aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2011-09-11 06:30:53 +0100
committerGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2011-09-11 06:30:53 +0100
commit6b006772f1c8083df609d70218f5848bce7dfc28 (patch)
tree0e2db2d2d77187ee7567cd2664d8611f9f27f927
parent59b83c14fd2bec0b8c8afa7a2fa0357af7f0f827 (diff)
Fix LDLT::solve() if matrix singular but solution exists (bug #241).
Clarify this in docs and add regression test.
-rw-r--r--Eigen/src/Cholesky/LDLT.h27
-rw-r--r--test/cholesky.cpp17
2 files changed, 42 insertions, 2 deletions
diff --git a/Eigen/src/Cholesky/LDLT.h b/Eigen/src/Cholesky/LDLT.h
index 5e2352caa..f47b2ea56 100644
--- a/Eigen/src/Cholesky/LDLT.h
+++ b/Eigen/src/Cholesky/LDLT.h
@@ -159,9 +159,18 @@ template<typename _MatrixType, int _UpLo> class LDLT
/** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
*
+ * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> .
+ *
* \note_about_checking_solutions
*
- * \sa solveInPlace(), MatrixBase::ldlt()
+ * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
+ * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$,
+ * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
+ * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
+ * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
+ * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
+ *
+ * \sa MatrixBase::ldlt()
*/
template<typename Rhs>
inline const internal::solve_retval<LDLT, Rhs>
@@ -376,7 +385,21 @@ struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
dec().matrixL().solveInPlace(dst);
// dst = D^-1 (L^-1 P b)
- dst = dec().vectorD().asDiagonal().inverse() * dst;
+ // more precisely, use pseudo-inverse of D (see bug 241)
+ using std::abs;
+ using std::max;
+ typedef typename LDLTType::MatrixType MatrixType;
+ typedef typename LDLTType::Scalar Scalar;
+ typedef typename LDLTType::RealScalar RealScalar;
+ const Diagonal<const MatrixType> vectorD = dec().vectorD();
+ RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() * NumTraits<Scalar>::epsilon(),
+ RealScalar(1) / NumTraits<RealScalar>::highest()); // motivated by LAPACK's xGELSS
+ for (Index i = 0; i < vectorD.size(); ++i) {
+ if(abs(vectorD(i)) > tolerance)
+ dst.row(i) /= vectorD(i);
+ else
+ dst.row(i).setZero();
+ }
// dst = L^-T (D^-1 L^-1 P b)
dec().matrixU().solveInPlace(dst);
diff --git a/test/cholesky.cpp b/test/cholesky.cpp
index b2139563b..35f5a3b68 100644
--- a/test/cholesky.cpp
+++ b/test/cholesky.cpp
@@ -266,6 +266,22 @@ template<typename MatrixType> void cholesky_cplx(const MatrixType& m)
}
}
+// regression test for bug 241
+template<typename MatrixType> void cholesky_bug241(const MatrixType& m)
+{
+ eigen_assert(m.rows() == 2 && m.cols() == 2);
+
+ typedef typename MatrixType::Scalar Scalar;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
+
+ MatrixType matA;
+ matA << 1, 1, 1, 1;
+ VectorType vecB;
+ vecB << 1, 1;
+ VectorType vecX = matA.ldlt().solve(vecB);
+ VERIFY_IS_APPROX(matA * vecX, vecB);
+}
+
template<typename MatrixType> void cholesky_verify_assert()
{
MatrixType tmp;
@@ -292,6 +308,7 @@ void test_cholesky()
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( cholesky(Matrix<double,1,1>()) );
CALL_SUBTEST_3( cholesky(Matrix2d()) );
+ CALL_SUBTEST_3( cholesky_bug241(Matrix2d()) );
CALL_SUBTEST_4( cholesky(Matrix3f()) );
CALL_SUBTEST_5( cholesky(Matrix4d()) );
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);