aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Thomas Capricelli <orzel@freehackers.org>2010-02-21 12:41:37 +0100
committerGravatar Thomas Capricelli <orzel@freehackers.org>2010-02-21 12:41:37 +0100
commita7d085eb4ecedd45f091eeadb93277c7f3878b27 (patch)
tree466060eaab83a18c54c8573fc1d5b6913699374d
parent608959aa6fce375abb92872350267074a1d90283 (diff)
NonLinearOptimization : clean 'mode' handling from the old minpack code :
* this is actually a boolean, not an int * use a better name * can be set at initialization time instead of bloating all methods signatures
-rw-r--r--unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h108
-rw-r--r--unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h95
-rw-r--r--unsupported/test/NonLinearOptimization.cpp6
3 files changed, 68 insertions, 141 deletions
diff --git a/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h b/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h
index 0754a426b..35dc332e0 100644
--- a/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h
+++ b/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h
@@ -57,7 +57,7 @@ class HybridNonLinearSolver
{
public:
HybridNonLinearSolver(FunctorType &_functor)
- : functor(_functor) { nfev=njev=iter = 0; fnorm= 0.; }
+ : functor(_functor) { nfev=njev=iter = 0; fnorm= 0.; useExternalScaling=false;}
struct Parameters {
Parameters()
@@ -84,36 +84,18 @@ public:
const Scalar tol = ei_sqrt(NumTraits<Scalar>::epsilon())
);
- HybridNonLinearSolverSpace::Status solveInit(
- FVectorType &x,
- const int mode=1
- );
- HybridNonLinearSolverSpace::Status solveOneStep(
- FVectorType &x,
- const int mode=1
- );
- HybridNonLinearSolverSpace::Status solve(
- FVectorType &x,
- const int mode=1
- );
+ HybridNonLinearSolverSpace::Status solveInit(FVectorType &x);
+ HybridNonLinearSolverSpace::Status solveOneStep(FVectorType &x);
+ HybridNonLinearSolverSpace::Status solve(FVectorType &x);
HybridNonLinearSolverSpace::Status hybrd1(
FVectorType &x,
const Scalar tol = ei_sqrt(NumTraits<Scalar>::epsilon())
);
- HybridNonLinearSolverSpace::Status solveNumericalDiffInit(
- FVectorType &x,
- const int mode=1
- );
- HybridNonLinearSolverSpace::Status solveNumericalDiffOneStep(
- FVectorType &x,
- const int mode=1
- );
- HybridNonLinearSolverSpace::Status solveNumericalDiff(
- FVectorType &x,
- const int mode=1
- );
+ HybridNonLinearSolverSpace::Status solveNumericalDiffInit(FVectorType &x);
+ HybridNonLinearSolverSpace::Status solveNumericalDiffOneStep(FVectorType &x);
+ HybridNonLinearSolverSpace::Status solveNumericalDiff(FVectorType &x);
void resetParameters(void) { parameters = Parameters(); }
Parameters parameters;
@@ -124,6 +106,7 @@ public:
int njev;
int iter;
Scalar fnorm;
+ bool useExternalScaling;
private:
FunctorType &functor;
int n;
@@ -160,18 +143,13 @@ HybridNonLinearSolver<FunctorType,Scalar>::hybrj1(
parameters.maxfev = 100*(n+1);
parameters.xtol = tol;
diag.setConstant(n, 1.);
- return solve(
- x,
- 2
- );
+ useExternalScaling = true;
+ return solve(x);
}
template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solveInit(
- FVectorType &x,
- const int mode
- )
+HybridNonLinearSolver<FunctorType,Scalar>::solveInit(FVectorType &x)
{
n = x.size();
@@ -179,9 +157,9 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveInit(
fvec.resize(n);
qtf.resize(n);
fjac.resize(n, n);
- if (mode != 2)
+ if (!useExternalScaling)
diag.resize(n);
- assert( (mode!=2 || diag.size()==n) || "When using mode==2, the caller must provide a valid 'diag'");
+ assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
/* Function Body */
nfev = 0;
@@ -190,7 +168,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveInit(
/* check the input parameters for errors. */
if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0. )
return HybridNonLinearSolverSpace::ImproperInputParameters;
- if (mode == 2)
+ if (useExternalScaling)
for (int j = 0; j < n; ++j)
if (diag[j] <= 0.)
return HybridNonLinearSolverSpace::ImproperInputParameters;
@@ -214,10 +192,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveInit(
template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(
- FVectorType &x,
- const int mode
- )
+HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(FVectorType &x)
{
int j;
std::vector<PlanarRotation<Scalar> > v_givens(n), w_givens(n);
@@ -231,10 +206,10 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(
wa2 = fjac.colwise().blueNorm();
- /* on the first iteration and if mode is 1, scale according */
+ /* on the first iteration and if external scaling is not used, scale according */
/* to the norms of the columns of the initial jacobian. */
if (iter == 1) {
- if (mode != 2)
+ if (!useExternalScaling)
for (j = 0; j < n; ++j)
diag[j] = (wa2[j]==0.) ? 1. : wa2[j];
@@ -260,7 +235,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(
qtf = fjac.transpose() * fvec;
/* rescale if necessary. */
- if (mode != 2)
+ if (!useExternalScaling)
diag = diag.cwiseMax(wa2);
while (true) {
@@ -372,14 +347,11 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(
template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solve(
- FVectorType &x,
- const int mode
- )
+HybridNonLinearSolver<FunctorType,Scalar>::solve(FVectorType &x)
{
- HybridNonLinearSolverSpace::Status status = solveInit(x, mode);
+ HybridNonLinearSolverSpace::Status status = solveInit(x);
while (status==HybridNonLinearSolverSpace::Running)
- status = solveOneStep(x, mode);
+ status = solveOneStep(x);
return status;
}
@@ -403,18 +375,13 @@ HybridNonLinearSolver<FunctorType,Scalar>::hybrd1(
parameters.xtol = tol;
diag.setConstant(n, 1.);
- return solveNumericalDiff(
- x,
- 2
- );
+ useExternalScaling = true;
+ return solveNumericalDiff(x);
}
template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(
- FVectorType &x,
- const int mode
- )
+HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(FVectorType &x)
{
n = x.size();
@@ -425,10 +392,9 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(
qtf.resize(n);
fjac.resize(n, n);
fvec.resize(n);
- if (mode != 2)
+ if (!useExternalScaling)
diag.resize(n);
- assert( (mode!=2 || diag.size()==n) || "When using mode==2, the caller must provide a valid 'diag'");
-
+ assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
/* Function Body */
nfev = 0;
@@ -437,7 +403,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(
/* check the input parameters for errors. */
if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.nb_of_subdiagonals< 0 || parameters.nb_of_superdiagonals< 0 || parameters.factor <= 0. )
return HybridNonLinearSolverSpace::ImproperInputParameters;
- if (mode == 2)
+ if (useExternalScaling)
for (int j = 0; j < n; ++j)
if (diag[j] <= 0.)
return HybridNonLinearSolverSpace::ImproperInputParameters;
@@ -461,10 +427,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(
template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(
- FVectorType &x,
- const int mode
- )
+HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(FVectorType &x)
{
int j;
std::vector<PlanarRotation<Scalar> > v_givens(n), w_givens(n);
@@ -480,10 +443,10 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(
wa2 = fjac.colwise().blueNorm();
- /* on the first iteration and if mode is 1, scale according */
+ /* on the first iteration and if external scaling is not used, scale according */
/* to the norms of the columns of the initial jacobian. */
if (iter == 1) {
- if (mode != 2)
+ if (!useExternalScaling)
for (j = 0; j < n; ++j)
diag[j] = (wa2[j]==0.) ? 1. : wa2[j];
@@ -509,7 +472,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(
qtf = fjac.transpose() * fvec;
/* rescale if necessary. */
- if (mode != 2)
+ if (!useExternalScaling)
diag = diag.cwiseMax(wa2);
while (true) {
@@ -621,14 +584,11 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(
template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
-HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(
- FVectorType &x,
- const int mode
- )
+HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(FVectorType &x)
{
- HybridNonLinearSolverSpace::Status status = solveNumericalDiffInit(x, mode);
+ HybridNonLinearSolverSpace::Status status = solveNumericalDiffInit(x);
while (status==HybridNonLinearSolverSpace::Running)
- status = solveNumericalDiffOneStep(x, mode);
+ status = solveNumericalDiffOneStep(x);
return status;
}
diff --git a/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h b/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
index f21331e3e..8bae1e131 100644
--- a/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
+++ b/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
@@ -61,7 +61,7 @@ class LevenbergMarquardt
{
public:
LevenbergMarquardt(FunctorType &_functor)
- : functor(_functor) { nfev = njev = iter = 0; fnorm=gnorm = 0.; }
+ : functor(_functor) { nfev = njev = iter = 0; fnorm = gnorm = 0.; useExternalScaling=false; }
struct Parameters {
Parameters()
@@ -87,18 +87,9 @@ public:
const Scalar tol = ei_sqrt(NumTraits<Scalar>::epsilon())
);
- LevenbergMarquardtSpace::Status minimize(
- FVectorType &x,
- const int mode=1
- );
- LevenbergMarquardtSpace::Status minimizeInit(
- FVectorType &x,
- const int mode=1
- );
- LevenbergMarquardtSpace::Status minimizeOneStep(
- FVectorType &x,
- const int mode=1
- );
+ LevenbergMarquardtSpace::Status minimize(FVectorType &x);
+ LevenbergMarquardtSpace::Status minimizeInit(FVectorType &x);
+ LevenbergMarquardtSpace::Status minimizeOneStep(FVectorType &x);
static LevenbergMarquardtSpace::Status lmdif1(
FunctorType &functor,
@@ -112,18 +103,9 @@ public:
const Scalar tol = ei_sqrt(NumTraits<Scalar>::epsilon())
);
- LevenbergMarquardtSpace::Status minimizeOptimumStorage(
- FVectorType &x,
- const int mode=1
- );
- LevenbergMarquardtSpace::Status minimizeOptimumStorageInit(
- FVectorType &x,
- const int mode=1
- );
- LevenbergMarquardtSpace::Status minimizeOptimumStorageOneStep(
- FVectorType &x,
- const int mode=1
- );
+ LevenbergMarquardtSpace::Status minimizeOptimumStorage(FVectorType &x);
+ LevenbergMarquardtSpace::Status minimizeOptimumStorageInit(FVectorType &x);
+ LevenbergMarquardtSpace::Status minimizeOptimumStorageOneStep(FVectorType &x);
void resetParameters(void) { parameters = Parameters(); }
@@ -135,6 +117,7 @@ public:
int njev;
int iter;
Scalar fnorm, gnorm;
+ bool useExternalScaling;
Scalar lm_param(void) { return par; }
private:
@@ -175,24 +158,18 @@ LevenbergMarquardt<FunctorType,Scalar>::lmder1(
template<typename FunctorType, typename Scalar>
LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimize(
- FVectorType &x,
- const int mode
- )
+LevenbergMarquardt<FunctorType,Scalar>::minimize(FVectorType &x)
{
- LevenbergMarquardtSpace::Status status = minimizeInit(x, mode);
+ LevenbergMarquardtSpace::Status status = minimizeInit(x);
do {
- status = minimizeOneStep(x, mode);
+ status = minimizeOneStep(x);
} while (status==LevenbergMarquardtSpace::Running);
return status;
}
template<typename FunctorType, typename Scalar>
LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimizeInit(
- FVectorType &x,
- const int mode
- )
+LevenbergMarquardt<FunctorType,Scalar>::minimizeInit(FVectorType &x)
{
n = x.size();
m = functor.values();
@@ -201,9 +178,9 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeInit(
wa4.resize(m);
fvec.resize(m);
fjac.resize(m, n);
- if (mode != 2)
+ if (!useExternalScaling)
diag.resize(n);
- assert( (mode!=2 || diag.size()==n) || "When using mode==2, the caller must provide a valid 'diag'");
+ assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
qtf.resize(n);
/* Function Body */
@@ -214,7 +191,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeInit(
if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
return LevenbergMarquardtSpace::ImproperInputParameters;
- if (mode == 2)
+ if (useExternalScaling)
for (int j = 0; j < n; ++j)
if (diag[j] <= 0.)
return LevenbergMarquardtSpace::ImproperInputParameters;
@@ -235,10 +212,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeInit(
template<typename FunctorType, typename Scalar>
LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
- FVectorType &x,
- const int mode
- )
+LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(FVectorType &x)
{
int j;
@@ -257,10 +231,10 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
fjac = qrfac.matrixQR();
permutation = qrfac.colsPermutation();
- /* on the first iteration and if mode is 1, scale according */
+ /* on the first iteration and if external scaling is not used, scale according */
/* to the norms of the columns of the initial jacobian. */
if (iter == 1) {
- if (mode != 2)
+ if (!useExternalScaling)
for (j = 0; j < n; ++j)
diag[j] = (wa2[j]==0.)? 1. : wa2[j];
@@ -290,7 +264,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
return LevenbergMarquardtSpace::CosinusTooSmall;
/* rescale if necessary. */
- if (mode != 2)
+ if (!useExternalScaling)
diag = diag.cwiseMax(wa2);
do {
@@ -406,10 +380,7 @@ LevenbergMarquardt<FunctorType,Scalar>::lmstr1(
template<typename FunctorType, typename Scalar>
LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageInit(
- FVectorType &x,
- const int mode
- )
+LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageInit(FVectorType &x)
{
n = x.size();
m = functor.values();
@@ -423,9 +394,9 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageInit(
// The purpose it to only use a nxn matrix, instead of mxn here, so
// that we can handle cases where m>>n :
fjac.resize(n, n);
- if (mode != 2)
+ if (!useExternalScaling)
diag.resize(n);
- assert( (mode!=2 || diag.size()==n) || "When using mode==2, the caller must provide a valid 'diag'");
+ assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
qtf.resize(n);
/* Function Body */
@@ -436,7 +407,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageInit(
if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
return LevenbergMarquardtSpace::ImproperInputParameters;
- if (mode == 2)
+ if (useExternalScaling)
for (int j = 0; j < n; ++j)
if (diag[j] <= 0.)
return LevenbergMarquardtSpace::ImproperInputParameters;
@@ -458,10 +429,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageInit(
template<typename FunctorType, typename Scalar>
LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
- FVectorType &x,
- const int mode
- )
+LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(FVectorType &x)
{
int i, j;
bool sing;
@@ -514,10 +482,10 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
}
}
- /* on the first iteration and if mode is 1, scale according */
+ /* on the first iteration and if external scaling is not used, scale according */
/* to the norms of the columns of the initial jacobian. */
if (iter == 1) {
- if (mode != 2)
+ if (!useExternalScaling)
for (j = 0; j < n; ++j)
diag[j] = (wa2[j]==0.)? 1. : wa2[j];
@@ -541,7 +509,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
return LevenbergMarquardtSpace::CosinusTooSmall;
/* rescale if necessary. */
- if (mode != 2)
+ if (!useExternalScaling)
diag = diag.cwiseMax(wa2);
do {
@@ -635,14 +603,11 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
template<typename FunctorType, typename Scalar>
LevenbergMarquardtSpace::Status
-LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(
- FVectorType &x,
- const int mode
- )
+LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(FVectorType &x)
{
- LevenbergMarquardtSpace::Status status = minimizeOptimumStorageInit(x, mode);
+ LevenbergMarquardtSpace::Status status = minimizeOptimumStorageInit(x);
do {
- status = minimizeOptimumStorageOneStep(x, mode);
+ status = minimizeOptimumStorageOneStep(x);
} while (status==LevenbergMarquardtSpace::Running);
return status;
}
diff --git a/unsupported/test/NonLinearOptimization.cpp b/unsupported/test/NonLinearOptimization.cpp
index 1313726a1..7aea7b361 100644
--- a/unsupported/test/NonLinearOptimization.cpp
+++ b/unsupported/test/NonLinearOptimization.cpp
@@ -317,7 +317,8 @@ void testHybrj()
hybrj_functor functor;
HybridNonLinearSolver<hybrj_functor> solver(functor);
solver.diag.setConstant(n, 1.);
- info = solver.solve(x, 2);
+ solver.useExternalScaling = true;
+ info = solver.solve(x);
// check return value
VERIFY( 1 == info);
@@ -401,7 +402,8 @@ void testHybrd()
solver.parameters.nb_of_subdiagonals = 1;
solver.parameters.nb_of_superdiagonals = 1;
solver.diag.setConstant(n, 1.);
- info = solver.solveNumericalDiff(x, 2);
+ solver.useExternalScaling = true;
+ info = solver.solveNumericalDiff(x);
// check return value
VERIFY( 1 == info);