename Scalar>
struct igammac_impl {
EIGEN_DEVICE_FUNC
@@ -604,97 +793,15 @@ struct igammac_impl {
return nan;
}
- if ((numext::isnan)(a) || (numext::isnan)(x)) { // propagate nans
+ if ((numext::isnan)(a) || (numext::isnan)(x)) { // propagate nans
return nan;
}
if ((x < one) || (x < a)) {
- /* The checks above ensure that we meet the preconditions for
- * igamma_impl::Impl(), so call it, rather than igamma_impl::Run().
- * Calling Run() would also work, but in that case the compiler may not be
- * able to prove that igammac_impl::Run and igamma_impl::Run are not
- * mutually recursive. This leads to worse code, particularly on
- * platforms like nvptx, where recursion is allowed only begrudgingly.
- */
- return (one - igamma_impl<Scalar>::Impl(a, x));
- }
-
- return Impl(a, x);
- }
-
- private:
- /* igamma_impl calls igammac_impl::Impl. */
- friend struct igamma_impl<Scalar>;
-
- /* Actually computes igamc(a, x).
- *
- * Preconditions:
- * a > 0
- * x >= 1
- * x >= a
- */
- EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) {
- const Scalar zero = 0;
- const Scalar one = 1;
- const Scalar two = 2;
- const Scalar machep = cephes_helper<Scalar>::machep();
- const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
- const Scalar big = cephes_helper<Scalar>::big();
- const Scalar biginv = cephes_helper<Scalar>::biginv();
- const Scalar inf = NumTraits<Scalar>::infinity();
-
- Scalar ans, ax, c, yc, r, t, y, z;
- Scalar pk, pkm1, pkm2, qk, qkm1, qkm2;
-
- if (x == inf) return zero; // std::isinf crashes on CUDA
-
- /* Compute x**a * exp(-x) / gamma(a) */
- ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
- if (ax < -maxlog) { // underflow
- return zero;
- }
- ax = numext::exp(ax);
-
- // continued fraction
- y = one - a;
- z = x + y + one;
- c = zero;
- pkm2 = one;
- qkm2 = x;
- pkm1 = x + one;
- qkm1 = z * x;
- ans = pkm1 / qkm1;
-
- for (int i = 0; i < 2000; i++) {
- c += one;
- y += one;
- z += two;
- yc = y * c;
- pk = pkm1 * z - pkm2 * yc;
- qk = qkm1 * z - qkm2 * yc;
- if (qk != zero) {
- r = pk / qk;
- t = numext::abs((ans - r) / r);
- ans = r;
- } else {
- t = one;
- }
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
- if (numext::abs(pk) > big) {
- pkm2 *= biginv;
- pkm1 *= biginv;
- qkm2 *= biginv;
- qkm1 *= biginv;
- }
- if (t <= machep) {
- break;
- }
+ return (one - igamma_series_impl<Scalar, VALUE>::run(a, x));
}
- return (ans * ax);
+ return igammac_cf_impl<Scalar, VALUE>::run(a, x);
}
};
@@ -704,15 +811,10 @@ struct igammac_impl {
* Implementation of igamma (incomplete gamma integral), based on Cephes but requires C++11/C99 *
************************************************************************************************/
-template <typename Scalar>
-struct igamma_retval {
- typedef Scalar type;
-};
-
#if !EIGEN_HAS_C99_MATH
-template <typename Scalar>
-struct igamma_impl {
+template <typename Scalar, IgammaComputationMode mode>
+struct igamma_generic_impl {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar x) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
@@ -723,69 +825,17 @@ struct igamma_impl {
#else
-template <typename Scalar>
-struct igamma_impl {
+template <typename Scalar, IgammaComputationMode mode>
+struct igamma_generic_impl {
EIGEN_DEVICE_FUNC
static Scalar run(Scalar a, Scalar x) {
- /* igam()
- * Incomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * double a, x, y, igam();
- *
- * y = igam( a, x );
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- * x
- * -
- * 1 | | -t a-1
- * igam(a,x) = ----- | e t dt.
- * - | |
- * | (a) -
- * 0
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- * ACCURACY (double):
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 200000 3.6e-14 2.9e-15
- * IEEE 0,100 300000 9.9e-14 1.5e-14
- *
- *
- * ACCURACY (float):
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 20000 7.8e-6 5.9e-7
- *
- */
- /*
- Cephes Math Library Release 2.2: June, 1992
- Copyright 1985, 1987, 1992 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
-
-
- /* left tail of incomplete gamma function:
- *
- * inf. k
- * a -x - x
- * x e > ----------
- * - -
- * k=0 | (a+k+1)
+ /* Depending on the mode, returns
+ * - VALUE: incomplete Gamma function igamma(a, x)
+ * - DERIVATIVE: derivative of incomplete Gamma function d/da igamma(a, x)
+ * - SAMPLE_DERIVATIVE: implicit derivative of a Gamma random variable
+ * x ~ Gamma(x | a, 1), dx/da = -1 / Gamma(x | a, 1) * d igamma(a, x) / dx
*
+ * Derivatives are implemented by forward-mode differentiation.
*/
const Scalar zero = 0;
const Scalar one = 1;
@@ -797,71 +847,167 @@ struct igamma_impl {
return nan;
}
- if ((numext::isnan)(a) || (numext::isnan)(x)) { // propagate nans
+ if ((numext::isnan)(a) || (numext::isnan)(x)) { // propagate nans
return nan;
}
if ((x > one) && (x > a)) {
- /* The checks above ensure that we meet the preconditions for
- * igammac_impl::Impl(), so call it, rather than igammac_impl::Run().
- * Calling Run() would also work, but in that case the compiler may not be
- * able to prove that igammac_impl::Run and igamma_impl::Run are not
- * mutually recursive. This leads to worse code, particularly on
- * platforms like nvptx, where recursion is allowed only begrudgingly.
- */
- return (one - igammac_impl<Scalar>::Impl(a, x));
+ Scalar ret = igammac_cf_impl<Scalar, mode>::run(a, x);
+ if (mode == VALUE) {
+ return one - ret;
+ } else {
+ return -ret;
+ }
}
- return Impl(a, x);
+ return igamma_series_impl<Scalar, mode>::run(a, x);
}
+};
- private:
- /* igammac_impl calls igamma_impl::Impl. */
- friend struct igammac_impl<Scalar>;
+#endif // EIGEN_HAS_C99_MATH
- /* Actually computes igam(a, x).
+template <typename Scalar>
+struct igamma_retval {
+ typedef Scalar type;
+};
+
+template <typename Scalar>
+struct igamma_impl : igamma_generic_impl<Scalar, VALUE> {
+ /* igam()
+ * Incomplete gamma integral.
+ *
+ * The CDF of Gamma(a, 1) random variable at the point x.
+ *
+ * Accuracy estimation. For each a in [10^-2, 10^-1...10^3] we sample
+ * 50 Gamma random variables x ~ Gamma(x | a, 1), a total of 300 points.
+ * The ground truth is computed by mpmath. Mean absolute error:
+ * float: 1.26713e-05
+ * double: 2.33606e-12
+ *
+ * Cephes documentation below.
+ *
+ * SYNOPSIS:
+ *
+ * double a, x, y, igam();
+ *
+ * y = igam( a, x );
+ *
+ * DESCRIPTION:
+ *
+ * The function is defined by
+ *
+ * x
+ * -
+ * 1 | | -t a-1
+ * igam(a,x) = ----- | e t dt.
+ * - | |
+ * | (a) -
+ * 0
+ *
+ *
+ * In this implementation both arguments must be positive.
+ * The integral is evaluated by either a power series or
+ * continued fraction expansion, depending on the relative
+ * values of a and x.
+ *
+ * ACCURACY (double):
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE 0,30 200000 3.6e-14 2.9e-15
+ * IEEE 0,100 300000 9.9e-14 1.5e-14
+ *
+ *
+ * ACCURACY (float):
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE 0,30 20000 7.8e-6 5.9e-7
*
- * Preconditions:
- * x > 0
- * a > 0
- * !(x > 1 && x > a)
*/
- EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) {
- const Scalar zero = 0;
- const Scalar one = 1;
- const Scalar machep = cephes_helper<Scalar>::machep();
- const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
+ /*
+ Cephes Math Library Release 2.2: June, 1992
+ Copyright 1985, 1987, 1992 by Stephen L. Moshier
+ Direct inquiries to 30 Frost Street, Cambridge, MA 02140
+ */
- Scalar ans, ax, c, r;
+ /* left tail of incomplete gamma function:
+ *
+ * inf. k
+ * a -x - x
+ * x e > ----------
+ * - -
+ * k=0 | (a+k+1)
+ *
+ */
+};
- /* Compute x**a * exp(-x) / gamma(a) */
- ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
- if (ax < -maxlog) {
- // underflow
- return zero;
- }
- ax = numext::exp(ax);
+template <typename Scalar>
+struct igamma_der_a_retval : igamma_retval<Scalar> {};
- /* power series */
- r = a;
- c = one;
- ans = one;
+template <typename Scalar>
+struct igamma_der_a_impl : igamma_generic_impl<Scalar, DERIVATIVE> {
+ /* Derivative of the incomplete Gamma function with respect to a.
+ *
+ * Computes d/da igamma(a, x) by forward differentiation of the igamma code.
+ *
+ * Accuracy estimation. For each a in [10^-2, 10^-1...10^3] we sample
+ * 50 Gamma random variables x ~ Gamma(x | a, 1), a total of 300 points.
+ * The ground truth is computed by mpmath. Mean absolute error:
+ * float: 6.17992e-07
+ * double: 4.60453e-12
+ *
+ * Reference:
+ * R. Moore. "Algorithm AS 187: Derivatives of the incomplete gamma
+ * integral". Journal of the Royal Statistical Society. 1982
+ */
+};
- for (int i = 0; i < 2000; i++) {
- r += one;
- c *= x/r;
- ans += c;
- if (c/ans <= machep) {
- break;
- }
- }
+template <typename Scalar>
+struct gamma_sample_der_alpha_retval : igamma_retval<Scalar> {};
- return (ans * ax / a);
- }
+template <typename Scalar>
+struct gamma_sample_der_alpha_impl
+ : igamma_generic_impl<Scalar, SAMPLE_DERIVATIVE> {
+ /* Derivative of a Gamma random variable sample with respect to alpha.
+ *
+ * Consider a sample of a Gamma random variable with the concentration
+ * parameter alpha: sample ~ Gamma(alpha, 1). The reparameterization
+ * derivative that we want to compute is dsample / dalpha =
+ * d igammainv(alpha, u) / dalpha, where u = igamma(alpha, sample).
+ * However, this formula is numerically unstable and expensive, so instead
+ * we use implicit differentiation:
+ *
+ * igamma(alpha, sample) = u, where u ~ Uniform(0, 1).
+ * Apply d / dalpha to both sides:
+ * d igamma(alpha, sample) / dalpha
+ * + d igamma(alpha, sample) / dsample * dsample/dalpha = 0
+ * d igamma(alpha, sample) / dalpha
+ * + Gamma(sample | alpha, 1) dsample / dalpha = 0
+ * dsample/dalpha = - (d igamma(alpha, sample) / dalpha)
+ * / Gamma(sample | alpha, 1)
+ *
+ * Here Gamma(sample | alpha, 1) is the PDF of the Gamma distribution
+ * (note that the derivative of the CDF w.r.t. sample is the PDF).
+ * See the reference below for more details.
+ *
+ * The derivative of igamma(alpha, sample) is computed by forward
+ * differentiation of the igamma code. Division by the Gamma PDF is performed
+ * in the same code, increasing the accuracy and speed due to cancellation
+ * of some terms.
+ *
+ * Accuracy estimation. For each alpha in [10^-2, 10^-1...10^3] we sample
+ * 50 Gamma random variables sample ~ Gamma(sample | alpha, 1), a total of 300
+ * points. The ground truth is computed by mpmath. Mean absolute error:
+ * float: 2.1686e-06
+ * double: 1.4774e-12
+ *
+ * Reference:
+ * M. Figurnov, S. Mohamed, A. Mnih "Implicit Reparameterization Gradients".
+ * 2018
+ */
};
-#endif // EIGEN_HAS_C99_MATH
-
/*****************************************************************************
* Implementation of Riemann zeta function of two arguments, based on Cephes *
*****************************************************************************/
@@ -1951,6 +2097,18 @@ EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar)
}
template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma_der_a, Scalar)
+ igamma_der_a(const Scalar& a, const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(igamma_der_a, Scalar)::run(a, x);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(gamma_sample_der_alpha, Scalar)
+ gamma_sample_der_alpha(const Scalar& a, const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(gamma_sample_der_alpha, Scalar)::run(a, x);
+}
+
+template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar)
igammac(const Scalar& a, const Scalar& x) {
return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x);
diff --git a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h
index 4c176716b..465f41d54 100644
--- a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h
+++ b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h
@@ -42,6 +42,21 @@ Packet perfc(const Packet& a) { using numext::erfc; return erfc(a); }
template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Packet pigamma(const Packet& a, const Packet& x) { using numext::igamma; return igamma(a, x); }
+/** \internal \returns the derivative of the incomplete gamma function
+ * igamma_der_a(\a a, \a x) */
+template <typename Packet>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pigamma_der_a(const Packet& a, const Packet& x) {
+ using numext::igamma_der_a; return igamma_der_a(a, x);
+}
+
+/** \internal \returns compute the derivative of the sample
+ * of Gamma(alpha, 1) random variable with respect to the parameter a
+ * gamma_sample_der_alpha(\a alpha, \a sample) */
+template <typename Packet>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet pgamma_sample_der_alpha(const Packet& alpha, const Packet& sample) {
+ using numext::gamma_sample_der_alpha; return gamma_sample_der_alpha(alpha, sample);
+}
+
/** \internal \returns the complementary incomplete gamma function igammac(\a a, \a x) */
template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Packet pigammac(const Packet& a, const Packet& x) { using numext::igammac; return igammac(a, x); }
diff --git a/unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h b/unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h
index c25fea0b3..020ac1b62 100644
--- a/unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h
+++ b/unsupported/Eigen/src/SpecialFunctions/arch/CUDA/CudaSpecialFunctions.h
@@ -120,6 +120,41 @@ double2 pigamma<double2>(const double2& a, const double2& x)
return make_double2(igamma(a.x, x.x), igamma(a.y, x.y));
}
+template <>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pigamma_der_a<float4>(
+ const float4& a, const float4& x) {
+ using numext::igamma_der_a;
+ return make_float4(igamma_der_a(a.x, x.x), igamma_der_a(a.y, x.y),
+ igamma_der_a(a.z, x.z), igamma_der_a(a.w, x.w));
+}
+
+template <>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2
+pigamma_der_a<double2>(const double2& a, const double2& x) {
+ using numext::igamma_der_a;
+ return make_double2(igamma_der_a(a.x, x.x), igamma_der_a(a.y, x.y));
+}
+
+template <>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pgamma_sample_der_alpha<float4>(
+ const float4& alpha, const float4& sample) {
+ using numext::gamma_sample_der_alpha;
+ return make_float4(
+ gamma_sample_der_alpha(alpha.x, sample.x),
+ gamma_sample_der_alpha(alpha.y, sample.y),
+ gamma_sample_der_alpha(alpha.z, sample.z),
+ gamma_sample_der_alpha(alpha.w, sample.w));
+}
+
+template <>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2
+pgamma_sample_der_alpha<double2>(const double2& alpha, const double2& sample) {
+ using numext::gamma_sample_der_alpha;
+ return make_double2(
+ gamma_sample_der_alpha(alpha.x, sample.x),
+ gamma_sample_der_alpha(alpha.y, sample.y));
+}
+
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
float4 pigammac<float4>(const float4& a, const float4& x)
{
diff --git a/unsupported/test/cxx11_tensor_cuda.cu b/unsupported/test/cxx11_tensor_cuda.cu
index 63d0a345a..f238ed5be 100644
--- a/unsupported/test/cxx11_tensor_cuda.cu
+++ b/unsupported/test/cxx11_tensor_cuda.cu
@@ -1318,6 +1318,157 @@ void test_cuda_i1e()
cudaFree(d_out);
}
+template <typename Scalar>
+void test_cuda_igamma_der_a()
+{
+ Tensor<Scalar, 1> in_x(30);
+ Tensor<Scalar, 1> in_a(30);
+ Tensor<Scalar, 1> out(30);
+ Tensor<Scalar, 1> expected_out(30);
+ out.setZero();
+
+ Array<Scalar, 1, Dynamic> in_a_array(30);
+ Array<Scalar, 1, Dynamic> in_x_array(30);
+ Array<Scalar, 1, Dynamic> expected_out_array(30);
+
+ // See special_functions.cpp for the Python code that generates the test data.
+
+ in_a_array << 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 1.0, 1.0,
+ 1.0, 1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 10.0, 100.0, 100.0, 100.0, 100.0,
+ 100.0, 1000.0, 1000.0, 1000.0, 1000.0, 1000.0;
+
+ in_x_array << 1.25668890405e-26, 1.17549435082e-38, 1.20938905072e-05,
+ 1.17549435082e-38, 1.17549435082e-38, 5.66572070696e-16, 0.0132865061065,
+ 0.0200034203853, 6.29263709118e-17, 1.37160367764e-06, 0.333412038288,
+ 1.18135687766, 0.580629033777, 0.170631439426, 0.786686768458,
+ 7.63873279537, 13.1944344379, 11.896042354, 10.5830172417, 10.5020942233,
+ 92.8918587747, 95.003720371, 86.3715926467, 96.0330217672, 82.6389930677,
+ 968.702906754, 969.463546828, 1001.79726022, 955.047416547, 1044.27458568;
+
+ expected_out_array << -32.7256441441, -36.4394150514, -9.66467612263,
+ -36.4394150514, -36.4394150514, -1.0891900302, -2.66351229645,
+ -2.48666868596, -0.929700494428, -3.56327722764, -0.455320135314,
+ -0.391437214323, -0.491352055991, -0.350454834292, -0.471773162921,
+ -0.104084440522, -0.0723646747909, -0.0992828975532, -0.121638215446,
+ -0.122619605294, -0.0317670267286, -0.0359974812869, -0.0154359225363,
+ -0.0375775365921, -0.00794899153653, -0.00777303219211, -0.00796085782042,
+ -0.0125850719397, -0.00455500206958, -0.00476436993148;
+
+ for (int i = 0; i < 30; ++i) {
+ in_x(i) = in_x_array(i);
+ in_a(i) = in_a_array(i);
+ expected_out(i) = expected_out_array(i);
+ }
+
+ std::size_t bytes = in_x.size() * sizeof(Scalar);
+
+ Scalar* d_a;
+ Scalar* d_x;
+ Scalar* d_out;
+ cudaMalloc((void**)(&d_a), bytes);
+ cudaMalloc((void**)(&d_x), bytes);
+ cudaMalloc((void**)(&d_out), bytes);
+
+ cudaMemcpy(d_a, in_a.data(), bytes, cudaMemcpyHostToDevice);
+ cudaMemcpy(d_x, in_x.data(), bytes, cudaMemcpyHostToDevice);
+
+ Eigen::CudaStreamDevice stream;
+ Eigen::GpuDevice gpu_device(&stream);
+
+ Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_a(d_a, 30);
+ Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_x(d_x, 30);
+ Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 30);
+
+ gpu_out.device(gpu_device) = gpu_a.igamma_der_a(gpu_x);
+
+ assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost,
+ gpu_device.stream()) == cudaSuccess);
+ assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
+
+ for (int i = 0; i < 30; ++i) {
+ VERIFY_IS_APPROX(out(i), expected_out(i));
+ }
+
+ cudaFree(d_a);
+ cudaFree(d_x);
+ cudaFree(d_out);
+}
+
+template <typename Scalar>
+void test_cuda_gamma_sample_der_alpha()
+{
+ Tensor<Scalar, 1> in_alpha(30);
+ Tensor<Scalar, 1> in_sample(30);
+ Tensor<Scalar, 1> out(30);
+ Tensor<Scalar, 1> expected_out(30);
+ out.setZero();
+
+ Array<Scalar, 1, Dynamic> in_alpha_array(30);
+ Array<Scalar, 1, Dynamic> in_sample_array(30);
+ Array<Scalar, 1, Dynamic> expected_out_array(30);
+
+ // See special_functions.cpp for the Python code that generates the test data.
+
+ in_alpha_array << 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 1.0,
+ 1.0, 1.0, 1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 10.0, 100.0, 100.0, 100.0,
+ 100.0, 100.0, 1000.0, 1000.0, 1000.0, 1000.0, 1000.0;
+
+ in_sample_array << 1.25668890405e-26, 1.17549435082e-38, 1.20938905072e-05,
+ 1.17549435082e-38, 1.17549435082e-38, 5.66572070696e-16, 0.0132865061065,
+ 0.0200034203853, 6.29263709118e-17, 1.37160367764e-06, 0.333412038288,
+ 1.18135687766, 0.580629033777, 0.170631439426, 0.786686768458,
+ 7.63873279537, 13.1944344379, 11.896042354, 10.5830172417, 10.5020942233,
+ 92.8918587747, 95.003720371, 86.3715926467, 96.0330217672, 82.6389930677,
+ 968.702906754, 969.463546828, 1001.79726022, 955.047416547, 1044.27458568;
+
+ expected_out_array << 7.42424742367e-23, 1.02004297287e-34, 0.0130155240738,
+ 1.02004297287e-34, 1.02004297287e-34, 1.96505168277e-13, 0.525575786243,
+ 0.713903991771, 2.32077561808e-14, 0.000179348049886, 0.635500453302,
+ 1.27561284917, 0.878125852156, 0.41565819538, 1.03606488534,
+ 0.885964824887, 1.16424049334, 1.10764479598, 1.04590810812,
+ 1.04193666963, 0.965193152414, 0.976217589464, 0.93008035061,
+ 0.98153216096, 0.909196397698, 0.98434963993, 0.984738050206,
+ 1.00106492525, 0.97734200649, 1.02198794179;
+
+ for (int i = 0; i < 30; ++i) {
+ in_alpha(i) = in_alpha_array(i);
+ in_sample(i) = in_sample_array(i);
+ expected_out(i) = expected_out_array(i);
+ }
+
+ std::size_t bytes = in_alpha.size() * sizeof(Scalar);
+
+ Scalar* d_alpha;
+ Scalar* d_sample;
+ Scalar* d_out;
+ cudaMalloc((void**)(&d_alpha), bytes);
+ cudaMalloc((void**)(&d_sample), bytes);
+ cudaMalloc((void**)(&d_out), bytes);
+
+ cudaMemcpy(d_alpha, in_alpha.data(), bytes, cudaMemcpyHostToDevice);
+ cudaMemcpy(d_sample, in_sample.data(), bytes, cudaMemcpyHostToDevice);
+
+ Eigen::CudaStreamDevice stream;
+ Eigen::GpuDevice gpu_device(&stream);
+
+ Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_alpha(d_alpha, 30);
+ Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_sample(d_sample, 30);
+ Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 30);
+
+ gpu_out.device(gpu_device) = gpu_alpha.gamma_sample_der_alpha(gpu_sample);
+
+ assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost,
+ gpu_device.stream()) == cudaSuccess);
+ assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
+
+ for (int i = 0; i < 30; ++i) {
+ VERIFY_IS_APPROX(out(i), expected_out(i));
+ }
+
+ cudaFree(d_alpha);
+ cudaFree(d_sample);
+ cudaFree(d_out);
+}
void test_cxx11_tensor_cuda()
{
@@ -1396,5 +1547,11 @@ void test_cxx11_tensor_cuda()
CALL_SUBTEST_6(test_cuda_i1e<float>());
CALL_SUBTEST_6(test_cuda_i1e<double>());
+
+ CALL_SUBTEST_6(test_cuda_igamma_der_a<float>());
+ CALL_SUBTEST_6(test_cuda_igamma_der_a<double>());
+
+ CALL_SUBTEST_6(test_cuda_gamma_sample_der_alpha<float>());
+ CALL_SUBTEST_6(test_cuda_gamma_sample_der_alpha<double>());
#endif
}
diff --git a/unsupported/test/special_functions.cpp b/unsupported/test/special_functions.cpp
index 0729dd4dc..802e16150 100644
--- a/unsupported/test/special_functions.cpp
+++ b/unsupported/test/special_functions.cpp
@@ -376,6 +376,100 @@ template<typename ArrayType> void array_special_functions()
CALL_SUBTEST(res = i1e(x);
verify_component_wise(res, expected););
}
+
+ /* Code to generate the data for the following two test cases.
+ N = 5
+ np.random.seed(3)
+
+ a = np.logspace(-2, 3, 6)
+ a = np.ravel(np.tile(np.reshape(a, [-1, 1]), [1, N]))
+ x = np.random.gamma(a, 1.0)
+ x = np.maximum(x, np.finfo(np.float32).tiny)
+
+ def igamma(a, x):
+ return mpmath.gammainc(a, 0, x, regularized=True)
+
+ def igamma_der_a(a, x):
+ res = mpmath.diff(lambda a_prime: igamma(a_prime, x), a)
+ return np.float64(res)
+
+ def gamma_sample_der_alpha(a, x):
+ igamma_x = igamma(a, x)
+ def igammainv_of_igamma(a_prime):
+ return mpmath.findroot(lambda x_prime: igamma(a_prime, x_prime) -
+ igamma_x, x, solver='newton')
+ return np.float64(mpmath.diff(igammainv_of_igamma, a))
+
+ v_igamma_der_a = np.vectorize(igamma_der_a)(a, x)
+ v_gamma_sample_der_alpha = np.vectorize(gamma_sample_der_alpha)(a, x)
+ */
+
+#if EIGEN_HAS_C99_MATH
+ // Test igamma_der_a
+ {
+ ArrayType a(30);
+ ArrayType x(30);
+ ArrayType res(30);
+ ArrayType v(30);
+
+ a << 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0,
+ 1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 10.0, 100.0, 100.0, 100.0, 100.0,
+ 100.0, 1000.0, 1000.0, 1000.0, 1000.0, 1000.0;
+
+ x << 1.25668890405e-26, 1.17549435082e-38, 1.20938905072e-05,
+ 1.17549435082e-38, 1.17549435082e-38, 5.66572070696e-16,
+ 0.0132865061065, 0.0200034203853, 6.29263709118e-17, 1.37160367764e-06,
+ 0.333412038288, 1.18135687766, 0.580629033777, 0.170631439426,
+ 0.786686768458, 7.63873279537, 13.1944344379, 11.896042354,
+ 10.5830172417, 10.5020942233, 92.8918587747, 95.003720371,
+ 86.3715926467, 96.0330217672, 82.6389930677, 968.702906754,
+ 969.463546828, 1001.79726022, 955.047416547, 1044.27458568;
+
+ v << -32.7256441441, -36.4394150514, -9.66467612263, -36.4394150514,
+ -36.4394150514, -1.0891900302, -2.66351229645, -2.48666868596,
+ -0.929700494428, -3.56327722764, -0.455320135314, -0.391437214323,
+ -0.491352055991, -0.350454834292, -0.471773162921, -0.104084440522,
+ -0.0723646747909, -0.0992828975532, -0.121638215446, -0.122619605294,
+ -0.0317670267286, -0.0359974812869, -0.0154359225363, -0.0375775365921,
+ -0.00794899153653, -0.00777303219211, -0.00796085782042,
+ -0.0125850719397, -0.00455500206958, -0.00476436993148;
+
+ CALL_SUBTEST(res = igamma_der_a(a, x); verify_component_wise(res, v););
+ }
+
+ // Test gamma_sample_der_alpha
+ {
+ ArrayType alpha(30);
+ ArrayType sample(30);
+ ArrayType res(30);
+ ArrayType v(30);
+
+ alpha << 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 1.0, 1.0,
+ 1.0, 1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 10.0, 100.0, 100.0, 100.0, 100.0,
+ 100.0, 1000.0, 1000.0, 1000.0, 1000.0, 1000.0;
+
+ sample << 1.25668890405e-26, 1.17549435082e-38, 1.20938905072e-05,
+ 1.17549435082e-38, 1.17549435082e-38, 5.66572070696e-16,
+ 0.0132865061065, 0.0200034203853, 6.29263709118e-17, 1.37160367764e-06,
+ 0.333412038288, 1.18135687766, 0.580629033777, 0.170631439426,
+ 0.786686768458, 7.63873279537, 13.1944344379, 11.896042354,
+ 10.5830172417, 10.5020942233, 92.8918587747, 95.003720371,
+ 86.3715926467, 96.0330217672, 82.6389930677, 968.702906754,
+ 969.463546828, 1001.79726022, 955.047416547, 1044.27458568;
+
+ v << 7.42424742367e-23, 1.02004297287e-34, 0.0130155240738,
+ 1.02004297287e-34, 1.02004297287e-34, 1.96505168277e-13, 0.525575786243,
+ 0.713903991771, 2.32077561808e-14, 0.000179348049886, 0.635500453302,
+ 1.27561284917, 0.878125852156, 0.41565819538, 1.03606488534,
+ 0.885964824887, 1.16424049334, 1.10764479598, 1.04590810812,
+ 1.04193666963, 0.965193152414, 0.976217589464, 0.93008035061,
+ 0.98153216096, 0.909196397698, 0.98434963993, 0.984738050206,
+ 1.00106492525, 0.97734200649, 1.02198794179;
+
+ CALL_SUBTEST(res = gamma_sample_der_alpha(alpha, sample);
+ verify_component_wise(res, v););
+ }
+#endif // EIGEN_HAS_C99_MATH
}
void test_special_functions()