aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2008-08-31 17:30:09 +0000
committerGravatar Gael Guennebaud <g.gael@free.fr>2008-08-31 17:30:09 +0000
commit994629721a3e72e83b2df597d5f78d1dc9398c09 (patch)
tree110769ae85411d5eaa6b1d85250d9bc4580058b9
parentd74916e4fe970030a1074fcf35328c3b49c1f899 (diff)
update of the geometry tutorial
-rw-r--r--doc/QuickStartGuide.dox8
-rw-r--r--doc/TutorialGeometry.dox230
-rw-r--r--doc/eigendoxy.css2
-rw-r--r--doc/examples/Tutorial_simple_example_dynamic_size.cpp9
-rw-r--r--doc/examples/Tutorial_simple_example_fixed_size.cpp3
5 files changed, 242 insertions, 10 deletions
diff --git a/doc/QuickStartGuide.dox b/doc/QuickStartGuide.dox
index b7cbf3046..96497073d 100644
--- a/doc/QuickStartGuide.dox
+++ b/doc/QuickStartGuide.dox
@@ -312,7 +312,7 @@ etc.
</td></tr>
<tr><td>
\link Cwise::min min \endlink, \link Cwise::max max \endlink, \n
-absolute value (\link Cwise::abs() abs \endlink, \link Cwise::abs2() abs2 \endlink
+absolute value (\link Cwise::abs() abs \endlink, \link Cwise::abs2() abs2 \endlink)
</td><td>\code
mat3 = mat1.cwise().min(mat2);
mat3 = mat1.cwise().max(mat2);
@@ -410,8 +410,7 @@ Read-write access to sub-matrices:
vec1 = mat1.diagonal();
mat1.diagonal() = vec1;
\endcode
- \link MatrixBase::diagonal() (more) \endlink</td></td>
- <td></td>
+ \link MatrixBase::diagonal() (more) \endlink</td><td></td><td></td></tr>
</table>
@@ -442,7 +441,7 @@ vec1.normalize();\endcode
</td></tr>
<tr><td>
\link MatrixBase::asDiagonal() make a diagonal matrix \endlink from a vector \n
-\b Note: this product is automatically optimized !</td><td>\code
+<em class="note">this product is automatically optimized !</em></td><td>\code
mat3 = mat1 * vec2.asDiagonal();\endcode
</td></tr>
<tr><td>
@@ -498,6 +497,7 @@ forces immediate evaluation of the transpose</td></tr>
/** \page TutorialGeometry Tutorial 2/3 - Geometry
\ingroup Tutorial
+ \internal
<div class="eimainmenu">\ref index "Overview"
| \ref TutorialCore "Core features"
diff --git a/doc/TutorialGeometry.dox b/doc/TutorialGeometry.dox
new file mode 100644
index 000000000..69ca78997
--- /dev/null
+++ b/doc/TutorialGeometry.dox
@@ -0,0 +1,230 @@
+namespace Eigen {
+
+/** \page TutorialGeometry Tutorial 2/3 - Geometry
+ \ingroup Tutorial
+
+<div class="eimainmenu">\ref index "Overview"
+ | \ref TutorialCore "Core features"
+ | \b Geometry
+ | \ref TutorialAdvancedLinearAlgebra "Advanced linear algebra"
+</div>
+
+In this tutorial chapter we will shortly introduce the many possibilities offered by the \ref GeometryModule "geometry module",
+namely 2D and 3D rotations and affine transformations.
+
+\b Table \b of \b contents
+ - \ref TutorialGeoElementaryTransformations
+ - \ref TutorialGeoCommontransformationAPI
+ - \ref TutorialGeoTransform
+ - \ref TutorialGeoEulerAngles
+
+\section TutorialGeoElementaryTransformations Transformation types
+
+<table class="tutorial_code">
+<tr><td>Transformation type</td><td>Typical initialization code</td></tr>
+<tr><td>
+2D rotation from an angle</td><td>\code
+Rotation2D<float> rot2(angle_in_radian);\endcode</td></tr>
+<tr><td>
+3D rotation as an angle + axis</td><td>\code
+AngleAxis<float> aa(angle_in_radian, Vector3f(ax,ay,az));\endcode</td></tr>
+<tr><td>
+3D rotation as a quaternion</td><td>\code
+Quaternion<float> q = AngleAxis<float>(angle_in_radian, axis);\endcode</td></tr>
+<tr><td>
+N-D Scaling</td><td>\code
+Scaling<float,2>(sx, sy)
+Scaling<float,3>(sx, sy, sz)
+Scaling<float,N>(s)
+Scaling<float,N>(vecN)\endcode</td></tr>
+<tr><td>
+N-D Translation</td><td>\code
+Translation<float,2>(tx, ty)
+Translation<float,3>(tx, ty, tz)
+Translation<float,N>(s)
+Translation<float,N>(vecN)\endcode</td></tr>
+<tr><td>
+N-D \ref TutorialGeoTransform "Affine transformation"</td><td>\code
+Transform<float,N> t = concatenation_of_any_transformations;
+Transform<float,3> t = Translation3f(p) * AngleAxisf(a,axis) * Scaling3f(s);\endcode</td></tr>
+<tr><td>
+N-D Linear transformations \n
+<em class=note>(pure rotations, \n scaling, etc.)</em></td><td>\code
+Matrix<float,N> t = concatenation_of_rotations_and_scalings;
+Matrix<float,2> t = Rotation2Df(a) * Scaling2f(s);
+Matrix<float,3> t = AngleAxisf(a,axis) * Scaling3f(s);\endcode</td></tr>
+</table>
+
+<strong>Notes on rotations</strong>\n To transform more than a single vector the preferred
+representations are rotation matrices, while for other usages Quaternion is the
+representation of choice as they are compact, fast and stable. Finally Rotation2D and
+AngleAxis are mainly convenient types to create other rotation objects.
+
+<strong>Notes on Translation and Scaling</strong>\n Likewise AngleAxis, these classes were
+designed to simplify the creation/initialization of linear (Matrix) and affine (Transform)
+transformations. Nevertheless, unlike AngleAxis which is inefficient to use, these classes
+might still be interesting to write generic and efficient algorithms taking as input any
+kind of transformations.
+
+Any of the above transformation types can be converted to any other types of the same nature,
+or to a more generic type. Here are come additional examples:
+<table class="tutorial_code">
+<tr><td>\code
+Rotation2Df r = Matrix2f(..); // assumes a pure rotation matrix
+AngleAxisf aa = Quaternionf(..);
+AngleAxisf aa = Matrix3f(..); // assumes a pure rotation matrix
+Matrix2f m = Rotation2Df(..);
+Matrix3f m = Quaternionf(..); Matrix3f m = Scaling3f(..);
+Transform3f m = AngleAxis3f(..); Transform3f m = Scaling3f(..);
+Transform3f m = Translation3f(..); Transform3f m = Matrix3f(..);
+\endcode</td></tr>
+</table>
+
+
+<a href="#" class="top">top</a>\section TutorialGeoCommontransformationAPI Common API across transformation types
+
+To some extent, Eigen's \ref GeometryModule "geometry module" allows you to write
+generic algorithms working on any kind of transformation representations:
+<table class="tutorial_code">
+<tr><td>
+Concatenation of two transformations</td><td>\code
+gen1 * gen2;\endcode</td></tr>
+<tr><td>Apply the transformation to a vector</td><td>\code
+vec2 = gen1 * vec1;\endcode</td></tr>
+<tr><td>Get the inverse of the transformation</td><td>\code
+gen2 = gen1.inverse();\endcode</td></tr>
+<tr><td>Spherical interpolation \n (Rotation2D and Quaternion only)</td><td>\code
+rot3 = rot1.slerp(alpha,rot2);\endcode</td></tr>
+</table>
+
+
+
+<a href="#" class="top">top</a>\section TutorialGeoTransform Affine transformations
+Generic affine transformations are represented by the Transform class which internaly
+is a (Dim+1)^2 matrix. In Eigen we have chosen to not distinghish between points and
+vectors such that all points are actually represented by displacement vectors from the
+origin ( \f$ \mathbf{p} \equiv \mathbf{p}-0 \f$ ). With that in mind, real points and
+vector distinguish when the transformation is applied.
+<table class="tutorial_code">
+<tr><td>
+Apply the transformation to a \b point </td><td>\code
+VectorNf p1, p2;
+p2 = t * p1;\endcode</td></tr>
+<tr><td>
+Apply the transformation to a \b vector </td><td>\code
+VectorNf vec1, vec2;
+vec2 = t.linear() * vec1;\endcode</td></tr>
+<tr><td>
+Apply a \em general transformation \n to a \b normal \b vector
+(<a href="http://www.cgafaq.info/wiki/Transforming_normals">explanations</a>)</td><td>\code
+VectorNf n1, n2;
+MatrixNf normalMatrix = t.linear().inverse().transpose();
+n2 = (normalMatrix * n1).normalized();\endcode</td></tr>
+<tr><td>
+Apply a transformation with \em pure \em rotation \n to a \b normal \b vector
+(no scaling, no shear)</td><td>\code
+n2 = t.linear() * n1;\endcode</td></tr>
+<tr><td>
+OpenGL compatibility \b 3D </td><td>\code
+glLoadMatrixf(t.data());\endcode</td></tr>
+<tr><td>
+OpenGL compatibility \b 2D </td><td>\code
+Transform3f aux(Transform3f::Identity);
+aux.linear().corner<2,2>(TopLeft) = t.linear();
+aux.translation().start<2>() = t.translation();
+glLoadMatrixf(aux.data());\endcode</td></tr>
+</table>
+
+\b Component \b accessors</td></tr>
+<table class="tutorial_code">
+<tr><td>
+full read-write access to the internal matrix</td><td>\code
+t.matrix() = matN1xN1; // N1 means N+1
+matN1xN1 = t.matrix();
+\endcode</td></tr>
+<tr><td>
+coefficient accessors</td><td>\code
+t(i,j) = scalar; <=> t.matrix()(i,j) = scalar;
+scalar = t(i,j); <=> scalar = t.matrix()(i,j);
+\endcode</td></tr>
+<tr><td>
+translation part</td><td>\code
+t.translation() = vecN;
+vecN = t.translation();
+\endcode</td></tr>
+<tr><td>
+linear part</td><td>\code
+t.linear() = matNxN;
+matNxN = t.linear();
+\endcode</td></tr>
+<tr><td>
+extract the rotation matrix</td><td>\code
+matNxN = t.extractRotation();
+\endcode</td></tr>
+</table>
+
+
+\b Transformation \b creation \n
+While transformation objects can be created and updated concatenating elementary transformations,
+the Transform class also features a procedural API:
+<table class="tutorial_code">
+<tr><td></td><td>\b procedurale \b API </td><td>\b equivalent \b natural \b API </td></tr>
+<tr><td>Translation</td><td>\code
+t.translate(Vector_(tx,ty,..));
+t.pretranslate(Vector_(tx,ty,..));
+\endcode</td><td>\code
+t *= Translation_(tx,ty,..);
+t = Translation_(tx,ty,..) * t;
+\endcode</td></tr>
+<tr><td>\b Rotation \n <em class="note">In 2D, any_rotation can also \n be an angle in radian</em></td><td>\code
+t.rotate(any_rotation);
+t.prerotate(any_rotation);
+\endcode</td><td>\code
+t *= any_rotation;
+t = any_rotation * t;
+\endcode</td></tr>
+<tr><td>Scaling</td><td>\code
+t.scale(Vector_(sx,sy,..));
+t.scale(s);
+t.prescale(Vector_(sx,sy,..));
+t.prescale(s);
+\endcode</td><td>\code
+t *= Scaling_(sx,sy,..);
+t *= Scaling_(s);
+t = Scaling_(sx,sy,..) * t;
+t = Scaling_(s) * t;
+\endcode</td></tr>
+<tr><td>Shear transformation \n ( \b 2D \b only ! )</td><td>\code
+t.shear(sx,sy);
+t.preshear(sx,sy);
+\endcode</td><td></td></tr>
+</table>
+
+Note that in both API, any many transformations can be concatenated in a single expression as shown in the two following equivalent examples:
+<table class="tutorial_code">
+<tr><td>\code
+t.pretranslate(..).rotate(..).translate(..).scale(..);
+\endcode</td></tr>
+<tr><td>\code
+t = Translation_(..) * t * RotationType(..) * Translation_(..) * Scaling_(..);
+\endcode</td></tr>
+</table>
+
+
+
+<a href="#" class="top">top</a>\section TutorialGeoEulerAngles Euler angles
+<table class="tutorial_code">
+<tr><td style="max-width:30em;">
+Euler angles might be convenient to create rotation objects.
+On the other hand, since there exist 24 differents convensions,they are pretty confusing to use. This example shows how
+to create a rotation matrix according to the 2-1-2 convention.</td><td>\code
+Matrix3f m;
+m = AngleAxisf(angle1, Vector3f::UnitZ())
+* * AngleAxisf(angle2, Vector3f::UnitY())
+* * AngleAxisf(angle3, Vector3f::UnitZ());
+\endcode</td></tr>
+</table>
+
+*/
+
+}
diff --git a/doc/eigendoxy.css b/doc/eigendoxy.css
index 949a1368a..1e20503c5 100644
--- a/doc/eigendoxy.css
+++ b/doc/eigendoxy.css
@@ -451,7 +451,7 @@ A.top {
A.top:hover, A.logo:hover {
background-color: transparent;font-weight : bolder;
}
-SPAN.note {
+.note {
font-size: 8.5pt;
}
diff --git a/doc/examples/Tutorial_simple_example_dynamic_size.cpp b/doc/examples/Tutorial_simple_example_dynamic_size.cpp
index 19cfa6af5..5aecc8746 100644
--- a/doc/examples/Tutorial_simple_example_dynamic_size.cpp
+++ b/doc/examples/Tutorial_simple_example_dynamic_size.cpp
@@ -7,10 +7,11 @@ int main(int, char *[])
{
for (int size=1; size<=4; ++size)
{
- MatrixXi m(size,size+1); // creates a size x (size+1) matrix of int
- for (int j=0; j<m.cols(); ++j) // loop over the columns
- for (int i=0; i<m.rows(); ++i) // loop over the rows
- m(i,j) = i+j*m.rows(); // to access matrix elements use operator (int,int)
+ MatrixXi m(size,size+1); // a size x (size+1) matrix of int
+ for (int j=0; j<m.cols(); ++j) // loop over the columns
+ for (int i=0; i<m.rows(); ++i) // loop over the rows
+ m(i,j) = i+j*m.rows(); // to access matrix elements
+ // use operator (int,int)
std::cout << m << "\n\n";
}
diff --git a/doc/examples/Tutorial_simple_example_fixed_size.cpp b/doc/examples/Tutorial_simple_example_fixed_size.cpp
index 71bf1bafb..043a84831 100644
--- a/doc/examples/Tutorial_simple_example_fixed_size.cpp
+++ b/doc/examples/Tutorial_simple_example_fixed_size.cpp
@@ -10,5 +10,6 @@ int main(int, char *[])
Matrix4f m4 = Matrix4f::Identity();
Vector4i v4(1, 2, 3, 4);
- std::cout << "m3\n" << m3 << "\nm4:\n" << m4 << "\nv4:\n" << v4 << std::endl;
+ std::cout << "m3\n" << m3 << "\nm4:\n"
+ << m4 << "\nv4:\n" << v4 << std::endl;
}