aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Konstantinos Margaritis <konstantinos.margaritis@freevec.org>2014-09-21 14:02:51 +0300
committerGravatar Konstantinos Margaritis <konstantinos.margaritis@freevec.org>2014-09-21 14:02:51 +0300
commit60e093a9dce2f8d4c0f3b2ea3e0386d5f01bff8d (patch)
tree05442eeff0bcfe7fe85ce59cf5fa72aa06ee2a07
parent56408504e4e3fa5f9c59d9edac14ca1ba1255e5a (diff)
parent03dd4dd91a5d8963f56eebe3b9d2eb924bc06e02 (diff)
Merged eigen/eigen into default
-rw-r--r--CMakeLists.txt2
-rw-r--r--Eigen/Cholesky1
-rw-r--r--Eigen/CholmodSupport4
-rw-r--r--Eigen/Core21
-rw-r--r--Eigen/IterativeLinearSolvers4
-rw-r--r--Eigen/LU3
-rw-r--r--Eigen/PaStiXSupport4
-rw-r--r--Eigen/QR1
-rw-r--r--Eigen/SPQRSupport2
-rw-r--r--Eigen/SVD2
-rw-r--r--Eigen/SparseCholesky2
-rw-r--r--Eigen/SparseCore16
-rw-r--r--Eigen/SparseLU3
-rw-r--r--Eigen/SparseQR3
-rw-r--r--Eigen/SuperLUSupport4
-rw-r--r--Eigen/UmfPackSupport3
-rw-r--r--Eigen/src/Cholesky/LDLT.h86
-rw-r--r--Eigen/src/Cholesky/LLT.h32
-rw-r--r--Eigen/src/CholmodSupport/CholmodSupport.h76
-rw-r--r--Eigen/src/Core/Array.h18
-rw-r--r--Eigen/src/Core/ArrayBase.h23
-rw-r--r--Eigen/src/Core/ArrayWrapper.h12
-rw-r--r--Eigen/src/Core/Assign.h558
-rw-r--r--Eigen/src/Core/AssignEvaluator.h380
-rw-r--r--Eigen/src/Core/BandMatrix.h19
-rw-r--r--Eigen/src/Core/Block.h32
-rw-r--r--Eigen/src/Core/BooleanRedux.h32
-rw-r--r--Eigen/src/Core/CoreEvaluators.h778
-rw-r--r--Eigen/src/Core/CwiseBinaryOp.h109
-rw-r--r--Eigen/src/Core/CwiseNullaryOp.h7
-rw-r--r--Eigen/src/Core/CwiseUnaryOp.h49
-rw-r--r--Eigen/src/Core/CwiseUnaryView.h37
-rw-r--r--Eigen/src/Core/DenseBase.h38
-rw-r--r--Eigen/src/Core/DenseCoeffsBase.h169
-rw-r--r--Eigen/src/Core/Diagonal.h3
-rw-r--r--Eigen/src/Core/DiagonalMatrix.h62
-rw-r--r--Eigen/src/Core/DiagonalProduct.h106
-rw-r--r--Eigen/src/Core/Dot.h7
-rw-r--r--Eigen/src/Core/EigenBase.h6
-rw-r--r--Eigen/src/Core/Fuzzy.h4
-rw-r--r--Eigen/src/Core/GeneralProduct.h426
-rw-r--r--Eigen/src/Core/Inverse.h130
-rw-r--r--Eigen/src/Core/Map.h15
-rw-r--r--Eigen/src/Core/MapBase.h8
-rw-r--r--Eigen/src/Core/MathFunctions.h39
-rw-r--r--Eigen/src/Core/Matrix.h3
-rw-r--r--Eigen/src/Core/MatrixBase.h27
-rw-r--r--Eigen/src/Core/NoAlias.h55
-rw-r--r--Eigen/src/Core/PermutationMatrix.h92
-rw-r--r--Eigen/src/Core/PlainObjectBase.h54
-rw-r--r--Eigen/src/Core/Product.h170
-rw-r--r--Eigen/src/Core/ProductBase.h247
-rw-r--r--Eigen/src/Core/ProductEvaluators.h866
-rw-r--r--Eigen/src/Core/Redux.h119
-rw-r--r--Eigen/src/Core/Ref.h6
-rw-r--r--Eigen/src/Core/Replicate.h6
-rw-r--r--Eigen/src/Core/ReturnByValue.h34
-rw-r--r--Eigen/src/Core/Reverse.h10
-rw-r--r--Eigen/src/Core/Select.h5
-rw-r--r--Eigen/src/Core/SelfAdjointView.h165
-rw-r--r--Eigen/src/Core/SelfCwiseBinaryOp.h185
-rw-r--r--Eigen/src/Core/Solve.h152
-rw-r--r--Eigen/src/Core/SolveTriangular.h10
-rw-r--r--Eigen/src/Core/StableNorm.h22
-rw-r--r--Eigen/src/Core/Stride.h4
-rw-r--r--Eigen/src/Core/Swap.h161
-rw-r--r--Eigen/src/Core/Transpose.h84
-rw-r--r--Eigen/src/Core/TriangularMatrix.h869
-rw-r--r--Eigen/src/Core/VectorwiseOp.h12
-rw-r--r--Eigen/src/Core/Visitor.h44
-rw-r--r--Eigen/src/Core/arch/AVX/PacketMath.h4
-rw-r--r--Eigen/src/Core/arch/NEON/PacketMath.h4
-rw-r--r--Eigen/src/Core/functors/AssignmentFunctors.h26
-rw-r--r--Eigen/src/Core/functors/BinaryFunctors.h14
-rw-r--r--Eigen/src/Core/products/CoeffBasedProduct.h452
-rw-r--r--Eigen/src/Core/products/GeneralMatrixMatrix.h141
-rw-r--r--Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h14
-rw-r--r--Eigen/src/Core/products/GeneralMatrixMatrix_MKL.h2
-rw-r--r--Eigen/src/Core/products/SelfadjointMatrixMatrix.h55
-rw-r--r--Eigen/src/Core/products/SelfadjointMatrixVector.h85
-rw-r--r--Eigen/src/Core/products/TriangularMatrixMatrix.h43
-rw-r--r--Eigen/src/Core/products/TriangularMatrixMatrix_MKL.h4
-rw-r--r--Eigen/src/Core/products/TriangularMatrixVector.h126
-rw-r--r--Eigen/src/Core/util/Constants.h30
-rw-r--r--Eigen/src/Core/util/ForwardDeclarations.h41
-rw-r--r--Eigen/src/Core/util/MKL_support.h32
-rw-r--r--Eigen/src/Core/util/Macros.h16
-rw-r--r--Eigen/src/Core/util/Meta.h12
-rw-r--r--Eigen/src/Core/util/StaticAssert.h6
-rw-r--r--Eigen/src/Core/util/XprHelper.h178
-rw-r--r--Eigen/src/Eigenvalues/Tridiagonalization.h4
-rw-r--r--Eigen/src/Geometry/AlignedBox.h2
-rw-r--r--Eigen/src/Geometry/Homogeneous.h124
-rw-r--r--Eigen/src/Geometry/OrthoMethods.h23
-rw-r--r--Eigen/src/Geometry/Quaternion.h2
-rw-r--r--Eigen/src/Geometry/Transform.h19
-rw-r--r--Eigen/src/Householder/BlockHouseholder.h73
-rw-r--r--Eigen/src/Householder/HouseholderSequence.h43
-rw-r--r--Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h25
-rw-r--r--Eigen/src/IterativeLinearSolvers/BiCGSTAB.h49
-rw-r--r--Eigen/src/IterativeLinearSolvers/ConjugateGradient.h43
-rw-r--r--Eigen/src/IterativeLinearSolvers/IncompleteLUT.h40
-rw-r--r--Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h63
-rw-r--r--Eigen/src/IterativeLinearSolvers/SolveWithGuess.h114
-rw-r--r--Eigen/src/LU/Determinant.h2
-rw-r--r--Eigen/src/LU/FullPivLU.h133
-rw-r--r--Eigen/src/LU/InverseImpl.h (renamed from Eigen/src/LU/Inverse.h)64
-rw-r--r--Eigen/src/LU/PartialPivLU.h80
-rw-r--r--Eigen/src/LU/arch/Inverse_SSE.h11
-rw-r--r--Eigen/src/PaStiXSupport/PaStiXSupport.h83
-rw-r--r--Eigen/src/PardisoSupport/PardisoSupport.h92
-rw-r--r--Eigen/src/QR/ColPivHouseholderQR.h91
-rw-r--r--Eigen/src/QR/FullPivHouseholderQR.h109
-rw-r--r--Eigen/src/QR/HouseholderQR.h63
-rw-r--r--Eigen/src/SPQRSupport/SuiteSparseQRSupport.h49
-rw-r--r--Eigen/src/SVD/JacobiSVD.h248
-rw-r--r--Eigen/src/SVD/SVDBase.h (renamed from unsupported/Eigen/src/SVD/SVDBase.h)180
-rw-r--r--Eigen/src/SVD/UpperBidiagonalization.h34
-rw-r--r--Eigen/src/SparseCholesky/SimplicialCholesky.h95
-rw-r--r--Eigen/src/SparseCore/ConservativeSparseSparseProduct.h22
-rw-r--r--Eigen/src/SparseCore/MappedSparseMatrix.h26
-rw-r--r--Eigen/src/SparseCore/SparseAssign.h192
-rw-r--r--Eigen/src/SparseCore/SparseBlock.h211
-rw-r--r--Eigen/src/SparseCore/SparseCwiseBinaryOp.h316
-rw-r--r--Eigen/src/SparseCore/SparseCwiseUnaryOp.h187
-rw-r--r--Eigen/src/SparseCore/SparseDenseProduct.h336
-rw-r--r--Eigen/src/SparseCore/SparseDiagonalProduct.h239
-rw-r--r--Eigen/src/SparseCore/SparseDot.h17
-rw-r--r--Eigen/src/SparseCore/SparseMatrix.h76
-rw-r--r--Eigen/src/SparseCore/SparseMatrixBase.h150
-rw-r--r--Eigen/src/SparseCore/SparsePermutation.h115
-rw-r--r--Eigen/src/SparseCore/SparseProduct.h207
-rw-r--r--Eigen/src/SparseCore/SparseRedux.h5
-rw-r--r--Eigen/src/SparseCore/SparseSelfAdjointView.h344
-rw-r--r--Eigen/src/SparseCore/SparseSolverBase.h110
-rw-r--r--Eigen/src/SparseCore/SparseSparseProductWithPruning.h58
-rw-r--r--Eigen/src/SparseCore/SparseTranspose.h82
-rw-r--r--Eigen/src/SparseCore/SparseTriangularView.h176
-rw-r--r--Eigen/src/SparseCore/SparseUtil.h28
-rw-r--r--Eigen/src/SparseCore/SparseVector.h31
-rw-r--r--Eigen/src/SparseCore/SparseView.h198
-rw-r--r--Eigen/src/SparseCore/TriangularSolver.h56
-rw-r--r--Eigen/src/SparseLU/SparseLU.h70
-rw-r--r--Eigen/src/SparseQR/SparseQR.h90
-rw-r--r--Eigen/src/SuperLUSupport/SuperLUSupport.h80
-rw-r--r--Eigen/src/UmfPackSupport/UmfPackSupport.h68
-rw-r--r--Eigen/src/misc/Solve.h76
-rw-r--r--Eigen/src/misc/SparseSolve.h130
-rw-r--r--Eigen/src/plugins/ArrayCwiseUnaryOps.h18
-rw-r--r--bench/bench_norm.cpp33
-rw-r--r--doc/CMakeLists.txt1
-rw-r--r--doc/snippets/DirectionWise_hnormalized.cpp7
-rw-r--r--doc/snippets/MatrixBase_hnormalized.cpp6
-rw-r--r--doc/snippets/MatrixBase_homogeneous.cpp6
-rw-r--r--doc/snippets/VectorwiseOp_homogeneous.cpp7
-rw-r--r--test/CMakeLists.txt41
-rw-r--r--test/array.cpp25
-rw-r--r--test/block.cpp8
-rw-r--r--test/evaluators.cpp142
-rw-r--r--test/geo_homogeneous.cpp7
-rw-r--r--test/geo_orthomethods.cpp9
-rw-r--r--test/inverse.cpp9
-rw-r--r--test/jacobisvd.cpp375
-rw-r--r--test/linearstructure.cpp40
-rw-r--r--test/main.h9
-rw-r--r--test/mixingtypes.cpp9
-rw-r--r--test/nesting_ops.cpp2
-rw-r--r--test/product.h8
-rw-r--r--test/product_mmtr.cpp3
-rw-r--r--test/product_notemporary.cpp3
-rw-r--r--test/qr_fullpivoting.cpp6
-rw-r--r--test/sparse_basic.cpp9
-rw-r--r--test/sparse_product.cpp22
-rw-r--r--test/sparse_vector.cpp1
-rw-r--r--test/stable_norm.cpp69
-rw-r--r--test/svd_common.h454
-rw-r--r--test/upperbidiagonalization.cpp2
-rw-r--r--test/vectorization_logic.cpp49
-rw-r--r--test/vectorwiseop.cpp4
-rw-r--r--unsupported/Eigen/AlignedVector324
-rw-r--r--unsupported/Eigen/BDCSVD26
-rw-r--r--unsupported/Eigen/IterativeSolvers3
-rw-r--r--unsupported/Eigen/MPRealSupport4
-rw-r--r--unsupported/Eigen/MatrixFunctions21
-rw-r--r--unsupported/Eigen/SVD35
-rw-r--r--unsupported/Eigen/SparseExtra3
-rw-r--r--unsupported/Eigen/src/BDCSVD/BDCSVD.h (renamed from unsupported/Eigen/src/SVD/BDCSVD.h)597
-rw-r--r--unsupported/Eigen/src/BDCSVD/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/BDCSVD/TODOBdcsvd.txt (renamed from unsupported/Eigen/src/SVD/TODOBdcsvd.txt)0
-rw-r--r--unsupported/Eigen/src/BDCSVD/doneInBDCSVD.txt (renamed from unsupported/Eigen/src/SVD/doneInBDCSVD.txt)0
-rw-r--r--unsupported/Eigen/src/CMakeLists.txt1
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/DGMRES.h39
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/GMRES.h41
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h34
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h39
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/MINRES.h46
-rw-r--r--unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h38
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h5
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h11
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h11
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h8
-rw-r--r--unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h19
-rw-r--r--unsupported/Eigen/src/SVD/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/SVD/JacobiSVD.h782
-rw-r--r--unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h30
-rw-r--r--unsupported/test/CMakeLists.txt4
-rw-r--r--unsupported/test/NonLinearOptimization.cpp22
-rw-r--r--unsupported/test/bdcsvd.cpp233
-rw-r--r--unsupported/test/jacobisvd.cpp198
-rw-r--r--unsupported/test/levenberg_marquardt.cpp44
-rw-r--r--unsupported/test/svd_common.h261
211 files changed, 8174 insertions, 9478 deletions
diff --git a/CMakeLists.txt b/CMakeLists.txt
index ea42cc8db..b3753edb0 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -143,7 +143,7 @@ if(NOT MSVC)
ei_add_cxx_compiler_flag("-Wpointer-arith")
ei_add_cxx_compiler_flag("-Wwrite-strings")
ei_add_cxx_compiler_flag("-Wformat-security")
- ei_add_cxx_compiler_flag("-Wshorten-64-to-32")
+# ei_add_cxx_compiler_flag("-Wshorten-64-to-32")
ei_add_cxx_compiler_flag("-Wenum-conversion")
ei_add_cxx_compiler_flag("-Wc++11-extensions")
diff --git a/Eigen/Cholesky b/Eigen/Cholesky
index 7314d326c..dd0ca911c 100644
--- a/Eigen/Cholesky
+++ b/Eigen/Cholesky
@@ -21,7 +21,6 @@
* \endcode
*/
-#include "src/misc/Solve.h"
#include "src/Cholesky/LLT.h"
#include "src/Cholesky/LDLT.h"
#ifdef EIGEN_USE_LAPACKE
diff --git a/Eigen/CholmodSupport b/Eigen/CholmodSupport
index 745b884e7..687cd9777 100644
--- a/Eigen/CholmodSupport
+++ b/Eigen/CholmodSupport
@@ -33,12 +33,8 @@ extern "C" {
*
*/
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
-
#include "src/CholmodSupport/CholmodSupport.h"
-
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_CHOLMODSUPPORT_MODULE_H
diff --git a/Eigen/Core b/Eigen/Core
index ac3cbd0c7..adab50b4a 100644
--- a/Eigen/Core
+++ b/Eigen/Core
@@ -277,8 +277,8 @@ using std::ptrdiff_t;
*/
#include "src/Core/util/Constants.h"
-#include "src/Core/util/ForwardDeclarations.h"
#include "src/Core/util/Meta.h"
+#include "src/Core/util/ForwardDeclarations.h"
#include "src/Core/util/StaticAssert.h"
#include "src/Core/util/XprHelper.h"
#include "src/Core/util/Memory.h"
@@ -311,19 +311,16 @@ using std::ptrdiff_t;
#include "src/Core/functors/UnaryFunctors.h"
#include "src/Core/functors/NullaryFunctors.h"
#include "src/Core/functors/StlFunctors.h"
+#include "src/Core/functors/AssignmentFunctors.h"
#include "src/Core/DenseCoeffsBase.h"
#include "src/Core/DenseBase.h"
#include "src/Core/MatrixBase.h"
#include "src/Core/EigenBase.h"
-#ifdef EIGEN_ENABLE_EVALUATORS
-#include "src/Core/functors/AssignmentFunctors.h"
#include "src/Core/Product.h"
#include "src/Core/CoreEvaluators.h"
#include "src/Core/AssignEvaluator.h"
-#include "src/Core/ProductEvaluators.h"
-#endif
#ifndef EIGEN_PARSED_BY_DOXYGEN // work around Doxygen bug triggered by Assign.h r814874
// at least confirmed with Doxygen 1.5.5 and 1.5.6
@@ -334,7 +331,10 @@ using std::ptrdiff_t;
#include "src/Core/util/BlasUtil.h"
#include "src/Core/DenseStorage.h"
#include "src/Core/NestByValue.h"
-#include "src/Core/ForceAlignedAccess.h"
+
+// #include "src/Core/ForceAlignedAccess.h"
+// #include "src/Core/Flagged.h"
+
#include "src/Core/ReturnByValue.h"
#include "src/Core/NoAlias.h"
#include "src/Core/PlainObjectBase.h"
@@ -347,12 +347,12 @@ using std::ptrdiff_t;
#include "src/Core/SelfCwiseBinaryOp.h"
#include "src/Core/Dot.h"
#include "src/Core/StableNorm.h"
-#include "src/Core/MapBase.h"
#include "src/Core/Stride.h"
+#include "src/Core/MapBase.h"
#include "src/Core/Map.h"
+#include "src/Core/Ref.h"
#include "src/Core/Block.h"
#include "src/Core/VectorBlock.h"
-#include "src/Core/Ref.h"
#include "src/Core/Transpose.h"
#include "src/Core/DiagonalMatrix.h"
#include "src/Core/Diagonal.h"
@@ -365,14 +365,15 @@ using std::ptrdiff_t;
#include "src/Core/IO.h"
#include "src/Core/Swap.h"
#include "src/Core/CommaInitializer.h"
-#include "src/Core/Flagged.h"
#include "src/Core/ProductBase.h"
#include "src/Core/GeneralProduct.h"
+#include "src/Core/Solve.h"
+#include "src/Core/Inverse.h"
#include "src/Core/TriangularMatrix.h"
#include "src/Core/SelfAdjointView.h"
#include "src/Core/products/GeneralBlockPanelKernel.h"
#include "src/Core/products/Parallelizer.h"
-#include "src/Core/products/CoeffBasedProduct.h"
+#include "src/Core/ProductEvaluators.h"
#include "src/Core/products/GeneralMatrixVector.h"
#include "src/Core/products/GeneralMatrixMatrix.h"
#include "src/Core/SolveTriangular.h"
diff --git a/Eigen/IterativeLinearSolvers b/Eigen/IterativeLinearSolvers
index 0f4159dc1..c06668bd2 100644
--- a/Eigen/IterativeLinearSolvers
+++ b/Eigen/IterativeLinearSolvers
@@ -26,9 +26,7 @@
* \endcode
*/
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
-
+#include "src/IterativeLinearSolvers/SolveWithGuess.h"
#include "src/IterativeLinearSolvers/IterativeSolverBase.h"
#include "src/IterativeLinearSolvers/BasicPreconditioners.h"
#include "src/IterativeLinearSolvers/ConjugateGradient.h"
diff --git a/Eigen/LU b/Eigen/LU
index 29a98cb9a..132ecc42c 100644
--- a/Eigen/LU
+++ b/Eigen/LU
@@ -16,7 +16,6 @@
* \endcode
*/
-#include "src/misc/Solve.h"
#include "src/misc/Kernel.h"
#include "src/misc/Image.h"
#include "src/LU/FullPivLU.h"
@@ -25,7 +24,7 @@
#include "src/LU/PartialPivLU_MKL.h"
#endif
#include "src/LU/Determinant.h"
-#include "src/LU/Inverse.h"
+#include "src/LU/InverseImpl.h"
// Use the SSE optimized version whenever possible. At the moment the
// SSE version doesn't compile when AVX is enabled
diff --git a/Eigen/PaStiXSupport b/Eigen/PaStiXSupport
index 7c616ee5e..e7d275f97 100644
--- a/Eigen/PaStiXSupport
+++ b/Eigen/PaStiXSupport
@@ -35,12 +35,8 @@ extern "C" {
*
*/
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
-
#include "src/PaStiXSupport/PaStiXSupport.h"
-
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_PASTIXSUPPORT_MODULE_H
diff --git a/Eigen/QR b/Eigen/QR
index 4c2533610..230cb079a 100644
--- a/Eigen/QR
+++ b/Eigen/QR
@@ -24,7 +24,6 @@
* \endcode
*/
-#include "src/misc/Solve.h"
#include "src/QR/HouseholderQR.h"
#include "src/QR/FullPivHouseholderQR.h"
#include "src/QR/ColPivHouseholderQR.h"
diff --git a/Eigen/SPQRSupport b/Eigen/SPQRSupport
index 77016442e..e3f49bb5a 100644
--- a/Eigen/SPQRSupport
+++ b/Eigen/SPQRSupport
@@ -21,8 +21,6 @@
*
*/
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
#include "src/CholmodSupport/CholmodSupport.h"
#include "src/SPQRSupport/SuiteSparseQRSupport.h"
diff --git a/Eigen/SVD b/Eigen/SVD
index 5eee46df5..c13472e82 100644
--- a/Eigen/SVD
+++ b/Eigen/SVD
@@ -20,7 +20,7 @@
* \endcode
*/
-#include "src/misc/Solve.h"
+#include "src/SVD/SVDBase.h"
#include "src/SVD/JacobiSVD.h"
#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT)
#include "src/SVD/JacobiSVD_MKL.h"
diff --git a/Eigen/SparseCholesky b/Eigen/SparseCholesky
index 9f5056aa1..b6a320c40 100644
--- a/Eigen/SparseCholesky
+++ b/Eigen/SparseCholesky
@@ -34,8 +34,6 @@
#error The SparseCholesky module has nothing to offer in MPL2 only mode
#endif
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
#include "src/SparseCholesky/SimplicialCholesky.h"
#ifndef EIGEN_MPL2_ONLY
diff --git a/Eigen/SparseCore b/Eigen/SparseCore
index 9b5be5e15..b68c8fa8a 100644
--- a/Eigen/SparseCore
+++ b/Eigen/SparseCore
@@ -35,28 +35,30 @@ struct Sparse {};
#include "src/SparseCore/SparseUtil.h"
#include "src/SparseCore/SparseMatrixBase.h"
+#include "src/SparseCore/SparseAssign.h"
#include "src/SparseCore/CompressedStorage.h"
#include "src/SparseCore/AmbiVector.h"
#include "src/SparseCore/SparseMatrix.h"
#include "src/SparseCore/MappedSparseMatrix.h"
#include "src/SparseCore/SparseVector.h"
-#include "src/SparseCore/SparseBlock.h"
-#include "src/SparseCore/SparseTranspose.h"
#include "src/SparseCore/SparseCwiseUnaryOp.h"
#include "src/SparseCore/SparseCwiseBinaryOp.h"
+#include "src/SparseCore/SparseTranspose.h"
+#include "src/SparseCore/SparseBlock.h"
#include "src/SparseCore/SparseDot.h"
-#include "src/SparseCore/SparsePermutation.h"
#include "src/SparseCore/SparseRedux.h"
-#include "src/SparseCore/SparseFuzzy.h"
+#include "src/SparseCore/SparseView.h"
+#include "src/SparseCore/SparseDiagonalProduct.h"
#include "src/SparseCore/ConservativeSparseSparseProduct.h"
#include "src/SparseCore/SparseSparseProductWithPruning.h"
#include "src/SparseCore/SparseProduct.h"
#include "src/SparseCore/SparseDenseProduct.h"
-#include "src/SparseCore/SparseDiagonalProduct.h"
-#include "src/SparseCore/SparseTriangularView.h"
#include "src/SparseCore/SparseSelfAdjointView.h"
+#include "src/SparseCore/SparseTriangularView.h"
#include "src/SparseCore/TriangularSolver.h"
-#include "src/SparseCore/SparseView.h"
+#include "src/SparseCore/SparsePermutation.h"
+#include "src/SparseCore/SparseFuzzy.h"
+#include "src/SparseCore/SparseSolverBase.h"
#include "src/Core/util/ReenableStupidWarnings.h"
diff --git a/Eigen/SparseLU b/Eigen/SparseLU
index 8527a49bd..38b38b531 100644
--- a/Eigen/SparseLU
+++ b/Eigen/SparseLU
@@ -20,9 +20,6 @@
* Please, see the documentation of the SparseLU class for more details.
*/
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
-
// Ordering interface
#include "OrderingMethods"
diff --git a/Eigen/SparseQR b/Eigen/SparseQR
index 4ee42065e..efb2695ba 100644
--- a/Eigen/SparseQR
+++ b/Eigen/SparseQR
@@ -21,9 +21,6 @@
*
*/
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
-
#include "OrderingMethods"
#include "src/SparseCore/SparseColEtree.h"
#include "src/SparseQR/SparseQR.h"
diff --git a/Eigen/SuperLUSupport b/Eigen/SuperLUSupport
index 575e14fbc..d1eac9464 100644
--- a/Eigen/SuperLUSupport
+++ b/Eigen/SuperLUSupport
@@ -48,12 +48,8 @@ namespace Eigen { struct SluMatrix; }
*
*/
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
-
#include "src/SuperLUSupport/SuperLUSupport.h"
-
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SUPERLUSUPPORT_MODULE_H
diff --git a/Eigen/UmfPackSupport b/Eigen/UmfPackSupport
index 984f64a84..0efad5dee 100644
--- a/Eigen/UmfPackSupport
+++ b/Eigen/UmfPackSupport
@@ -26,9 +26,6 @@ extern "C" {
*
*/
-#include "src/misc/Solve.h"
-#include "src/misc/SparseSolve.h"
-
#include "src/UmfPackSupport/UmfPackSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
diff --git a/Eigen/src/Cholesky/LDLT.h b/Eigen/src/Cholesky/LDLT.h
index aa9784e54..32c770654 100644
--- a/Eigen/src/Cholesky/LDLT.h
+++ b/Eigen/src/Cholesky/LDLT.h
@@ -175,13 +175,13 @@ template<typename _MatrixType, int _UpLo> class LDLT
* \sa MatrixBase::ldlt(), SelfAdjointView::ldlt()
*/
template<typename Rhs>
- inline const internal::solve_retval<LDLT, Rhs>
+ inline const Solve<LDLT, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
eigen_assert(m_matrix.rows()==b.rows()
&& "LDLT::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
+ return Solve<LDLT, Rhs>(*this, b.derived());
}
template<typename Derived>
@@ -217,6 +217,12 @@ template<typename _MatrixType, int _UpLo> class LDLT
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return Success;
}
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename RhsType, typename DstType>
+ EIGEN_DEVICE_FUNC
+ void _solve_impl(const RhsType &rhs, DstType &dst) const;
+ #endif
protected:
@@ -466,52 +472,46 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Deri
return *this;
}
-namespace internal {
-template<typename _MatrixType, int _UpLo, typename Rhs>
-struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
- : solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename _MatrixType, int _UpLo>
+template<typename RhsType, typename DstType>
+void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
- typedef LDLT<_MatrixType,_UpLo> LDLTType;
- EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
+ eigen_assert(rhs.rows() == rows());
+ // dst = P b
+ dst = m_transpositions * rhs;
+
+ // dst = L^-1 (P b)
+ matrixL().solveInPlace(dst);
+
+ // dst = D^-1 (L^-1 P b)
+ // more precisely, use pseudo-inverse of D (see bug 241)
+ using std::abs;
+ EIGEN_USING_STD_MATH(max);
+ const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD());
+ // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
+ // as motivated by LAPACK's xGELSS:
+ // RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
+ // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
+ // diagonal element is not well justified and to numerical issues in some cases.
+ // Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
+ RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
+
+ for (Index i = 0; i < vecD.size(); ++i)
{
- eigen_assert(rhs().rows() == dec().matrixLDLT().rows());
- // dst = P b
- dst = dec().transpositionsP() * rhs();
-
- // dst = L^-1 (P b)
- dec().matrixL().solveInPlace(dst);
-
- // dst = D^-1 (L^-1 P b)
- // more precisely, use pseudo-inverse of D (see bug 241)
- using std::abs;
- EIGEN_USING_STD_MATH(max);
- typedef typename LDLTType::MatrixType MatrixType;
- typedef typename LDLTType::RealScalar RealScalar;
- const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
- // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
- // as motivated by LAPACK's xGELSS:
- // RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
- // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
- // diagonal element is not well justified and to numerical issues in some cases.
- // Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
- RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
- for (Index i = 0; i < vectorD.size(); ++i) {
- if(abs(vectorD(i)) > tolerance)
- dst.row(i) /= vectorD(i);
- else
- dst.row(i).setZero();
- }
+ if(abs(vecD(i)) > tolerance)
+ dst.row(i) /= vecD(i);
+ else
+ dst.row(i).setZero();
+ }
- // dst = L^-T (D^-1 L^-1 P b)
- dec().matrixU().solveInPlace(dst);
+ // dst = L^-T (D^-1 L^-1 P b)
+ matrixU().solveInPlace(dst);
- // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
- dst = dec().transpositionsP().transpose() * dst;
- }
-};
+ // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
+ dst = m_transpositions.transpose() * dst;
}
+#endif
/** \internal use x = ldlt_object.solve(x);
*
diff --git a/Eigen/src/Cholesky/LLT.h b/Eigen/src/Cholesky/LLT.h
index 38e820165..cb9e0eb7b 100644
--- a/Eigen/src/Cholesky/LLT.h
+++ b/Eigen/src/Cholesky/LLT.h
@@ -118,13 +118,13 @@ template<typename _MatrixType, int _UpLo> class LLT
* \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt()
*/
template<typename Rhs>
- inline const internal::solve_retval<LLT, Rhs>
+ inline const Solve<LLT, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows()==b.rows()
&& "LLT::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<LLT, Rhs>(*this, b.derived());
+ return Solve<LLT, Rhs>(*this, b.derived());
}
template<typename Derived>
@@ -161,6 +161,12 @@ template<typename _MatrixType, int _UpLo> class LLT
template<typename VectorType>
LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename RhsType, typename DstType>
+ EIGEN_DEVICE_FUNC
+ void _solve_impl(const RhsType &rhs, DstType &dst) const;
+ #endif
protected:
/** \internal
@@ -404,22 +410,16 @@ LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, c
return *this;
}
-
-namespace internal {
-template<typename _MatrixType, int UpLo, typename Rhs>
-struct solve_retval<LLT<_MatrixType, UpLo>, Rhs>
- : solve_retval_base<LLT<_MatrixType, UpLo>, Rhs>
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename _MatrixType,int _UpLo>
+template<typename RhsType, typename DstType>
+void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
- typedef LLT<_MatrixType,UpLo> LLTType;
- EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dst = rhs();
- dec().solveInPlace(dst);
- }
-};
+ dst = rhs;
+ solveInPlace(dst);
}
+#endif
/** \internal use x = llt_object.solve(x);
*
diff --git a/Eigen/src/CholmodSupport/CholmodSupport.h b/Eigen/src/CholmodSupport/CholmodSupport.h
index c449960de..3524ffb2d 100644
--- a/Eigen/src/CholmodSupport/CholmodSupport.h
+++ b/Eigen/src/CholmodSupport/CholmodSupport.h
@@ -157,8 +157,12 @@ enum CholmodMode {
* \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
*/
template<typename _MatrixType, int _UpLo, typename Derived>
-class CholmodBase : internal::noncopyable
+class CholmodBase : public SparseSolverBase<Derived>
{
+ protected:
+ typedef SparseSolverBase<Derived> Base;
+ using Base::derived;
+ using Base::m_isInitialized;
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
@@ -170,14 +174,14 @@ class CholmodBase : internal::noncopyable
public:
CholmodBase()
- : m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
+ : m_cholmodFactor(0), m_info(Success)
{
m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0);
cholmod_start(&m_cholmod);
}
CholmodBase(const MatrixType& matrix)
- : m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
+ : m_cholmodFactor(0), m_info(Success)
{
m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0);
cholmod_start(&m_cholmod);
@@ -194,9 +198,6 @@ class CholmodBase : internal::noncopyable
inline Index cols() const { return m_cholmodFactor->n; }
inline Index rows() const { return m_cholmodFactor->n; }
- Derived& derived() { return *static_cast<Derived*>(this); }
- const Derived& derived() const { return *static_cast<const Derived*>(this); }
-
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
@@ -216,34 +217,6 @@ class CholmodBase : internal::noncopyable
return derived();
}
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<CholmodBase, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "LLT is not initialized.");
- eigen_assert(rows()==b.rows()
- && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<CholmodBase, Rhs>(*this, b.derived());
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<CholmodBase, Rhs>
- solve(const SparseMatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "LLT is not initialized.");
- eigen_assert(rows()==b.rows()
- && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<CholmodBase, Rhs>(*this, b.derived());
- }
-
/** Performs a symbolic decomposition on the sparsity pattern of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
@@ -290,7 +263,7 @@ class CholmodBase : internal::noncopyable
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal */
template<typename Rhs,typename Dest>
- void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
+ void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
const Index size = m_cholmodFactor->n;
@@ -312,7 +285,7 @@ class CholmodBase : internal::noncopyable
/** \internal */
template<typename RhsScalar, int RhsOptions, typename RhsIndex, typename DestScalar, int DestOptions, typename DestIndex>
- void _solve(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
+ void _solve_impl(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
const Index size = m_cholmodFactor->n;
@@ -357,7 +330,6 @@ class CholmodBase : internal::noncopyable
cholmod_factor* m_cholmodFactor;
RealScalar m_shiftOffset[2];
mutable ComputationInfo m_info;
- bool m_isInitialized;
int m_factorizationIsOk;
int m_analysisIsOk;
};
@@ -572,36 +544,6 @@ class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecom
}
};
-namespace internal {
-
-template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
-struct solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
- : solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
-{
- typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
-struct sparse_solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
- : sparse_solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
-{
- typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_CHOLMODSUPPORT_H
diff --git a/Eigen/src/Core/Array.h b/Eigen/src/Core/Array.h
index 28d6f1443..eaee8847b 100644
--- a/Eigen/src/Core/Array.h
+++ b/Eigen/src/Core/Array.h
@@ -74,6 +74,21 @@ class Array
{
return Base::operator=(other);
}
+
+ /** Set all the entries to \a value.
+ * \sa DenseBase::setConstant(), DenseBase::fill()
+ */
+ /* This overload is needed because the usage of
+ * using Base::operator=;
+ * fails on MSVC. Since the code below is working with GCC and MSVC, we skipped
+ * the usage of 'using'. This should be done only for operator=.
+ */
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Array& operator=(const Scalar &value)
+ {
+ Base::setConstant(value);
+ return *this;
+ }
/** Copies the value of the expression \a other into \c *this with automatic resizing.
*
@@ -99,7 +114,7 @@ class Array
{
return Base::_set(other);
}
-
+
/** Default constructor.
*
* For fixed-size matrices, does nothing.
@@ -144,7 +159,6 @@ class Array
}
#endif
-
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename T>
EIGEN_DEVICE_FUNC
diff --git a/Eigen/src/Core/ArrayBase.h b/Eigen/src/Core/ArrayBase.h
index 2c9ace4a7..48a0006d5 100644
--- a/Eigen/src/Core/ArrayBase.h
+++ b/Eigen/src/Core/ArrayBase.h
@@ -64,8 +64,7 @@ template<typename Derived> class ArrayBase
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
- using Base::CoeffReadCost;
-
+
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
@@ -121,8 +120,14 @@ template<typename Derived> class ArrayBase
EIGEN_DEVICE_FUNC
Derived& operator=(const ArrayBase& other)
{
- return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
+ internal::call_assignment(derived(), other.derived());
}
+
+ /** Set all the entries to \a value.
+ * \sa DenseBase::setConstant(), DenseBase::fill() */
+ EIGEN_DEVICE_FUNC
+ Derived& operator=(const Scalar &value)
+ { Base::setConstant(value); return derived(); }
EIGEN_DEVICE_FUNC
Derived& operator+=(const Scalar& scalar);
@@ -186,8 +191,7 @@ template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator-=(const ArrayBase<OtherDerived> &other)
{
- SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
+ call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar>());
return derived();
}
@@ -200,8 +204,7 @@ template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator+=(const ArrayBase<OtherDerived>& other)
{
- SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
+ call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar>());
return derived();
}
@@ -214,8 +217,7 @@ template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator*=(const ArrayBase<OtherDerived>& other)
{
- SelfCwiseBinaryOp<internal::scalar_product_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
+ call_assignment(derived(), other.derived(), internal::mul_assign_op<Scalar,typename OtherDerived::Scalar>());
return derived();
}
@@ -228,8 +230,7 @@ template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator/=(const ArrayBase<OtherDerived>& other)
{
- SelfCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
+ call_assignment(derived(), other.derived(), internal::div_assign_op<Scalar>());
return derived();
}
diff --git a/Eigen/src/Core/ArrayWrapper.h b/Eigen/src/Core/ArrayWrapper.h
index 4bb648024..ed5210272 100644
--- a/Eigen/src/Core/ArrayWrapper.h
+++ b/Eigen/src/Core/ArrayWrapper.h
@@ -29,6 +29,11 @@ struct traits<ArrayWrapper<ExpressionType> >
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
{
typedef ArrayXpr XprKind;
+ // Let's remove NestByRefBit
+ enum {
+ Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
+ Flags = Flags0 & ~NestByRefBit
+ };
};
}
@@ -39,6 +44,7 @@ class ArrayWrapper : public ArrayBase<ArrayWrapper<ExpressionType> >
typedef ArrayBase<ArrayWrapper> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ArrayWrapper)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ArrayWrapper)
+ typedef typename internal::remove_all<ExpressionType>::type NestedExpression;
typedef typename internal::conditional<
internal::is_lvalue<ExpressionType>::value,
@@ -166,6 +172,11 @@ struct traits<MatrixWrapper<ExpressionType> >
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
{
typedef MatrixXpr XprKind;
+ // Let's remove NestByRefBit
+ enum {
+ Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
+ Flags = Flags0 & ~NestByRefBit
+ };
};
}
@@ -176,6 +187,7 @@ class MatrixWrapper : public MatrixBase<MatrixWrapper<ExpressionType> >
typedef MatrixBase<MatrixWrapper<ExpressionType> > Base;
EIGEN_DENSE_PUBLIC_INTERFACE(MatrixWrapper)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(MatrixWrapper)
+ typedef typename internal::remove_all<ExpressionType>::type NestedExpression;
typedef typename internal::conditional<
internal::is_lvalue<ExpressionType>::value,
diff --git a/Eigen/src/Core/Assign.h b/Eigen/src/Core/Assign.h
index 07da2fe31..53806ba33 100644
--- a/Eigen/src/Core/Assign.h
+++ b/Eigen/src/Core/Assign.h
@@ -14,485 +14,6 @@
namespace Eigen {
-namespace internal {
-
-/***************************************************************************
-* Part 1 : the logic deciding a strategy for traversal and unrolling *
-***************************************************************************/
-
-template <typename Derived, typename OtherDerived>
-struct assign_traits
-{
-public:
- enum {
- DstIsAligned = Derived::Flags & AlignedBit,
- DstHasDirectAccess = Derived::Flags & DirectAccessBit,
- SrcIsAligned = OtherDerived::Flags & AlignedBit,
- JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned
- };
-
-private:
- enum {
- InnerSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::SizeAtCompileTime)
- : int(Derived::Flags)&RowMajorBit ? int(Derived::ColsAtCompileTime)
- : int(Derived::RowsAtCompileTime),
- InnerMaxSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::MaxSizeAtCompileTime)
- : int(Derived::Flags)&RowMajorBit ? int(Derived::MaxColsAtCompileTime)
- : int(Derived::MaxRowsAtCompileTime),
- MaxSizeAtCompileTime = Derived::SizeAtCompileTime,
- PacketSize = packet_traits<typename Derived::Scalar>::size
- };
-
- enum {
- StorageOrdersAgree = (int(Derived::IsRowMajor) == int(OtherDerived::IsRowMajor)),
- MightVectorize = StorageOrdersAgree
- && (int(Derived::Flags) & int(OtherDerived::Flags) & ActualPacketAccessBit),
- MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
- && int(DstIsAligned) && int(SrcIsAligned),
- MayLinearize = StorageOrdersAgree && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit),
- MayLinearVectorize = MightVectorize && MayLinearize && DstHasDirectAccess
- && (DstIsAligned || MaxSizeAtCompileTime == Dynamic),
- /* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
- so it's only good for large enough sizes. */
- MaySliceVectorize = MightVectorize && DstHasDirectAccess
- && (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=3*PacketSize)
- /* slice vectorization can be slow, so we only want it if the slices are big, which is
- indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
- in a fixed-size matrix */
- };
-
-public:
- enum {
- Traversal = int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
- : int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
- : int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
- : int(MayLinearize) ? int(LinearTraversal)
- : int(DefaultTraversal),
- Vectorized = int(Traversal) == InnerVectorizedTraversal
- || int(Traversal) == LinearVectorizedTraversal
- || int(Traversal) == SliceVectorizedTraversal
- };
-
-private:
- enum {
- UnrollingLimit = EIGEN_UNROLLING_LIMIT * (Vectorized ? int(PacketSize) : 1),
- MayUnrollCompletely = int(Derived::SizeAtCompileTime) != Dynamic
- && int(OtherDerived::CoeffReadCost) != Dynamic
- && int(Derived::SizeAtCompileTime) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit),
- MayUnrollInner = int(InnerSize) != Dynamic
- && int(OtherDerived::CoeffReadCost) != Dynamic
- && int(InnerSize) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit)
- };
-
-public:
- enum {
- Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal))
- ? (
- int(MayUnrollCompletely) ? int(CompleteUnrolling)
- : int(MayUnrollInner) ? int(InnerUnrolling)
- : int(NoUnrolling)
- )
- : int(Traversal) == int(LinearVectorizedTraversal)
- ? ( bool(MayUnrollCompletely) && bool(DstIsAligned) ? int(CompleteUnrolling) : int(NoUnrolling) )
- : int(Traversal) == int(LinearTraversal)
- ? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling) : int(NoUnrolling) )
- : int(NoUnrolling)
- };
-
-#ifdef EIGEN_DEBUG_ASSIGN
- static void debug()
- {
- EIGEN_DEBUG_VAR(DstIsAligned)
- EIGEN_DEBUG_VAR(SrcIsAligned)
- EIGEN_DEBUG_VAR(JointAlignment)
- EIGEN_DEBUG_VAR(Derived::SizeAtCompileTime)
- EIGEN_DEBUG_VAR(OtherDerived::CoeffReadCost)
- EIGEN_DEBUG_VAR(InnerSize)
- EIGEN_DEBUG_VAR(InnerMaxSize)
- EIGEN_DEBUG_VAR(PacketSize)
- EIGEN_DEBUG_VAR(StorageOrdersAgree)
- EIGEN_DEBUG_VAR(MightVectorize)
- EIGEN_DEBUG_VAR(MayLinearize)
- EIGEN_DEBUG_VAR(MayInnerVectorize)
- EIGEN_DEBUG_VAR(MayLinearVectorize)
- EIGEN_DEBUG_VAR(MaySliceVectorize)
- EIGEN_DEBUG_VAR(Traversal)
- EIGEN_DEBUG_VAR(UnrollingLimit)
- EIGEN_DEBUG_VAR(MayUnrollCompletely)
- EIGEN_DEBUG_VAR(MayUnrollInner)
- EIGEN_DEBUG_VAR(Unrolling)
- }
-#endif
-};
-
-/***************************************************************************
-* Part 2 : meta-unrollers
-***************************************************************************/
-
-/************************
-*** Default traversal ***
-************************/
-
-template<typename Derived1, typename Derived2, int Index, int Stop>
-struct assign_DefaultTraversal_CompleteUnrolling
-{
- enum {
- outer = Index / Derived1::InnerSizeAtCompileTime,
- inner = Index % Derived1::InnerSizeAtCompileTime
- };
-
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- dst.copyCoeffByOuterInner(outer, inner, src);
- assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Stop>
-struct assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
-{
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
-};
-
-template<typename Derived1, typename Derived2, int Index, int Stop>
-struct assign_DefaultTraversal_InnerUnrolling
-{
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src, typename Derived1::Index outer)
- {
- dst.copyCoeffByOuterInner(outer, Index, src);
- assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src, outer);
- }
-};
-
-template<typename Derived1, typename Derived2, int Stop>
-struct assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, Stop, Stop>
-{
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &, typename Derived1::Index) {}
-};
-
-/***********************
-*** Linear traversal ***
-***********************/
-
-template<typename Derived1, typename Derived2, int Index, int Stop>
-struct assign_LinearTraversal_CompleteUnrolling
-{
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- dst.copyCoeff(Index, src);
- assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Stop>
-struct assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
-{
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
-};
-
-/**************************
-*** Inner vectorization ***
-**************************/
-
-template<typename Derived1, typename Derived2, int Index, int Stop>
-struct assign_innervec_CompleteUnrolling
-{
- enum {
- outer = Index / Derived1::InnerSizeAtCompileTime,
- inner = Index % Derived1::InnerSizeAtCompileTime,
- JointAlignment = assign_traits<Derived1,Derived2>::JointAlignment
- };
-
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- dst.template copyPacketByOuterInner<Derived2, Aligned, JointAlignment>(outer, inner, src);
- assign_innervec_CompleteUnrolling<Derived1, Derived2,
- Index+packet_traits<typename Derived1::Scalar>::size, Stop>::run(dst, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Stop>
-struct assign_innervec_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
-};
-
-template<typename Derived1, typename Derived2, int Index, int Stop>
-struct assign_innervec_InnerUnrolling
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src, typename Derived1::Index outer)
- {
- dst.template copyPacketByOuterInner<Derived2, Aligned, Aligned>(outer, Index, src);
- assign_innervec_InnerUnrolling<Derived1, Derived2,
- Index+packet_traits<typename Derived1::Scalar>::size, Stop>::run(dst, src, outer);
- }
-};
-
-template<typename Derived1, typename Derived2, int Stop>
-struct assign_innervec_InnerUnrolling<Derived1, Derived2, Stop, Stop>
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &, typename Derived1::Index) {}
-};
-
-/***************************************************************************
-* Part 3 : implementation of all cases
-***************************************************************************/
-
-template<typename Derived1, typename Derived2,
- int Traversal = assign_traits<Derived1, Derived2>::Traversal,
- int Unrolling = assign_traits<Derived1, Derived2>::Unrolling,
- int Version = Specialized>
-struct assign_impl;
-
-/************************
-*** Default traversal ***
-************************/
-
-template<typename Derived1, typename Derived2, int Unrolling, int Version>
-struct assign_impl<Derived1, Derived2, InvalidTraversal, Unrolling, Version>
-{
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &, const Derived2 &) { }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, DefaultTraversal, NoUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- const Index innerSize = dst.innerSize();
- const Index outerSize = dst.outerSize();
- for(Index outer = 0; outer < outerSize; ++outer)
- for(Index inner = 0; inner < innerSize; ++inner)
- dst.copyCoeffByOuterInner(outer, inner, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, DefaultTraversal, CompleteUnrolling, Version>
-{
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
- ::run(dst, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, DefaultTraversal, InnerUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- const Index outerSize = dst.outerSize();
- for(Index outer = 0; outer < outerSize; ++outer)
- assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, 0, Derived1::InnerSizeAtCompileTime>
- ::run(dst, src, outer);
- }
-};
-
-/***********************
-*** Linear traversal ***
-***********************/
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, LinearTraversal, NoUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- const Index size = dst.size();
- for(Index i = 0; i < size; ++i)
- dst.copyCoeff(i, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, LinearTraversal, CompleteUnrolling, Version>
-{
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
- ::run(dst, src);
- }
-};
-
-/**************************
-*** Inner vectorization ***
-**************************/
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, NoUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- const Index innerSize = dst.innerSize();
- const Index outerSize = dst.outerSize();
- const Index packetSize = packet_traits<typename Derived1::Scalar>::size;
- for(Index outer = 0; outer < outerSize; ++outer)
- for(Index inner = 0; inner < innerSize; inner+=packetSize)
- dst.template copyPacketByOuterInner<Derived2, Aligned, Aligned>(outer, inner, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, CompleteUnrolling, Version>
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- assign_innervec_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
- ::run(dst, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, InnerUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- const Index outerSize = dst.outerSize();
- for(Index outer = 0; outer < outerSize; ++outer)
- assign_innervec_InnerUnrolling<Derived1, Derived2, 0, Derived1::InnerSizeAtCompileTime>
- ::run(dst, src, outer);
- }
-};
-
-/***************************
-*** Linear vectorization ***
-***************************/
-
-template <bool IsAligned = false>
-struct unaligned_assign_impl
-{
- template <typename Derived, typename OtherDerived>
- static EIGEN_STRONG_INLINE void run(const Derived&, OtherDerived&, typename Derived::Index, typename Derived::Index) {}
-};
-
-template <>
-struct unaligned_assign_impl<false>
-{
- // MSVC must not inline this functions. If it does, it fails to optimize the
- // packet access path.
-#ifdef _MSC_VER
- template <typename Derived, typename OtherDerived>
- static EIGEN_DONT_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end)
-#else
- template <typename Derived, typename OtherDerived>
- static EIGEN_STRONG_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end)
-#endif
- {
- for (typename Derived::Index index = start; index < end; ++index)
- dst.copyCoeff(index, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, LinearVectorizedTraversal, NoUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- const Index size = dst.size();
- typedef packet_traits<typename Derived1::Scalar> PacketTraits;
- enum {
- packetSize = PacketTraits::size,
- dstAlignment = PacketTraits::AlignedOnScalar ? Aligned : int(assign_traits<Derived1,Derived2>::DstIsAligned) ,
- srcAlignment = assign_traits<Derived1,Derived2>::JointAlignment
- };
- const Index alignedStart = assign_traits<Derived1,Derived2>::DstIsAligned ? 0
- : internal::first_aligned(&dst.coeffRef(0), size);
- const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize;
-
- unaligned_assign_impl<assign_traits<Derived1,Derived2>::DstIsAligned!=0>::run(src,dst,0,alignedStart);
-
- for(Index index = alignedStart; index < alignedEnd; index += packetSize)
- {
- dst.template copyPacket<Derived2, dstAlignment, srcAlignment>(index, src);
- }
-
- unaligned_assign_impl<>::run(src,dst,alignedEnd,size);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, LinearVectorizedTraversal, CompleteUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- enum { size = Derived1::SizeAtCompileTime,
- packetSize = packet_traits<typename Derived1::Scalar>::size,
- alignedSize = (size/packetSize)*packetSize };
-
- assign_innervec_CompleteUnrolling<Derived1, Derived2, 0, alignedSize>::run(dst, src);
- assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, alignedSize, size>::run(dst, src);
- }
-};
-
-/**************************
-*** Slice vectorization ***
-***************************/
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, SliceVectorizedTraversal, NoUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- typedef packet_traits<typename Derived1::Scalar> PacketTraits;
- enum {
- packetSize = PacketTraits::size,
- alignable = PacketTraits::AlignedOnScalar,
- dstAlignment = alignable ? Aligned : int(assign_traits<Derived1,Derived2>::DstIsAligned) ,
- srcAlignment = assign_traits<Derived1,Derived2>::JointAlignment
- };
- const Index packetAlignedMask = packetSize - 1;
- const Index innerSize = dst.innerSize();
- const Index outerSize = dst.outerSize();
- const Index alignedStep = alignable ? (packetSize - dst.outerStride() % packetSize) & packetAlignedMask : 0;
- Index alignedStart = ((!alignable) || assign_traits<Derived1,Derived2>::DstIsAligned) ? 0
- : internal::first_aligned(&dst.coeffRef(0,0), innerSize);
-
- for(Index outer = 0; outer < outerSize; ++outer)
- {
- const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
- // do the non-vectorizable part of the assignment
- for(Index inner = 0; inner<alignedStart ; ++inner)
- dst.copyCoeffByOuterInner(outer, inner, src);
-
- // do the vectorizable part of the assignment
- for(Index inner = alignedStart; inner<alignedEnd; inner+=packetSize)
- dst.template copyPacketByOuterInner<Derived2, dstAlignment, Unaligned>(outer, inner, src);
-
- // do the non-vectorizable part of the assignment
- for(Index inner = alignedEnd; inner<innerSize ; ++inner)
- dst.copyCoeffByOuterInner(outer, inner, src);
-
- alignedStart = std::min<Index>((alignedStart+alignedStep)%packetSize, innerSize);
- }
- }
-};
-
-} // end namespace internal
-
-/***************************************************************************
-* Part 4 : implementation of DenseBase methods
-***************************************************************************/
-
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>
@@ -506,91 +27,35 @@ EIGEN_STRONG_INLINE Derived& DenseBase<Derived>
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived)
EIGEN_STATIC_ASSERT(SameType,YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-#ifdef EIGEN_TEST_EVALUATORS
-
-#ifdef EIGEN_DEBUG_ASSIGN
- internal::copy_using_evaluator_traits<Derived, OtherDerived>::debug();
-#endif
- eigen_assert(rows() == other.rows() && cols() == other.cols());
- internal::call_dense_assignment_loop(derived(),other.derived());
-
-#else // EIGEN_TEST_EVALUATORS
-
-#ifdef EIGEN_DEBUG_ASSIGN
- internal::assign_traits<Derived, OtherDerived>::debug();
-#endif
eigen_assert(rows() == other.rows() && cols() == other.cols());
- internal::assign_impl<Derived, OtherDerived, int(SameType) ? int(internal::assign_traits<Derived, OtherDerived>::Traversal)
- : int(InvalidTraversal)>::run(derived(),other.derived());
+ internal::call_assignment_no_alias(derived(),other.derived());
-#endif // EIGEN_TEST_EVALUATORS
-
-#ifndef EIGEN_NO_DEBUG
- checkTransposeAliasing(other.derived());
-#endif
return derived();
}
-namespace internal {
-
-template<typename Derived, typename OtherDerived,
- bool EvalBeforeAssigning = (int(internal::traits<OtherDerived>::Flags) & EvalBeforeAssigningBit) != 0,
- bool NeedToTranspose = ((int(Derived::RowsAtCompileTime) == 1 && int(OtherDerived::ColsAtCompileTime) == 1)
- | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
- // revert to || as soon as not needed anymore.
- (int(Derived::ColsAtCompileTime) == 1 && int(OtherDerived::RowsAtCompileTime) == 1))
- && int(Derived::SizeAtCompileTime) != 1>
-struct assign_selector;
-
-template<typename Derived, typename OtherDerived>
-struct assign_selector<Derived,OtherDerived,false,false> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.derived()); }
- template<typename ActualDerived, typename ActualOtherDerived>
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Derived& evalTo(ActualDerived& dst, const ActualOtherDerived& other) { other.evalTo(dst); return dst; }
-};
-template<typename Derived, typename OtherDerived>
-struct assign_selector<Derived,OtherDerived,true,false> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.eval()); }
-};
-template<typename Derived, typename OtherDerived>
-struct assign_selector<Derived,OtherDerived,false,true> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose()); }
- template<typename ActualDerived, typename ActualOtherDerived>
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Derived& evalTo(ActualDerived& dst, const ActualOtherDerived& other) { Transpose<ActualDerived> dstTrans(dst); other.evalTo(dstTrans); return dst; }
-};
-template<typename Derived, typename OtherDerived>
-struct assign_selector<Derived,OtherDerived,true,true> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose().eval()); }
-};
-
-} // end namespace internal
-
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
{
- return internal::assign_selector<Derived,OtherDerived>::run(derived(), other.derived());
+ internal::call_assignment(derived(), other.derived());
+ return derived();
}
template<typename Derived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase& other)
{
- return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
+ internal::call_assignment(derived(), other.derived());
+ return derived();
}
template<typename Derived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const MatrixBase& other)
{
- return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
+ internal::call_assignment(derived(), other.derived());
+ return derived();
}
template<typename Derived>
@@ -598,7 +63,8 @@ template <typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
{
- return internal::assign_selector<Derived,OtherDerived>::run(derived(), other.derived());
+ internal::call_assignment(derived(), other.derived());
+ return derived();
}
template<typename Derived>
@@ -606,7 +72,8 @@ template <typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const EigenBase<OtherDerived>& other)
{
- return internal::assign_selector<Derived,OtherDerived,false>::evalTo(derived(), other.derived());
+ internal::call_assignment(derived(), other.derived());
+ return derived();
}
template<typename Derived>
@@ -614,7 +81,8 @@ template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
{
- return internal::assign_selector<Derived,OtherDerived,false>::evalTo(derived(), other.derived());
+ other.derived().evalTo(derived());
+ return derived();
}
} // end namespace Eigen
diff --git a/Eigen/src/Core/AssignEvaluator.h b/Eigen/src/Core/AssignEvaluator.h
index 5451a138f..8ab71446c 100644
--- a/Eigen/src/Core/AssignEvaluator.h
+++ b/Eigen/src/Core/AssignEvaluator.h
@@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2011-2013 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
@@ -24,37 +24,46 @@ namespace internal {
// copy_using_evaluator_traits is based on assign_traits
-template <typename Derived, typename OtherDerived>
+template <typename DstEvaluator, typename SrcEvaluator, typename AssignFunc>
struct copy_using_evaluator_traits
{
+ typedef typename DstEvaluator::XprType Dst;
+
+ enum {
+ DstFlags = DstEvaluator::Flags,
+ SrcFlags = SrcEvaluator::Flags
+ };
+
public:
enum {
- DstIsAligned = Derived::Flags & AlignedBit,
- DstHasDirectAccess = Derived::Flags & DirectAccessBit,
- SrcIsAligned = OtherDerived::Flags & AlignedBit,
- JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned,
- SrcEvalBeforeAssign = (evaluator_traits<OtherDerived>::HasEvalTo == 1)
+ DstIsAligned = DstFlags & AlignedBit,
+ DstHasDirectAccess = DstFlags & DirectAccessBit,
+ SrcIsAligned = SrcFlags & AlignedBit,
+ JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned
};
private:
enum {
- InnerSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::SizeAtCompileTime)
- : int(Derived::Flags)&RowMajorBit ? int(Derived::ColsAtCompileTime)
- : int(Derived::RowsAtCompileTime),
- InnerMaxSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::MaxSizeAtCompileTime)
- : int(Derived::Flags)&RowMajorBit ? int(Derived::MaxColsAtCompileTime)
- : int(Derived::MaxRowsAtCompileTime),
- MaxSizeAtCompileTime = Derived::SizeAtCompileTime,
- PacketSize = packet_traits<typename Derived::Scalar>::size
+ InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime)
+ : int(DstFlags)&RowMajorBit ? int(Dst::ColsAtCompileTime)
+ : int(Dst::RowsAtCompileTime),
+ InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime)
+ : int(DstFlags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime)
+ : int(Dst::MaxRowsAtCompileTime),
+ MaxSizeAtCompileTime = Dst::SizeAtCompileTime,
+ PacketSize = packet_traits<typename Dst::Scalar>::size
};
enum {
- StorageOrdersAgree = (int(Derived::IsRowMajor) == int(OtherDerived::IsRowMajor)),
+ DstIsRowMajor = DstFlags&RowMajorBit,
+ SrcIsRowMajor = SrcFlags&RowMajorBit,
+ StorageOrdersAgree = (int(DstIsRowMajor) == int(SrcIsRowMajor)),
MightVectorize = StorageOrdersAgree
- && (int(Derived::Flags) & int(OtherDerived::Flags) & ActualPacketAccessBit),
+ && (int(DstFlags) & int(SrcFlags) & ActualPacketAccessBit)
+ && (functor_traits<AssignFunc>::PacketAccess),
MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
&& int(DstIsAligned) && int(SrcIsAligned),
- MayLinearize = StorageOrdersAgree && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit),
+ MayLinearize = StorageOrdersAgree && (int(DstFlags) & int(SrcFlags) & LinearAccessBit),
MayLinearVectorize = MightVectorize && MayLinearize && DstHasDirectAccess
&& (DstIsAligned || MaxSizeAtCompileTime == Dynamic),
/* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
@@ -68,8 +77,7 @@ private:
public:
enum {
- Traversal = int(SrcEvalBeforeAssign) ? int(AllAtOnceTraversal)
- : int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
+ Traversal = int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
: int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
: int(MayLinearize) ? int(LinearTraversal)
@@ -82,12 +90,12 @@ public:
private:
enum {
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (Vectorized ? int(PacketSize) : 1),
- MayUnrollCompletely = int(Derived::SizeAtCompileTime) != Dynamic
- && int(OtherDerived::CoeffReadCost) != Dynamic
- && int(Derived::SizeAtCompileTime) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit),
+ MayUnrollCompletely = int(Dst::SizeAtCompileTime) != Dynamic
+ && int(SrcEvaluator::CoeffReadCost) != Dynamic
+ && int(Dst::SizeAtCompileTime) * int(SrcEvaluator::CoeffReadCost) <= int(UnrollingLimit),
MayUnrollInner = int(InnerSize) != Dynamic
- && int(OtherDerived::CoeffReadCost) != Dynamic
- && int(InnerSize) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit)
+ && int(SrcEvaluator::CoeffReadCost) != Dynamic
+ && int(InnerSize) * int(SrcEvaluator::CoeffReadCost) <= int(UnrollingLimit)
};
public:
@@ -110,6 +118,12 @@ public:
#ifdef EIGEN_DEBUG_ASSIGN
static void debug()
{
+ std::cerr << "DstXpr: " << typeid(typename DstEvaluator::XprType).name() << std::endl;
+ std::cerr << "SrcXpr: " << typeid(typename SrcEvaluator::XprType).name() << std::endl;
+ std::cerr.setf(std::ios::hex, std::ios::basefield);
+ EIGEN_DEBUG_VAR(DstFlags)
+ EIGEN_DEBUG_VAR(SrcFlags)
+ std::cerr.unsetf(std::ios::hex);
EIGEN_DEBUG_VAR(DstIsAligned)
EIGEN_DEBUG_VAR(SrcIsAligned)
EIGEN_DEBUG_VAR(JointAlignment)
@@ -127,6 +141,7 @@ public:
EIGEN_DEBUG_VAR(MayUnrollCompletely)
EIGEN_DEBUG_VAR(MayUnrollInner)
EIGEN_DEBUG_VAR(Unrolling)
+ std::cerr << std::endl;
}
#endif
};
@@ -142,6 +157,7 @@ public:
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling
{
+ // FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
@@ -206,9 +222,10 @@ struct copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Stop, Stop
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling
{
+ // FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
-
+
enum {
outer = Index / DstXprType::InnerSizeAtCompileTime,
inner = Index % DstXprType::InnerSizeAtCompileTime,
@@ -235,8 +252,7 @@ struct copy_using_evaluator_innervec_InnerUnrolling
static EIGEN_STRONG_INLINE void run(Kernel &kernel, int outer)
{
kernel.template assignPacketByOuterInner<Aligned, Aligned>(outer, Index);
- typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
- enum { NextIndex = Index + packet_traits<typename DstXprType::Scalar>::size };
+ enum { NextIndex = Index + packet_traits<typename Kernel::Scalar>::size };
copy_using_evaluator_innervec_InnerUnrolling<Kernel, NextIndex, Stop>::run(kernel, outer);
}
};
@@ -496,25 +512,8 @@ struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, NoUnrolling>
}
};
-/****************************
-*** All-at-once traversal ***
-****************************/
-
-// TODO: this 'AllAtOnceTraversal' should be dropped or caught earlier (Gael)
-// Indeed, what to do with the kernel's functor??
-template<typename Kernel>
-struct dense_assignment_loop<Kernel, AllAtOnceTraversal, NoUnrolling>
-{
- static inline void run(Kernel & kernel)
- {
- // Evaluate rhs in temporary to prevent aliasing problems in a = a * a;
- // TODO: Do not pass the xpr object to evalTo() (Jitse)
- kernel.srcEvaluator().evalTo(kernel.dstEvaluator(), kernel.dstExpression());
- }
-};
-
/***************************************************************************
-* Part 4 : Generic Assignment routine
+* Part 4 : Generic dense assignment kernel
***************************************************************************/
// This class generalize the assignment of a coefficient (or packet) from one dense evaluator
@@ -523,7 +522,7 @@ struct dense_assignment_loop<Kernel, AllAtOnceTraversal, NoUnrolling>
// This abstraction level permits to keep the evaluation loops as simple and as generic as possible.
// One can customize the assignment using this generic dense_assignment_kernel with different
// functors, or by completely overloading it, by-passing a functor.
-template<typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor>
+template<typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version = Specialized>
class generic_dense_assignment_kernel
{
protected:
@@ -535,16 +534,22 @@ public:
typedef SrcEvaluatorTypeT SrcEvaluatorType;
typedef typename DstEvaluatorType::Scalar Scalar;
typedef typename DstEvaluatorType::Index Index;
- typedef copy_using_evaluator_traits<DstXprType, SrcXprType> AssignmentTraits;
+ typedef copy_using_evaluator_traits<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor> AssignmentTraits;
generic_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
: m_dst(dst), m_src(src), m_functor(func), m_dstExpr(dstExpr)
- {}
+ {
+ #ifdef EIGEN_DEBUG_ASSIGN
+ AssignmentTraits::debug();
+ #endif
+ }
Index size() const { return m_dstExpr.size(); }
Index innerSize() const { return m_dstExpr.innerSize(); }
Index outerSize() const { return m_dstExpr.outerSize(); }
+ Index rows() const { return m_dstExpr.rows(); }
+ Index cols() const { return m_dstExpr.cols(); }
Index outerStride() const { return m_dstExpr.outerStride(); }
// TODO get rid of this one:
@@ -553,16 +558,19 @@ public:
DstEvaluatorType& dstEvaluator() { return m_dst; }
const SrcEvaluatorType& srcEvaluator() const { return m_src; }
+ /// Assign src(row,col) to dst(row,col) through the assignment functor.
void assignCoeff(Index row, Index col)
{
m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col));
}
+ /// \sa assignCoeff(Index,Index)
void assignCoeff(Index index)
{
m_functor.assignCoeff(m_dst.coeffRef(index), m_src.coeff(index));
}
+ /// \sa assignCoeff(Index,Index)
void assignCoeffByOuterInner(Index outer, Index inner)
{
Index row = rowIndexByOuterInner(outer, inner);
@@ -596,7 +604,7 @@ public:
typedef typename DstEvaluatorType::ExpressionTraits Traits;
return int(Traits::RowsAtCompileTime) == 1 ? 0
: int(Traits::ColsAtCompileTime) == 1 ? inner
- : int(Traits::Flags)&RowMajorBit ? outer
+ : int(DstEvaluatorType::Flags)&RowMajorBit ? outer
: inner;
}
@@ -605,7 +613,7 @@ public:
typedef typename DstEvaluatorType::ExpressionTraits Traits;
return int(Traits::ColsAtCompileTime) == 1 ? 0
: int(Traits::RowsAtCompileTime) == 1 ? inner
- : int(Traits::Flags)&RowMajorBit ? inner
+ : int(DstEvaluatorType::Flags)&RowMajorBit ? inner
: outer;
}
@@ -617,13 +625,13 @@ protected:
DstXprType& m_dstExpr;
};
+/***************************************************************************
+* Part 5 : Entry point for dense rectangular assignment
+***************************************************************************/
+
template<typename DstXprType, typename SrcXprType, typename Functor>
void call_dense_assignment_loop(const DstXprType& dst, const SrcXprType& src, const Functor &func)
{
-#ifdef EIGEN_DEBUG_ASSIGN
- // TODO these traits should be computed from information provided by the evaluators
- internal::copy_using_evaluator_traits<DstXprType, SrcXprType>::debug();
-#endif
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
@@ -645,195 +653,141 @@ void call_dense_assignment_loop(const DstXprType& dst, const SrcXprType& src)
}
/***************************************************************************
-* Part 5 : Entry points
+* Part 6 : Generic assignment
***************************************************************************/
-// Based on DenseBase::LazyAssign()
-// The following functions are just for testing and they are meant to be moved to operator= and the likes.
+// Based on the respective shapes of the destination and source,
+// the class AssignmentKind determine the kind of assignment mechanism.
+// AssignmentKind must define a Kind typedef.
+template<typename DstShape, typename SrcShape> struct AssignmentKind;
-template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType>
-EIGEN_STRONG_INLINE
-const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst,
- const EigenBase<SrcXprType>& src)
-{
- return noalias_copy_using_evaluator(dst.expression(), src.derived(), internal::assign_op<typename DstXprType::Scalar>());
-}
+// Assignement kind defined in this file:
+struct Dense2Dense {};
+struct EigenBase2EigenBase {};
-template<typename XprType, int AssumeAliasing = evaluator_traits<XprType>::AssumeAliasing>
-struct AddEvalIfAssumingAliasing;
+template<typename,typename> struct AssignmentKind { typedef EigenBase2EigenBase Kind; };
+template<> struct AssignmentKind<DenseShape,DenseShape> { typedef Dense2Dense Kind; };
+
+// This is the main assignment class
+template< typename DstXprType, typename SrcXprType, typename Functor,
+ typename Kind = typename AssignmentKind< typename evaluator_traits<DstXprType>::Shape , typename evaluator_traits<SrcXprType>::Shape >::Kind,
+ typename Scalar = typename DstXprType::Scalar>
+struct Assignment;
-template<typename XprType>
-struct AddEvalIfAssumingAliasing<XprType, 0>
-{
- static const XprType& run(const XprType& xpr)
- {
- return xpr;
- }
-};
-template<typename XprType>
-struct AddEvalIfAssumingAliasing<XprType, 1>
-{
- static const EvalToTemp<XprType> run(const XprType& xpr)
- {
- return EvalToTemp<XprType>(xpr);
- }
-};
+// The only purpose of this call_assignment() function is to deal with noalias() / AssumeAliasing and automatic transposition.
+// Indeed, I (Gael) think that this concept of AssumeAliasing was a mistake, and it makes thing quite complicated.
+// So this intermediate function removes everything related to AssumeAliasing such that Assignment
+// does not has to bother about these annoying details.
-template<typename DstXprType, typename SrcXprType, typename Functor>
-EIGEN_STRONG_INLINE
-const DstXprType& copy_using_evaluator(const EigenBase<DstXprType>& dst, const EigenBase<SrcXprType>& src, const Functor &func)
+template<typename Dst, typename Src>
+void call_assignment(Dst& dst, const Src& src)
{
- return noalias_copy_using_evaluator(dst.const_cast_derived(),
- AddEvalIfAssumingAliasing<SrcXprType>::run(src.derived()),
- func
- );
+ call_assignment(dst, src, internal::assign_op<typename Dst::Scalar>());
}
-
-// this mimics operator=
-template<typename DstXprType, typename SrcXprType>
-EIGEN_STRONG_INLINE
-const DstXprType& copy_using_evaluator(const EigenBase<DstXprType>& dst, const EigenBase<SrcXprType>& src)
+template<typename Dst, typename Src>
+void call_assignment(const Dst& dst, const Src& src)
{
- return copy_using_evaluator(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar>());
+ call_assignment(dst, src, internal::assign_op<typename Dst::Scalar>());
}
-
-template<typename DstXprType, typename SrcXprType, typename Functor>
-EIGEN_STRONG_INLINE
-const DstXprType& noalias_copy_using_evaluator(const PlainObjectBase<DstXprType>& dst, const EigenBase<SrcXprType>& src, const Functor &func)
+
+// Deal with AssumeAliasing
+template<typename Dst, typename Src, typename Func>
+void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if<evaluator_traits<Src>::AssumeAliasing==1, void*>::type = 0)
{
-#ifdef EIGEN_DEBUG_ASSIGN
- internal::copy_using_evaluator_traits<DstXprType, SrcXprType>::debug();
-#endif
-#ifdef EIGEN_NO_AUTOMATIC_RESIZING
- eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size())
- : (dst.rows() == src.rows() && dst.cols() == src.cols())))
- && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
-#else
- dst.const_cast_derived().resizeLike(src.derived());
-#endif
- call_dense_assignment_loop(dst.const_cast_derived(), src.derived(), func);
- return dst.derived();
+ typename plain_matrix_type<Src>::type tmp(src);
+ call_assignment_no_alias(dst, tmp, func);
}
-template<typename DstXprType, typename SrcXprType, typename Functor>
-EIGEN_STRONG_INLINE
-const DstXprType& noalias_copy_using_evaluator(const EigenBase<DstXprType>& dst, const EigenBase<SrcXprType>& src, const Functor &func)
+template<typename Dst, typename Src, typename Func>
+void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if<evaluator_traits<Src>::AssumeAliasing==0, void*>::type = 0)
{
- call_dense_assignment_loop(dst.const_cast_derived(), src.derived(), func);
- return dst.derived();
+ call_assignment_no_alias(dst, src, func);
}
-// Based on DenseBase::swap()
-// TODO: Check whether we need to do something special for swapping two
-// Arrays or Matrices. (Jitse)
-
-// Overload default assignPacket behavior for swapping them
-template<typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT>
-class swap_kernel : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, swap_assign_op<typename DstEvaluatorTypeT::Scalar> >
+// by-pass AssumeAliasing
+// FIXME the const version should probably not be needed
+// When there is no aliasing, we require that 'dst' has been properly resized
+template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
+void call_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
{
- typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, swap_assign_op<typename DstEvaluatorTypeT::Scalar> > Base;
- typedef typename DstEvaluatorTypeT::PacketScalar PacketScalar;
- using Base::m_dst;
- using Base::m_src;
- using Base::m_functor;
-
-public:
- typedef typename Base::Scalar Scalar;
- typedef typename Base::Index Index;
- typedef typename Base::DstXprType DstXprType;
-
- swap_kernel(DstEvaluatorTypeT &dst, const SrcEvaluatorTypeT &src, DstXprType& dstExpr)
- : Base(dst, src, swap_assign_op<Scalar>(), dstExpr)
- {}
-
- template<int StoreMode, int LoadMode>
- void assignPacket(Index row, Index col)
- {
- m_functor.template swapPacket<StoreMode,LoadMode,PacketScalar>(&m_dst.coeffRef(row,col), &const_cast<SrcEvaluatorTypeT&>(m_src).coeffRef(row,col));
- }
-
- template<int StoreMode, int LoadMode>
- void assignPacket(Index index)
- {
- m_functor.template swapPacket<StoreMode,LoadMode,PacketScalar>(&m_dst.coeffRef(index), &const_cast<SrcEvaluatorTypeT&>(m_src).coeffRef(index));
- }
-
- // TODO find a simple way not to have to copy/paste this function from generic_dense_assignment_kernel, by simple I mean no CRTP (Gael)
- template<int StoreMode, int LoadMode>
- void assignPacketByOuterInner(Index outer, Index inner)
- {
- Index row = Base::rowIndexByOuterInner(outer, inner);
- Index col = Base::colIndexByOuterInner(outer, inner);
- assignPacket<StoreMode,LoadMode>(row, col);
- }
-};
-
-template<typename DstXprType, typename SrcXprType>
-void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src)
-{
- // TODO there is too much redundancy with call_dense_assignment_loop
-
- eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
-
- typedef typename evaluator<DstXprType>::type DstEvaluatorType;
- typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
-
- DstEvaluatorType dstEvaluator(dst);
- SrcEvaluatorType srcEvaluator(src);
-
- typedef swap_kernel<DstEvaluatorType,SrcEvaluatorType> Kernel;
- Kernel kernel(dstEvaluator, srcEvaluator, dst.const_cast_derived());
-
- dense_assignment_loop<Kernel>::run(kernel);
-}
-
-// Based on MatrixBase::operator+= (in CwiseBinaryOp.h)
-template<typename DstXprType, typename SrcXprType>
-void add_assign_using_evaluator(const MatrixBase<DstXprType>& dst, const MatrixBase<SrcXprType>& src)
-{
- typedef typename DstXprType::Scalar Scalar;
- copy_using_evaluator(dst.derived(), src.derived(), add_assign_op<Scalar>());
+ call_assignment_no_alias(dst.expression(), src, func);
}
-
-// Based on ArrayBase::operator+=
-template<typename DstXprType, typename SrcXprType>
-void add_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
+template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
+void call_assignment(NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
{
- typedef typename DstXprType::Scalar Scalar;
- copy_using_evaluator(dst.derived(), src.derived(), add_assign_op<Scalar>());
+ call_assignment_no_alias(dst.expression(), src, func);
}
-// TODO: Add add_assign_using_evaluator for EigenBase ? (Jitse)
-template<typename DstXprType, typename SrcXprType>
-void subtract_assign_using_evaluator(const MatrixBase<DstXprType>& dst, const MatrixBase<SrcXprType>& src)
+template<typename Dst, typename Src, typename Func>
+void call_assignment_no_alias(Dst& dst, const Src& src, const Func& func)
{
- typedef typename DstXprType::Scalar Scalar;
- copy_using_evaluator(dst.derived(), src.derived(), sub_assign_op<Scalar>());
-}
+ enum {
+ NeedToTranspose = ( (int(Dst::RowsAtCompileTime) == 1 && int(Src::ColsAtCompileTime) == 1)
+ | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
+ // revert to || as soon as not needed anymore.
+ (int(Dst::ColsAtCompileTime) == 1 && int(Src::RowsAtCompileTime) == 1))
+ && int(Dst::SizeAtCompileTime) != 1
+ };
-template<typename DstXprType, typename SrcXprType>
-void subtract_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
-{
- typedef typename DstXprType::Scalar Scalar;
- copy_using_evaluator(dst.derived(), src.derived(), sub_assign_op<Scalar>());
+ typename Dst::Index dstRows = NeedToTranspose ? src.cols() : src.rows();
+ typename Dst::Index dstCols = NeedToTranspose ? src.rows() : src.cols();
+ if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
+ dst.resize(dstRows, dstCols);
+
+ typedef typename internal::conditional<NeedToTranspose, Transpose<Dst>, Dst>::type ActualDstTypeCleaned;
+ typedef typename internal::conditional<NeedToTranspose, Transpose<Dst>, Dst&>::type ActualDstType;
+ ActualDstType actualDst(dst);
+
+ // TODO check whether this is the right place to perform these checks:
+ EIGEN_STATIC_ASSERT_LVALUE(Dst)
+ EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(ActualDstTypeCleaned,Src)
+
+ // TODO this line is commented to allow matrix = permutation
+ // Actually, the "Scalar" type for a permutation matrix does not really make sense,
+ // perhaps it could be void, and EIGEN_CHECK_BINARY_COMPATIBILIY could allow micing void with anything...?
+// EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename ActualDstTypeCleaned::Scalar,typename Src::Scalar);
+
+ Assignment<ActualDstTypeCleaned,Src,Func>::run(actualDst, src, func);
}
-
-template<typename DstXprType, typename SrcXprType>
-void multiply_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
+template<typename Dst, typename Src>
+void call_assignment_no_alias(Dst& dst, const Src& src)
{
- typedef typename DstXprType::Scalar Scalar;
- copy_using_evaluator(dst.derived(), src.derived(), mul_assign_op<Scalar>());
+ call_assignment_no_alias(dst, src, internal::assign_op<typename Dst::Scalar>());
}
-template<typename DstXprType, typename SrcXprType>
-void divide_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
+// forxard declaration
+template<typename Dst, typename Src> void check_for_aliasing(const Dst &dst, const Src &src);
+
+// Generic Dense to Dense assignment
+template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
+struct Assignment<DstXprType, SrcXprType, Functor, Dense2Dense, Scalar>
{
- typedef typename DstXprType::Scalar Scalar;
- copy_using_evaluator(dst.derived(), src.derived(), div_assign_op<Scalar>());
-}
+ static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
+ {
+ eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
+
+#ifndef EIGEN_NO_DEBUG
+ internal::check_for_aliasing(dst, src);
+#endif
+
+ call_dense_assignment_loop(dst, src, func);
+ }
+};
+// Generic assignment through evalTo.
+// TODO: not sure we have to keep that one, but it helps porting current code to new evaluator mechanism.
+template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
+struct Assignment<DstXprType, SrcXprType, Functor, EigenBase2EigenBase, Scalar>
+{
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar> &/*func*/)
+ {
+ eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
+
+ src.evalTo(dst);
+ }
+};
} // namespace internal
diff --git a/Eigen/src/Core/BandMatrix.h b/Eigen/src/Core/BandMatrix.h
index ffd7fe8b3..b0ebe1160 100644
--- a/Eigen/src/Core/BandMatrix.h
+++ b/Eigen/src/Core/BandMatrix.h
@@ -327,6 +327,25 @@ class TridiagonalMatrix : public BandMatrix<Scalar,Size,Size,Options&SelfAdjoint
protected:
};
+
+struct BandShape {};
+
+template<typename _Scalar, int _Rows, int _Cols, int _Supers, int _Subs, int _Options>
+struct evaluator_traits<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
+ : public evaluator_traits_base<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
+{
+ typedef BandShape Shape;
+};
+
+template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
+struct evaluator_traits<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
+ : public evaluator_traits_base<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
+{
+ typedef BandShape Shape;
+};
+
+template<> struct AssignmentKind<DenseShape,BandShape> { typedef EigenBase2EigenBase Kind; };
+
} // end namespace internal
} // end namespace Eigen
diff --git a/Eigen/src/Core/Block.h b/Eigen/src/Core/Block.h
index da193d1a2..737e5dc24 100644
--- a/Eigen/src/Core/Block.h
+++ b/Eigen/src/Core/Block.h
@@ -68,6 +68,7 @@ struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprTyp
MaxColsAtCompileTime = BlockCols==0 ? 0
: ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime)
: int(traits<XprType>::MaxColsAtCompileTime),
+
XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0,
IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
: (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
@@ -80,18 +81,14 @@ struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprTyp
OuterStrideAtCompileTime = HasSameStorageOrderAsXprType
? int(outer_stride_at_compile_time<XprType>::ret)
: int(inner_stride_at_compile_time<XprType>::ret),
- MaskPacketAccessBit = (InnerSize == Dynamic || (InnerSize % packet_traits<Scalar>::size) == 0)
- && (InnerStrideAtCompileTime == 1)
- ? PacketAccessBit : 0,
- MaskAlignedBit = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % EIGEN_ALIGN_BYTES) == 0)) ? AlignedBit : 0,
- FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (traits<XprType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0,
+ // IsAligned is needed by MapBase's assertions
+ // We can sefely set it to false here. Internal alignment errors will be detected by an eigen_internal_assert in the respective evaluator
+ IsAligned = 0,
+ // FIXME, this traits is rather specialized for dense object and it needs to be cleaned further
FlagsLvalueBit = is_lvalue<XprType>::value ? LvalueBit : 0,
FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0,
- Flags0 = traits<XprType>::Flags & ( (HereditaryBits & ~RowMajorBit) |
- DirectAccessBit |
- MaskPacketAccessBit |
- MaskAlignedBit),
- Flags = Flags0 | FlagsLinearAccessBit | FlagsLvalueBit | FlagsRowMajorBit
+ Flags = (traits<XprType>::Flags & DirectAccessBit) | FlagsLvalueBit | FlagsRowMajorBit
+ // FIXME DirectAccessBit should not be handled by expressions
};
};
@@ -111,6 +108,8 @@ template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel> class
typedef Impl Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(Block)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block)
+
+ typedef typename internal::remove_all<XprType>::type NestedExpression;
/** Column or Row constructor
*/
@@ -333,6 +332,9 @@ class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
: public MapBase<Block<XprType, BlockRows, BlockCols, InnerPanel> >
{
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
+ enum {
+ XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0
+ };
public:
typedef MapBase<BlockType> Base;
@@ -343,9 +345,8 @@ class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, Index i)
- : Base(internal::const_cast_ptr(&xpr.coeffRef(
- (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0,
- (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0)),
+ : Base(xpr.data() + i * ( ((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && (!XprTypeIsRowMajor))
+ || ((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && ( XprTypeIsRowMajor)) ? xpr.innerStride() : xpr.outerStride()),
BlockRows==1 ? 1 : xpr.rows(),
BlockCols==1 ? 1 : xpr.cols()),
m_xpr(xpr)
@@ -357,7 +358,8 @@ class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol)
- : Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol))), m_xpr(xpr)
+ : Base(xpr.data()+xpr.innerStride()*(XprTypeIsRowMajor?startCol:startRow) + xpr.outerStride()*(XprTypeIsRowMajor?startRow:startCol)),
+ m_xpr(xpr)
{
init();
}
@@ -368,7 +370,7 @@ class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
inline BlockImpl_dense(XprType& xpr,
Index startRow, Index startCol,
Index blockRows, Index blockCols)
- : Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol)), blockRows, blockCols),
+ : Base(xpr.data()+xpr.innerStride()*(XprTypeIsRowMajor?startCol:startRow) + xpr.outerStride()*(XprTypeIsRowMajor?startRow:startCol), blockRows, blockCols),
m_xpr(xpr)
{
init();
diff --git a/Eigen/src/Core/BooleanRedux.h b/Eigen/src/Core/BooleanRedux.h
index be9f48a8c..dac1887e0 100644
--- a/Eigen/src/Core/BooleanRedux.h
+++ b/Eigen/src/Core/BooleanRedux.h
@@ -17,9 +17,10 @@ namespace internal {
template<typename Derived, int UnrollCount>
struct all_unroller
{
+ typedef typename Derived::ExpressionTraits Traits;
enum {
- col = (UnrollCount-1) / Derived::RowsAtCompileTime,
- row = (UnrollCount-1) % Derived::RowsAtCompileTime
+ col = (UnrollCount-1) / Traits::RowsAtCompileTime,
+ row = (UnrollCount-1) % Traits::RowsAtCompileTime
};
static inline bool run(const Derived &mat)
@@ -43,11 +44,12 @@ struct all_unroller<Derived, Dynamic>
template<typename Derived, int UnrollCount>
struct any_unroller
{
+ typedef typename Derived::ExpressionTraits Traits;
enum {
- col = (UnrollCount-1) / Derived::RowsAtCompileTime,
- row = (UnrollCount-1) % Derived::RowsAtCompileTime
+ col = (UnrollCount-1) / Traits::RowsAtCompileTime,
+ row = (UnrollCount-1) % Traits::RowsAtCompileTime
};
-
+
static inline bool run(const Derived &mat)
{
return any_unroller<Derived, UnrollCount-1>::run(mat) || mat.coeff(row, col);
@@ -78,19 +80,21 @@ struct any_unroller<Derived, Dynamic>
template<typename Derived>
inline bool DenseBase<Derived>::all() const
{
+ typedef typename internal::evaluator<Derived>::type Evaluator;
enum {
unroll = SizeAtCompileTime != Dynamic
- && CoeffReadCost != Dynamic
+ && Evaluator::CoeffReadCost != Dynamic
&& NumTraits<Scalar>::AddCost != Dynamic
- && SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
+ && SizeAtCompileTime * (Evaluator::CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
};
+ Evaluator evaluator(derived());
if(unroll)
- return internal::all_unroller<Derived, unroll ? int(SizeAtCompileTime) : Dynamic>::run(derived());
+ return internal::all_unroller<Evaluator, unroll ? int(SizeAtCompileTime) : Dynamic>::run(evaluator);
else
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
- if (!coeff(i, j)) return false;
+ if (!evaluator.coeff(i, j)) return false;
return true;
}
}
@@ -102,19 +106,21 @@ inline bool DenseBase<Derived>::all() const
template<typename Derived>
inline bool DenseBase<Derived>::any() const
{
+ typedef typename internal::evaluator<Derived>::type Evaluator;
enum {
unroll = SizeAtCompileTime != Dynamic
- && CoeffReadCost != Dynamic
+ && Evaluator::CoeffReadCost != Dynamic
&& NumTraits<Scalar>::AddCost != Dynamic
- && SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
+ && SizeAtCompileTime * (Evaluator::CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
};
+ Evaluator evaluator(derived());
if(unroll)
- return internal::any_unroller<Derived, unroll ? int(SizeAtCompileTime) : Dynamic>::run(derived());
+ return internal::any_unroller<Evaluator, unroll ? int(SizeAtCompileTime) : Dynamic>::run(evaluator);
else
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
- if (coeff(i, j)) return true;
+ if (evaluator.coeff(i, j)) return true;
return false;
}
}
diff --git a/Eigen/src/Core/CoreEvaluators.h b/Eigen/src/Core/CoreEvaluators.h
index 3568cb85f..09a83a382 100644
--- a/Eigen/src/Core/CoreEvaluators.h
+++ b/Eigen/src/Core/CoreEvaluators.h
@@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
@@ -14,57 +14,83 @@
#define EIGEN_COREEVALUATORS_H
namespace Eigen {
-
+
namespace internal {
-// evaluator_traits<T> contains traits for evaluator_impl<T>
+struct IndexBased {};
+struct IteratorBased {};
+
+// This class returns the evaluator kind from the expression storage kind.
+// Default assumes index based accessors
+template<typename StorageKind>
+struct storage_kind_to_evaluator_kind {
+ typedef IndexBased Kind;
+};
+
+// This class returns the evaluator shape from the expression storage kind.
+// It can be Dense, Sparse, Triangular, Diagonal, SelfAdjoint, Band, etc.
+template<typename StorageKind> struct storage_kind_to_shape;
+
+
+template<> struct storage_kind_to_shape<Dense> { typedef DenseShape Shape; };
+
+// Evaluators have to be specialized with respect to various criteria such as:
+// - storage/structure/shape
+// - scalar type
+// - etc.
+// Therefore, we need specialization of evaluator providing additional template arguments for each kind of evaluators.
+// We currently distinguish the following kind of evaluators:
+// - unary_evaluator for expressions taking only one arguments (CwiseUnaryOp, CwiseUnaryView, Transpose, MatrixWrapper, ArrayWrapper, Reverse, Replicate)
+// - binary_evaluator for expression taking two arguments (CwiseBinaryOp)
+// - product_evaluator for linear algebra products (Product); special case of binary_evaluator because it requires additional tags for dispatching.
+// - mapbase_evaluator for Map, Block, Ref
+// - block_evaluator for Block (special dispatching to a mapbase_evaluator or unary_evaluator)
+
+template< typename T,
+ typename LhsKind = typename evaluator_traits<typename T::Lhs>::Kind,
+ typename RhsKind = typename evaluator_traits<typename T::Rhs>::Kind,
+ typename LhsScalar = typename traits<typename T::Lhs>::Scalar,
+ typename RhsScalar = typename traits<typename T::Rhs>::Scalar> struct binary_evaluator;
+
+template< typename T,
+ typename Kind = typename evaluator_traits<typename T::NestedExpression>::Kind,
+ typename Scalar = typename T::Scalar> struct unary_evaluator;
+
+// evaluator_traits<T> contains traits for evaluator<T>
template<typename T>
-struct evaluator_traits
+struct evaluator_traits_base
{
- // 1 if evaluator_impl<T>::evalTo() exists
- // 0 if evaluator_impl<T> allows coefficient-based access
- static const int HasEvalTo = 0;
-
+ // TODO check whether these two indirections are really needed.
+ // Basically, if nobody overwrite type and nestedType, then, they can be dropped
+// typedef evaluator<T> type;
+// typedef evaluator<T> nestedType;
+
+ // by default, get evaluator kind and shape from storage
+ typedef typename storage_kind_to_evaluator_kind<typename traits<T>::StorageKind>::Kind Kind;
+ typedef typename storage_kind_to_shape<typename traits<T>::StorageKind>::Shape Shape;
+
// 1 if assignment A = B assumes aliasing when B is of type T and thus B needs to be evaluated into a
// temporary; 0 if not.
static const int AssumeAliasing = 0;
};
-// expression class for evaluating nested expression to a temporary
-
-template<typename ArgType>
-class EvalToTemp;
-
-// evaluator<T>::type is type of evaluator for T
-// evaluator<T>::nestedType is type of evaluator if T is nested inside another evaluator
-
-template<typename T>
-struct evaluator_impl
-{ };
-
-template<typename T, int Nested = evaluator_traits<T>::HasEvalTo>
-struct evaluator_nested_type;
-
+// Default evaluator traits
template<typename T>
-struct evaluator_nested_type<T, 0>
+struct evaluator_traits : public evaluator_traits_base<T>
{
- typedef evaluator_impl<T> type;
};
-template<typename T>
-struct evaluator_nested_type<T, 1>
-{
- typedef evaluator_impl<EvalToTemp<T> > type;
-};
+// By default, we assume a unary expression:
template<typename T>
-struct evaluator
+struct evaluator : public unary_evaluator<T>
{
- typedef evaluator_impl<T> type;
- typedef typename evaluator_nested_type<T>::type nestedType;
+ typedef unary_evaluator<T> Base;
+ evaluator(const T& xpr) : Base(xpr) {}
};
+
// TODO: Think about const-correctness
template<typename T>
@@ -76,46 +102,58 @@ struct evaluator<const T>
// TODO this class does not seem to be necessary anymore
template<typename ExpressionType>
-struct evaluator_impl_base
+struct evaluator_base
{
- typedef typename ExpressionType::Index Index;
+// typedef typename evaluator_traits<ExpressionType>::type type;
+// typedef typename evaluator_traits<ExpressionType>::nestedType nestedType;
+ typedef evaluator<ExpressionType> type;
+ typedef evaluator<ExpressionType> nestedType;
+
+ typedef typename traits<ExpressionType>::Index Index;
// TODO that's not very nice to have to propagate all these traits. They are currently only needed to handle outer,inner indices.
typedef traits<ExpressionType> ExpressionTraits;
-
- evaluator_impl<ExpressionType>& derived()
- {
- return *static_cast<evaluator_impl<ExpressionType>*>(this);
- }
};
// -------------------- Matrix and Array --------------------
//
-// evaluator_impl<PlainObjectBase> is a common base class for the
+// evaluator<PlainObjectBase> is a common base class for the
// Matrix and Array evaluators.
+// Here we directly specialize evaluator. This is not really a unary expression, and it is, by definition, dense,
+// so no need for more sophisticated dispatching.
template<typename Derived>
-struct evaluator_impl<PlainObjectBase<Derived> >
- : evaluator_impl_base<Derived>
+struct evaluator<PlainObjectBase<Derived> >
+ : evaluator_base<Derived>
{
typedef PlainObjectBase<Derived> PlainObjectType;
+ typedef typename PlainObjectType::Index Index;
+ typedef typename PlainObjectType::Scalar Scalar;
+ typedef typename PlainObjectType::CoeffReturnType CoeffReturnType;
+ typedef typename PlainObjectType::PacketScalar PacketScalar;
+ typedef typename PlainObjectType::PacketReturnType PacketReturnType;
enum {
IsRowMajor = PlainObjectType::IsRowMajor,
IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime,
RowsAtCompileTime = PlainObjectType::RowsAtCompileTime,
- ColsAtCompileTime = PlainObjectType::ColsAtCompileTime
+ ColsAtCompileTime = PlainObjectType::ColsAtCompileTime,
+
+ CoeffReadCost = NumTraits<Scalar>::ReadCost,
+ Flags = compute_matrix_evaluator_flags< Scalar,Derived::RowsAtCompileTime,Derived::ColsAtCompileTime,
+ Derived::Options,Derived::MaxRowsAtCompileTime,Derived::MaxColsAtCompileTime>::ret
};
-
- evaluator_impl(const PlainObjectType& m)
+
+ evaluator()
+ : m_data(0),
+ m_outerStride(IsVectorAtCompileTime ? 0
+ : int(IsRowMajor) ? ColsAtCompileTime
+ : RowsAtCompileTime)
+ {}
+
+ evaluator(const PlainObjectType& m)
: m_data(m.data()), m_outerStride(IsVectorAtCompileTime ? 0 : m.outerStride())
{ }
- typedef typename PlainObjectType::Index Index;
- typedef typename PlainObjectType::Scalar Scalar;
- typedef typename PlainObjectType::CoeffReturnType CoeffReturnType;
- typedef typename PlainObjectType::PacketScalar PacketScalar;
- typedef typename PlainObjectType::PacketReturnType PacketReturnType;
-
CoeffReturnType coeff(Index row, Index col) const
{
if (IsRowMajor)
@@ -184,153 +222,45 @@ protected:
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
-struct evaluator_impl<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
- : evaluator_impl<PlainObjectBase<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > >
+struct evaluator<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
+ : evaluator<PlainObjectBase<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > >
{
typedef Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> XprType;
+
+ evaluator() {}
- evaluator_impl(const XprType& m)
- : evaluator_impl<PlainObjectBase<XprType> >(m)
+ evaluator(const XprType& m)
+ : evaluator<PlainObjectBase<XprType> >(m)
{ }
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
-struct evaluator_impl<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
- : evaluator_impl<PlainObjectBase<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > >
+struct evaluator<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
+ : evaluator<PlainObjectBase<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > >
{
typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> XprType;
- evaluator_impl(const XprType& m)
- : evaluator_impl<PlainObjectBase<XprType> >(m)
- { }
-};
-
-// -------------------- EvalToTemp --------------------
-
-template<typename ArgType>
-struct traits<EvalToTemp<ArgType> >
- : public traits<ArgType>
-{ };
-
-template<typename ArgType>
-class EvalToTemp
- : public dense_xpr_base<EvalToTemp<ArgType> >::type
-{
- public:
-
- typedef typename dense_xpr_base<EvalToTemp>::type Base;
- EIGEN_GENERIC_PUBLIC_INTERFACE(EvalToTemp)
-
- EvalToTemp(const ArgType& arg)
- : m_arg(arg)
- { }
-
- const ArgType& arg() const
- {
- return m_arg;
- }
-
- Index rows() const
- {
- return m_arg.rows();
- }
-
- Index cols() const
- {
- return m_arg.cols();
- }
-
- private:
- const ArgType& m_arg;
-};
-
-template<typename ArgType>
-struct evaluator_impl<EvalToTemp<ArgType> >
-{
- typedef EvalToTemp<ArgType> XprType;
- typedef typename ArgType::PlainObject PlainObject;
-
- evaluator_impl(const XprType& xpr)
- : m_result(xpr.rows(), xpr.cols()), m_resultImpl(m_result)
- {
- // TODO we should simply do m_result(xpr.arg());
- call_dense_assignment_loop(m_result, xpr.arg());
- }
-
- // This constructor is used when nesting an EvalTo evaluator in another evaluator
- evaluator_impl(const ArgType& arg)
- : m_result(arg.rows(), arg.cols()), m_resultImpl(m_result)
- {
- // TODO we should simply do m_result(xpr.arg());
- call_dense_assignment_loop(m_result, arg);
- }
-
- typedef typename PlainObject::Index Index;
- typedef typename PlainObject::Scalar Scalar;
- typedef typename PlainObject::CoeffReturnType CoeffReturnType;
- typedef typename PlainObject::PacketScalar PacketScalar;
- typedef typename PlainObject::PacketReturnType PacketReturnType;
-
- // All other functions are forwarded to m_resultImpl
-
- CoeffReturnType coeff(Index row, Index col) const
- {
- return m_resultImpl.coeff(row, col);
- }
-
- CoeffReturnType coeff(Index index) const
- {
- return m_resultImpl.coeff(index);
- }
+ evaluator() {}
- Scalar& coeffRef(Index row, Index col)
- {
- return m_resultImpl.coeffRef(row, col);
- }
-
- Scalar& coeffRef(Index index)
- {
- return m_resultImpl.coeffRef(index);
- }
-
- template<int LoadMode>
- PacketReturnType packet(Index row, Index col) const
- {
- return m_resultImpl.template packet<LoadMode>(row, col);
- }
-
- template<int LoadMode>
- PacketReturnType packet(Index index) const
- {
- return m_resultImpl.packet<LoadMode>(index);
- }
-
- template<int StoreMode>
- void writePacket(Index row, Index col, const PacketScalar& x)
- {
- m_resultImpl.template writePacket<StoreMode>(row, col, x);
- }
-
- template<int StoreMode>
- void writePacket(Index index, const PacketScalar& x)
- {
- m_resultImpl.template writePacket<StoreMode>(index, x);
- }
-
-protected:
- PlainObject m_result;
- typename evaluator<PlainObject>::nestedType m_resultImpl;
+ evaluator(const XprType& m)
+ : evaluator<PlainObjectBase<XprType> >(m)
+ { }
};
// -------------------- Transpose --------------------
template<typename ArgType>
-struct evaluator_impl<Transpose<ArgType> >
- : evaluator_impl_base<Transpose<ArgType> >
+struct unary_evaluator<Transpose<ArgType>, IndexBased>
+ : evaluator_base<Transpose<ArgType> >
{
typedef Transpose<ArgType> XprType;
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+ Flags = evaluator<ArgType>::Flags ^ RowMajorBit
+ };
- evaluator_impl(const XprType& t) : m_argImpl(t.nestedExpression()) {}
+ unary_evaluator(const XprType& t) : m_argImpl(t.nestedExpression()) {}
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
@@ -387,13 +317,27 @@ protected:
};
// -------------------- CwiseNullaryOp --------------------
+// Like Matrix and Array, this is not really a unary expression, so we directly specialize evaluator.
+// Likewise, there is not need to more sophisticated dispatching here.
template<typename NullaryOp, typename PlainObjectType>
-struct evaluator_impl<CwiseNullaryOp<NullaryOp,PlainObjectType> >
+struct evaluator<CwiseNullaryOp<NullaryOp,PlainObjectType> >
+ : evaluator_base<CwiseNullaryOp<NullaryOp,PlainObjectType> >
{
typedef CwiseNullaryOp<NullaryOp,PlainObjectType> XprType;
+ typedef typename internal::remove_all<PlainObjectType>::type PlainObjectTypeCleaned;
+
+ enum {
+ CoeffReadCost = internal::functor_traits<NullaryOp>::Cost,
+
+ Flags = (evaluator<PlainObjectTypeCleaned>::Flags
+ & ( HereditaryBits
+ | (functor_has_linear_access<NullaryOp>::ret ? LinearAccessBit : 0)
+ | (functor_traits<NullaryOp>::PacketAccess ? PacketAccessBit : 0)))
+ | (functor_traits<NullaryOp>::IsRepeatable ? 0 : EvalBeforeNestingBit) // FIXME EvalBeforeNestingBit should be needed anymore
+ };
- evaluator_impl(const XprType& n)
+ evaluator(const XprType& n)
: m_functor(n.functor())
{ }
@@ -430,11 +374,20 @@ protected:
// -------------------- CwiseUnaryOp --------------------
template<typename UnaryOp, typename ArgType>
-struct evaluator_impl<CwiseUnaryOp<UnaryOp, ArgType> >
+struct unary_evaluator<CwiseUnaryOp<UnaryOp, ArgType>, IndexBased >
+ : evaluator_base<CwiseUnaryOp<UnaryOp, ArgType> >
{
typedef CwiseUnaryOp<UnaryOp, ArgType> XprType;
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost + functor_traits<UnaryOp>::Cost,
+
+ Flags = evaluator<ArgType>::Flags & (
+ HereditaryBits | LinearAccessBit | AlignedBit
+ | (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0))
+ };
- evaluator_impl(const XprType& op)
+ unary_evaluator(const XprType& op)
: m_functor(op.functor()),
m_argImpl(op.nestedExpression())
{ }
@@ -472,12 +425,43 @@ protected:
// -------------------- CwiseBinaryOp --------------------
+// this is a binary expression
template<typename BinaryOp, typename Lhs, typename Rhs>
-struct evaluator_impl<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
+struct evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
+ : public binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
{
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
+ typedef binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> > Base;
+
+ evaluator(const XprType& xpr) : Base(xpr) {}
+};
- evaluator_impl(const XprType& xpr)
+template<typename BinaryOp, typename Lhs, typename Rhs>
+struct binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs>, IndexBased, IndexBased>
+ : evaluator_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
+{
+ typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
+
+ enum {
+ CoeffReadCost = evaluator<Lhs>::CoeffReadCost + evaluator<Rhs>::CoeffReadCost + functor_traits<BinaryOp>::Cost,
+
+ LhsFlags = evaluator<Lhs>::Flags,
+ RhsFlags = evaluator<Rhs>::Flags,
+ SameType = is_same<typename Lhs::Scalar,typename Rhs::Scalar>::value,
+ StorageOrdersAgree = (int(LhsFlags)&RowMajorBit)==(int(RhsFlags)&RowMajorBit),
+ Flags0 = (int(LhsFlags) | int(RhsFlags)) & (
+ HereditaryBits
+ | (int(LhsFlags) & int(RhsFlags) &
+ ( AlignedBit
+ | (StorageOrdersAgree ? LinearAccessBit : 0)
+ | (functor_traits<BinaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0)
+ )
+ )
+ ),
+ Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit)
+ };
+
+ binary_evaluator(const XprType& xpr)
: m_functor(xpr.functor()),
m_lhsImpl(xpr.lhs()),
m_rhsImpl(xpr.rhs())
@@ -501,14 +485,14 @@ struct evaluator_impl<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
PacketScalar packet(Index row, Index col) const
{
return m_functor.packetOp(m_lhsImpl.template packet<LoadMode>(row, col),
- m_rhsImpl.template packet<LoadMode>(row, col));
+ m_rhsImpl.template packet<LoadMode>(row, col));
}
template<int LoadMode>
PacketScalar packet(Index index) const
{
return m_functor.packetOp(m_lhsImpl.template packet<LoadMode>(index),
- m_rhsImpl.template packet<LoadMode>(index));
+ m_rhsImpl.template packet<LoadMode>(index));
}
protected:
@@ -520,12 +504,18 @@ protected:
// -------------------- CwiseUnaryView --------------------
template<typename UnaryOp, typename ArgType>
-struct evaluator_impl<CwiseUnaryView<UnaryOp, ArgType> >
- : evaluator_impl_base<CwiseUnaryView<UnaryOp, ArgType> >
+struct unary_evaluator<CwiseUnaryView<UnaryOp, ArgType>, IndexBased>
+ : evaluator_base<CwiseUnaryView<UnaryOp, ArgType> >
{
typedef CwiseUnaryView<UnaryOp, ArgType> XprType;
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost + functor_traits<UnaryOp>::Cost,
+
+ Flags = (evaluator<ArgType>::Flags & (HereditaryBits | LinearAccessBit | DirectAccessBit))
+ };
- evaluator_impl(const XprType& op)
+ unary_evaluator(const XprType& op)
: m_unaryOp(op.functor()),
m_argImpl(op.nestedExpression())
{ }
@@ -561,13 +551,15 @@ protected:
// -------------------- Map --------------------
-template<typename Derived, int AccessorsType>
-struct evaluator_impl<MapBase<Derived, AccessorsType> >
- : evaluator_impl_base<Derived>
-{
- typedef MapBase<Derived, AccessorsType> MapType;
- typedef Derived XprType;
+// FIXME perhaps the PlainObjectType could be provided by Derived::PlainObject ?
+// but that might complicate template specialization
+template<typename Derived, typename PlainObjectType>
+struct mapbase_evaluator;
+template<typename Derived, typename PlainObjectType>
+struct mapbase_evaluator : evaluator_base<Derived>
+{
+ typedef Derived XprType;
typedef typename XprType::PointerType PointerType;
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
@@ -575,81 +567,121 @@ struct evaluator_impl<MapBase<Derived, AccessorsType> >
typedef typename XprType::PacketScalar PacketScalar;
typedef typename XprType::PacketReturnType PacketReturnType;
- evaluator_impl(const XprType& map)
- : m_data(const_cast<PointerType>(map.data())),
- m_rowStride(map.rowStride()),
- m_colStride(map.colStride())
- { }
-
enum {
- RowsAtCompileTime = XprType::RowsAtCompileTime
+ IsRowMajor = XprType::RowsAtCompileTime,
+ ColsAtCompileTime = XprType::ColsAtCompileTime,
+ CoeffReadCost = NumTraits<Scalar>::ReadCost
};
+
+ mapbase_evaluator(const XprType& map)
+ : m_data(const_cast<PointerType>(map.data())),
+ m_xpr(map)
+ {
+ EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(evaluator<Derived>::Flags&PacketAccessBit, internal::inner_stride_at_compile_time<Derived>::ret==1),
+ PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1);
+ }
CoeffReturnType coeff(Index row, Index col) const
- {
- return m_data[col * m_colStride + row * m_rowStride];
+ {
+ return m_data[col * m_xpr.colStride() + row * m_xpr.rowStride()];
}
CoeffReturnType coeff(Index index) const
- {
- return coeff(RowsAtCompileTime == 1 ? 0 : index,
- RowsAtCompileTime == 1 ? index : 0);
+ {
+ return m_data[index * m_xpr.innerStride()];
}
Scalar& coeffRef(Index row, Index col)
- {
- return m_data[col * m_colStride + row * m_rowStride];
+ {
+ return m_data[col * m_xpr.colStride() + row * m_xpr.rowStride()];
}
Scalar& coeffRef(Index index)
- {
- return coeffRef(RowsAtCompileTime == 1 ? 0 : index,
- RowsAtCompileTime == 1 ? index : 0);
+ {
+ return m_data[index * m_xpr.innerStride()];
}
template<int LoadMode>
PacketReturnType packet(Index row, Index col) const
- {
- PointerType ptr = m_data + row * m_rowStride + col * m_colStride;
+ {
+ PointerType ptr = m_data + row * m_xpr.rowStride() + col * m_xpr.colStride();
return internal::ploadt<PacketScalar, LoadMode>(ptr);
}
template<int LoadMode>
PacketReturnType packet(Index index) const
- {
- return packet<LoadMode>(RowsAtCompileTime == 1 ? 0 : index,
- RowsAtCompileTime == 1 ? index : 0);
+ {
+ return internal::ploadt<PacketScalar, LoadMode>(m_data + index * m_xpr.innerStride());
}
template<int StoreMode>
void writePacket(Index row, Index col, const PacketScalar& x)
- {
- PointerType ptr = m_data + row * m_rowStride + col * m_colStride;
+ {
+ PointerType ptr = m_data + row * m_xpr.rowStride() + col * m_xpr.colStride();
return internal::pstoret<Scalar, PacketScalar, StoreMode>(ptr, x);
}
template<int StoreMode>
void writePacket(Index index, const PacketScalar& x)
- {
- return writePacket<StoreMode>(RowsAtCompileTime == 1 ? 0 : index,
- RowsAtCompileTime == 1 ? index : 0,
- x);
+ {
+ internal::pstoret<Scalar, PacketScalar, StoreMode>(m_data + index * m_xpr.innerStride(), x);
}
protected:
PointerType m_data;
- int m_rowStride;
- int m_colStride;
+ const XprType& m_xpr;
};
template<typename PlainObjectType, int MapOptions, typename StrideType>
-struct evaluator_impl<Map<PlainObjectType, MapOptions, StrideType> >
- : public evaluator_impl<MapBase<Map<PlainObjectType, MapOptions, StrideType> > >
+struct evaluator<Map<PlainObjectType, MapOptions, StrideType> >
+ : public mapbase_evaluator<Map<PlainObjectType, MapOptions, StrideType>, PlainObjectType>
{
typedef Map<PlainObjectType, MapOptions, StrideType> XprType;
+ typedef typename XprType::Scalar Scalar;
+
+ enum {
+ InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0
+ ? int(PlainObjectType::InnerStrideAtCompileTime)
+ : int(StrideType::InnerStrideAtCompileTime),
+ OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
+ ? int(PlainObjectType::OuterStrideAtCompileTime)
+ : int(StrideType::OuterStrideAtCompileTime),
+ HasNoInnerStride = InnerStrideAtCompileTime == 1,
+ HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0,
+ HasNoStride = HasNoInnerStride && HasNoOuterStride,
+ IsAligned = bool(EIGEN_ALIGN) && ((int(MapOptions)&Aligned)==Aligned),
+ IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic,
+ KeepsPacketAccess = bool(HasNoInnerStride)
+ && ( bool(IsDynamicSize)
+ || HasNoOuterStride
+ || ( OuterStrideAtCompileTime!=Dynamic
+ && ((static_cast<int>(sizeof(Scalar))*OuterStrideAtCompileTime)%EIGEN_ALIGN_BYTES)==0 ) ),
+ Flags0 = evaluator<PlainObjectType>::Flags,
+ Flags1 = IsAligned ? (int(Flags0) | AlignedBit) : (int(Flags0) & ~AlignedBit),
+ Flags2 = (bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime))
+ ? int(Flags1) : int(Flags1 & ~LinearAccessBit),
+ Flags = KeepsPacketAccess ? int(Flags2) : (int(Flags2) & ~PacketAccessBit)
+ };
+
+ evaluator(const XprType& map)
+ : mapbase_evaluator<XprType, PlainObjectType>(map)
+ { }
+};
+
+// -------------------- Ref --------------------
+
+template<typename PlainObjectType, int RefOptions, typename StrideType>
+struct evaluator<Ref<PlainObjectType, RefOptions, StrideType> >
+ : public mapbase_evaluator<Ref<PlainObjectType, RefOptions, StrideType>, PlainObjectType>
+{
+ typedef Ref<PlainObjectType, RefOptions, StrideType> XprType;
+
+ enum {
+ Flags = evaluator<Map<PlainObjectType, RefOptions, StrideType> >::Flags
+ };
- evaluator_impl(const XprType& map)
- : evaluator_impl<MapBase<XprType> >(map)
+ evaluator(const XprType& ref)
+ : mapbase_evaluator<XprType, PlainObjectType>(ref)
{ }
};
@@ -659,21 +691,68 @@ template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel,
bool HasDirectAccess = internal::has_direct_access<ArgType>::ret> struct block_evaluator;
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
-struct evaluator_impl<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
+struct evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
: block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel>
{
typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
+ typedef typename XprType::Scalar Scalar;
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+
+ RowsAtCompileTime = traits<XprType>::RowsAtCompileTime,
+ ColsAtCompileTime = traits<XprType>::ColsAtCompileTime,
+ MaxRowsAtCompileTime = traits<XprType>::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = traits<XprType>::MaxColsAtCompileTime,
+
+ ArgTypeIsRowMajor = (int(evaluator<ArgType>::Flags)&RowMajorBit) != 0,
+ IsRowMajor = (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1) ? 1
+ : (MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1) ? 0
+ : ArgTypeIsRowMajor,
+ HasSameStorageOrderAsArgType = (IsRowMajor == ArgTypeIsRowMajor),
+ InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
+ InnerStrideAtCompileTime = HasSameStorageOrderAsArgType
+ ? int(inner_stride_at_compile_time<ArgType>::ret)
+ : int(outer_stride_at_compile_time<ArgType>::ret),
+ OuterStrideAtCompileTime = HasSameStorageOrderAsArgType
+ ? int(outer_stride_at_compile_time<ArgType>::ret)
+ : int(inner_stride_at_compile_time<ArgType>::ret),
+ MaskPacketAccessBit = (InnerSize == Dynamic || (InnerSize % packet_traits<Scalar>::size) == 0)
+ && (InnerStrideAtCompileTime == 1)
+ ? PacketAccessBit : 0,
+
+ MaskAlignedBit = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % EIGEN_ALIGN_BYTES) == 0)) ? AlignedBit : 0,
+ FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (evaluator<ArgType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0,
+ FlagsRowMajorBit = XprType::Flags&RowMajorBit,
+ Flags0 = evaluator<ArgType>::Flags & ( (HereditaryBits & ~RowMajorBit) |
+ DirectAccessBit |
+ MaskPacketAccessBit |
+ MaskAlignedBit),
+ Flags = Flags0 | FlagsLinearAccessBit | FlagsRowMajorBit
+ };
typedef block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel> block_evaluator_type;
- evaluator_impl(const XprType& block) : block_evaluator_type(block) {}
+ evaluator(const XprType& block) : block_evaluator_type(block) {}
};
+// no direct-access => dispatch to a unary evaluator
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /*HasDirectAccess*/ false>
- : evaluator_impl_base<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
+ : unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
{
typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
block_evaluator(const XprType& block)
+ : unary_evaluator<XprType>(block)
+ {}
+};
+
+template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
+struct unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, IndexBased>
+ : evaluator_base<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
+{
+ typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
+
+ unary_evaluator(const XprType& block)
: m_argImpl(block.nestedExpression()),
m_startRow(block.startRow()),
m_startCol(block.startCol())
@@ -696,8 +775,7 @@ struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /*HasDirectAcc
CoeffReturnType coeff(Index index) const
{
- return coeff(RowsAtCompileTime == 1 ? 0 : index,
- RowsAtCompileTime == 1 ? index : 0);
+ return coeff(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0);
}
Scalar& coeffRef(Index row, Index col)
@@ -707,8 +785,7 @@ struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /*HasDirectAcc
Scalar& coeffRef(Index index)
{
- return coeffRef(RowsAtCompileTime == 1 ? 0 : index,
- RowsAtCompileTime == 1 ? index : 0);
+ return coeffRef(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0);
}
template<int LoadMode>
@@ -721,7 +798,7 @@ struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /*HasDirectAcc
PacketReturnType packet(Index index) const
{
return packet<LoadMode>(RowsAtCompileTime == 1 ? 0 : index,
- RowsAtCompileTime == 1 ? index : 0);
+ RowsAtCompileTime == 1 ? index : 0);
}
template<int StoreMode>
@@ -734,8 +811,8 @@ struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /*HasDirectAcc
void writePacket(Index index, const PacketScalar& x)
{
return writePacket<StoreMode>(RowsAtCompileTime == 1 ? 0 : index,
- RowsAtCompileTime == 1 ? index : 0,
- x);
+ RowsAtCompileTime == 1 ? index : 0,
+ x);
}
protected:
@@ -749,24 +826,38 @@ protected:
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /* HasDirectAccess */ true>
- : evaluator_impl<MapBase<Block<ArgType, BlockRows, BlockCols, InnerPanel> > >
+ : mapbase_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>,
+ typename Block<ArgType, BlockRows, BlockCols, InnerPanel>::PlainObject>
{
typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
block_evaluator(const XprType& block)
- : evaluator_impl<MapBase<XprType> >(block)
- { }
+ : mapbase_evaluator<XprType, typename XprType::PlainObject>(block)
+ {
+ // FIXME this should be an internal assertion
+ eigen_assert(EIGEN_IMPLIES(evaluator<XprType>::Flags&AlignedBit, (size_t(block.data()) % EIGEN_ALIGN_BYTES) == 0) && "data is not aligned");
+ }
};
// -------------------- Select --------------------
+// TODO shall we introduce a ternary_evaluator?
+// TODO enable vectorization for Select
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType>
-struct evaluator_impl<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
+struct evaluator<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
+ : evaluator_base<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
{
typedef Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> XprType;
+ enum {
+ CoeffReadCost = evaluator<ConditionMatrixType>::CoeffReadCost
+ + EIGEN_SIZE_MAX(evaluator<ThenMatrixType>::CoeffReadCost,
+ evaluator<ElseMatrixType>::CoeffReadCost),
+
+ Flags = (unsigned int)evaluator<ThenMatrixType>::Flags & evaluator<ElseMatrixType>::Flags & HereditaryBits
+ };
- evaluator_impl(const XprType& select)
+ evaluator(const XprType& select)
: m_conditionImpl(select.conditionMatrix()),
m_thenImpl(select.thenMatrix()),
m_elseImpl(select.elseMatrix())
@@ -801,20 +892,32 @@ protected:
// -------------------- Replicate --------------------
template<typename ArgType, int RowFactor, int ColFactor>
-struct evaluator_impl<Replicate<ArgType, RowFactor, ColFactor> >
+struct unary_evaluator<Replicate<ArgType, RowFactor, ColFactor> >
+ : evaluator_base<Replicate<ArgType, RowFactor, ColFactor> >
{
typedef Replicate<ArgType, RowFactor, ColFactor> XprType;
-
- evaluator_impl(const XprType& replicate)
- : m_argImpl(replicate.nestedExpression()),
- m_rows(replicate.nestedExpression().rows()),
- m_cols(replicate.nestedExpression().cols())
- { }
-
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
+ enum {
+ Factor = (RowFactor==Dynamic || ColFactor==Dynamic) ? Dynamic : RowFactor*ColFactor
+ };
+ typedef typename internal::nested_eval<ArgType,Factor>::type ArgTypeNested;
+ typedef typename internal::remove_all<ArgTypeNested>::type ArgTypeNestedCleaned;
+
+ enum {
+ CoeffReadCost = evaluator<ArgTypeNestedCleaned>::CoeffReadCost,
+
+ Flags = (evaluator<ArgTypeNestedCleaned>::Flags & HereditaryBits & ~RowMajorBit) | (traits<XprType>::Flags & RowMajorBit)
+ };
+ unary_evaluator(const XprType& replicate)
+ : m_arg(replicate.nestedExpression()),
+ m_argImpl(m_arg),
+ m_rows(replicate.nestedExpression().rows()),
+ m_cols(replicate.nestedExpression().cols())
+ {}
+
CoeffReturnType coeff(Index row, Index col) const
{
// try to avoid using modulo; this is a pure optimization strategy
@@ -842,9 +945,10 @@ struct evaluator_impl<Replicate<ArgType, RowFactor, ColFactor> >
}
protected:
- typename evaluator<ArgType>::nestedType m_argImpl;
- const variable_if_dynamic<Index, XprType::RowsAtCompileTime> m_rows;
- const variable_if_dynamic<Index, XprType::ColsAtCompileTime> m_cols;
+ const ArgTypeNested m_arg; // FIXME is it OK to store both the argument and its evaluator?? (we have the same situation in evaluator_product)
+ typename evaluator<ArgTypeNestedCleaned>::nestedType m_argImpl;
+ const variable_if_dynamic<Index, ArgType::RowsAtCompileTime> m_rows;
+ const variable_if_dynamic<Index, ArgType::ColsAtCompileTime> m_cols;
};
@@ -855,13 +959,25 @@ protected:
// the row() and col() member functions.
template< typename ArgType, typename MemberOp, int Direction>
-struct evaluator_impl<PartialReduxExpr<ArgType, MemberOp, Direction> >
+struct evaluator<PartialReduxExpr<ArgType, MemberOp, Direction> >
+ : evaluator_base<PartialReduxExpr<ArgType, MemberOp, Direction> >
{
typedef PartialReduxExpr<ArgType, MemberOp, Direction> XprType;
+ typedef typename XprType::Scalar InputScalar;
+ enum {
+ TraversalSize = Direction==int(Vertical) ? int(ArgType::RowsAtCompileTime) : int(XprType::ColsAtCompileTime)
+ };
+ typedef typename MemberOp::template Cost<InputScalar,int(TraversalSize)> CostOpType;
+ enum {
+ CoeffReadCost = TraversalSize==Dynamic ? Dynamic
+ : TraversalSize * evaluator<ArgType>::CoeffReadCost + int(CostOpType::value),
+
+ Flags = (traits<XprType>::Flags&RowMajorBit) | (evaluator<ArgType>::Flags&HereditaryBits)
+ };
- evaluator_impl(const XprType expr)
+ evaluator(const XprType expr)
: m_expr(expr)
- { }
+ {}
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
@@ -883,16 +999,20 @@ protected:
// -------------------- MatrixWrapper and ArrayWrapper --------------------
//
-// evaluator_impl_wrapper_base<T> is a common base class for the
+// evaluator_wrapper_base<T> is a common base class for the
// MatrixWrapper and ArrayWrapper evaluators.
template<typename XprType>
-struct evaluator_impl_wrapper_base
- : evaluator_impl_base<XprType>
+struct evaluator_wrapper_base
+ : evaluator_base<XprType>
{
typedef typename remove_all<typename XprType::NestedExpressionType>::type ArgType;
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+ Flags = evaluator<ArgType>::Flags
+ };
- evaluator_impl_wrapper_base(const ArgType& arg) : m_argImpl(arg) {}
+ evaluator_wrapper_base(const ArgType& arg) : m_argImpl(arg) {}
typedef typename ArgType::Index Index;
typedef typename ArgType::Scalar Scalar;
@@ -949,24 +1069,24 @@ protected:
};
template<typename TArgType>
-struct evaluator_impl<MatrixWrapper<TArgType> >
- : evaluator_impl_wrapper_base<MatrixWrapper<TArgType> >
+struct unary_evaluator<MatrixWrapper<TArgType> >
+ : evaluator_wrapper_base<MatrixWrapper<TArgType> >
{
typedef MatrixWrapper<TArgType> XprType;
- evaluator_impl(const XprType& wrapper)
- : evaluator_impl_wrapper_base<MatrixWrapper<TArgType> >(wrapper.nestedExpression())
+ unary_evaluator(const XprType& wrapper)
+ : evaluator_wrapper_base<MatrixWrapper<TArgType> >(wrapper.nestedExpression())
{ }
};
template<typename TArgType>
-struct evaluator_impl<ArrayWrapper<TArgType> >
- : evaluator_impl_wrapper_base<ArrayWrapper<TArgType> >
+struct unary_evaluator<ArrayWrapper<TArgType> >
+ : evaluator_wrapper_base<ArrayWrapper<TArgType> >
{
typedef ArrayWrapper<TArgType> XprType;
- evaluator_impl(const XprType& wrapper)
- : evaluator_impl_wrapper_base<ArrayWrapper<TArgType> >(wrapper.nestedExpression())
+ unary_evaluator(const XprType& wrapper)
+ : evaluator_wrapper_base<ArrayWrapper<TArgType> >(wrapper.nestedExpression())
{ }
};
@@ -977,8 +1097,8 @@ struct evaluator_impl<ArrayWrapper<TArgType> >
template<typename PacketScalar, bool ReversePacket> struct reverse_packet_cond;
template<typename ArgType, int Direction>
-struct evaluator_impl<Reverse<ArgType, Direction> >
- : evaluator_impl_base<Reverse<ArgType, Direction> >
+struct unary_evaluator<Reverse<ArgType, Direction> >
+ : evaluator_base<Reverse<ArgType, Direction> >
{
typedef Reverse<ArgType, Direction> XprType;
typedef typename XprType::Index Index;
@@ -997,11 +1117,21 @@ struct evaluator_impl<Reverse<ArgType, Direction> >
OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1,
ReversePacket = (Direction == BothDirections)
|| ((Direction == Vertical) && IsColMajor)
- || ((Direction == Horizontal) && IsRowMajor)
+ || ((Direction == Horizontal) && IsRowMajor),
+
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+
+ // let's enable LinearAccess only with vectorization because of the product overhead
+ // FIXME enable DirectAccess with negative strides?
+ Flags0 = evaluator<ArgType>::Flags,
+ LinearAccess = ( (Direction==BothDirections) && (int(Flags0)&PacketAccessBit) )
+ ? LinearAccessBit : 0,
+
+ Flags = int(Flags0) & (HereditaryBits | PacketAccessBit | LinearAccess)
};
typedef internal::reverse_packet_cond<PacketScalar,ReversePacket> reverse_packet;
- evaluator_impl(const XprType& reverse)
+ unary_evaluator(const XprType& reverse)
: m_argImpl(reverse.nestedExpression()),
m_rows(ReverseRow ? reverse.nestedExpression().rows() : 0),
m_cols(ReverseCol ? reverse.nestedExpression().cols() : 0)
@@ -1010,7 +1140,7 @@ struct evaluator_impl<Reverse<ArgType, Direction> >
CoeffReturnType coeff(Index row, Index col) const
{
return m_argImpl.coeff(ReverseRow ? m_rows.value() - row - 1 : row,
- ReverseCol ? m_cols.value() - col - 1 : col);
+ ReverseCol ? m_cols.value() - col - 1 : col);
}
CoeffReturnType coeff(Index index) const
@@ -1021,7 +1151,7 @@ struct evaluator_impl<Reverse<ArgType, Direction> >
Scalar& coeffRef(Index row, Index col)
{
return m_argImpl.coeffRef(ReverseRow ? m_rows.value() - row - 1 : row,
- ReverseCol ? m_cols.value() - col - 1 : col);
+ ReverseCol ? m_cols.value() - col - 1 : col);
}
Scalar& coeffRef(Index index)
@@ -1071,12 +1201,18 @@ protected:
// -------------------- Diagonal --------------------
template<typename ArgType, int DiagIndex>
-struct evaluator_impl<Diagonal<ArgType, DiagIndex> >
- : evaluator_impl_base<Diagonal<ArgType, DiagIndex> >
+struct evaluator<Diagonal<ArgType, DiagIndex> >
+ : evaluator_base<Diagonal<ArgType, DiagIndex> >
{
typedef Diagonal<ArgType, DiagIndex> XprType;
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+
+ Flags = (unsigned int)evaluator<ArgType>::Flags & (HereditaryBits | LinearAccessBit | DirectAccessBit) & ~RowMajorBit
+ };
- evaluator_impl(const XprType& diagonal)
+ evaluator(const XprType& diagonal)
: m_argImpl(diagonal.nestedExpression()),
m_index(diagonal.index())
{ }
@@ -1114,6 +1250,86 @@ private:
EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value() > 0 ? m_index.value() : 0; }
};
+
+//----------------------------------------------------------------------
+// deprecated code
+//----------------------------------------------------------------------
+
+// -------------------- EvalToTemp --------------------
+
+// expression class for evaluating nested expression to a temporary
+
+template<typename ArgType> class EvalToTemp;
+
+template<typename ArgType>
+struct traits<EvalToTemp<ArgType> >
+ : public traits<ArgType>
+{ };
+
+template<typename ArgType>
+class EvalToTemp
+ : public dense_xpr_base<EvalToTemp<ArgType> >::type
+{
+ public:
+
+ typedef typename dense_xpr_base<EvalToTemp>::type Base;
+ EIGEN_GENERIC_PUBLIC_INTERFACE(EvalToTemp)
+
+ EvalToTemp(const ArgType& arg)
+ : m_arg(arg)
+ { }
+
+ const ArgType& arg() const
+ {
+ return m_arg;
+ }
+
+ Index rows() const
+ {
+ return m_arg.rows();
+ }
+
+ Index cols() const
+ {
+ return m_arg.cols();
+ }
+
+ private:
+ const ArgType& m_arg;
+};
+
+template<typename ArgType>
+struct evaluator<EvalToTemp<ArgType> >
+ : public evaluator<typename ArgType::PlainObject>::type
+{
+ typedef EvalToTemp<ArgType> XprType;
+ typedef typename ArgType::PlainObject PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
+
+ typedef evaluator type;
+ typedef evaluator nestedType;
+
+ evaluator(const XprType& xpr)
+ : m_result(xpr.rows(), xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ // TODO we should simply do m_result(xpr.arg());
+ call_dense_assignment_loop(m_result, xpr.arg());
+ }
+
+ // This constructor is used when nesting an EvalTo evaluator in another evaluator
+ evaluator(const ArgType& arg)
+ : m_result(arg.rows(), arg.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ // TODO we should simply do m_result(xpr.arg());
+ call_dense_assignment_loop(m_result, arg);
+ }
+
+protected:
+ PlainObject m_result;
+};
+
} // namespace internal
} // end namespace Eigen
diff --git a/Eigen/src/Core/CwiseBinaryOp.h b/Eigen/src/Core/CwiseBinaryOp.h
index e20daacc8..de9109e53 100644
--- a/Eigen/src/Core/CwiseBinaryOp.h
+++ b/Eigen/src/Core/CwiseBinaryOp.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
@@ -56,8 +56,9 @@ struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
typename Rhs::Scalar
)
>::type Scalar;
- typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
- typename traits<Rhs>::StorageKind>::ret StorageKind;
+ typedef typename cwise_promote_storage_type<typename traits<Lhs>::StorageKind,
+ typename traits<Rhs>::StorageKind,
+ BinaryOp>::ret StorageKind;
typedef typename promote_index_type<typename traits<Lhs>::Index,
typename traits<Rhs>::Index>::type Index;
typedef typename Lhs::Nested LhsNested;
@@ -65,60 +66,36 @@ struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
typedef typename remove_reference<LhsNested>::type _LhsNested;
typedef typename remove_reference<RhsNested>::type _RhsNested;
enum {
- LhsCoeffReadCost = _LhsNested::CoeffReadCost,
- RhsCoeffReadCost = _RhsNested::CoeffReadCost,
- LhsFlags = _LhsNested::Flags,
- RhsFlags = _RhsNested::Flags,
- SameType = is_same<typename _LhsNested::Scalar,typename _RhsNested::Scalar>::value,
- StorageOrdersAgree = (int(Lhs::Flags)&RowMajorBit)==(int(Rhs::Flags)&RowMajorBit),
- Flags0 = (int(LhsFlags) | int(RhsFlags)) & (
- HereditaryBits
- | (int(LhsFlags) & int(RhsFlags) &
- ( AlignedBit
- | (StorageOrdersAgree ? LinearAccessBit : 0)
- | (functor_traits<BinaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0)
- )
- )
- ),
- Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit),
- CoeffReadCost = LhsCoeffReadCost + RhsCoeffReadCost + functor_traits<BinaryOp>::Cost
+ Flags = _LhsNested::Flags & RowMajorBit
};
};
} // end namespace internal
-// we require Lhs and Rhs to have the same scalar type. Currently there is no example of a binary functor
-// that would take two operands of different types. If there were such an example, then this check should be
-// moved to the BinaryOp functors, on a per-case basis. This would however require a change in the BinaryOp functors, as
-// currently they take only one typename Scalar template parameter.
-// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths.
-// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to
-// add together a float matrix and a double matrix.
-#define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \
- EIGEN_STATIC_ASSERT((internal::functor_is_product_like<BINOP>::ret \
- ? int(internal::scalar_product_traits<LHS, RHS>::Defined) \
- : int(internal::is_same<LHS, RHS>::value)), \
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
template<typename BinaryOp, typename Lhs, typename Rhs, typename StorageKind>
class CwiseBinaryOpImpl;
-template<typename BinaryOp, typename Lhs, typename Rhs>
+template<typename BinaryOp, typename LhsType, typename RhsType>
class CwiseBinaryOp : internal::no_assignment_operator,
public CwiseBinaryOpImpl<
- BinaryOp, Lhs, Rhs,
- typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
- typename internal::traits<Rhs>::StorageKind>::ret>
+ BinaryOp, LhsType, RhsType,
+ typename internal::cwise_promote_storage_type<typename internal::traits<LhsType>::StorageKind,
+ typename internal::traits<RhsType>::StorageKind,
+ BinaryOp>::ret>
{
public:
+
+ typedef typename internal::remove_all<LhsType>::type Lhs;
+ typedef typename internal::remove_all<RhsType>::type Rhs;
typedef typename CwiseBinaryOpImpl<
- BinaryOp, Lhs, Rhs,
- typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
- typename internal::traits<Rhs>::StorageKind>::ret>::Base Base;
+ BinaryOp, LhsType, RhsType,
+ typename internal::cwise_promote_storage_type<typename internal::traits<LhsType>::StorageKind,
+ typename internal::traits<Rhs>::StorageKind,
+ BinaryOp>::ret>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp)
- typedef typename internal::nested<Lhs>::type LhsNested;
- typedef typename internal::nested<Rhs>::type RhsNested;
+ typedef typename internal::nested<LhsType>::type LhsNested;
+ typedef typename internal::nested<RhsType>::type RhsNested;
typedef typename internal::remove_reference<LhsNested>::type _LhsNested;
typedef typename internal::remove_reference<RhsNested>::type _RhsNested;
@@ -165,43 +142,13 @@ class CwiseBinaryOp : internal::no_assignment_operator,
const BinaryOp m_functor;
};
-template<typename BinaryOp, typename Lhs, typename Rhs>
-class CwiseBinaryOpImpl<BinaryOp, Lhs, Rhs, Dense>
- : public internal::dense_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
+// Generic API dispatcher
+template<typename BinaryOp, typename Lhs, typename Rhs, typename StorageKind>
+class CwiseBinaryOpImpl
+ : public internal::generic_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
{
- typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> Derived;
- public:
-
- typedef typename internal::dense_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE( Derived )
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const
- {
- return derived().functor()(derived().lhs().coeff(rowId, colId),
- derived().rhs().coeff(rowId, colId));
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
- {
- return derived().functor().packetOp(derived().lhs().template packet<LoadMode>(rowId, colId),
- derived().rhs().template packet<LoadMode>(rowId, colId));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
- {
- return derived().functor()(derived().lhs().coeff(index),
- derived().rhs().coeff(index));
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
- {
- return derived().functor().packetOp(derived().lhs().template packet<LoadMode>(index),
- derived().rhs().template packet<LoadMode>(index));
- }
+public:
+ typedef typename internal::generic_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type Base;
};
/** replaces \c *this by \c *this - \a other.
@@ -213,8 +160,7 @@ template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
MatrixBase<Derived>::operator-=(const MatrixBase<OtherDerived> &other)
{
- SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
+ call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar>());
return derived();
}
@@ -227,8 +173,7 @@ template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
MatrixBase<Derived>::operator+=(const MatrixBase<OtherDerived>& other)
{
- SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
+ call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar>());
return derived();
}
diff --git a/Eigen/src/Core/CwiseNullaryOp.h b/Eigen/src/Core/CwiseNullaryOp.h
index 124383114..8b8397da6 100644
--- a/Eigen/src/Core/CwiseNullaryOp.h
+++ b/Eigen/src/Core/CwiseNullaryOp.h
@@ -35,12 +35,7 @@ template<typename NullaryOp, typename PlainObjectType>
struct traits<CwiseNullaryOp<NullaryOp, PlainObjectType> > : traits<PlainObjectType>
{
enum {
- Flags = (traits<PlainObjectType>::Flags
- & ( HereditaryBits
- | (functor_has_linear_access<NullaryOp>::ret ? LinearAccessBit : 0)
- | (functor_traits<NullaryOp>::PacketAccess ? PacketAccessBit : 0)))
- | (functor_traits<NullaryOp>::IsRepeatable ? 0 : EvalBeforeNestingBit),
- CoeffReadCost = functor_traits<NullaryOp>::Cost
+ Flags = traits<PlainObjectType>::Flags & RowMajorBit
};
};
}
diff --git a/Eigen/src/Core/CwiseUnaryOp.h b/Eigen/src/Core/CwiseUnaryOp.h
index aa7df197f..79a872934 100644
--- a/Eigen/src/Core/CwiseUnaryOp.h
+++ b/Eigen/src/Core/CwiseUnaryOp.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
@@ -44,10 +44,7 @@ struct traits<CwiseUnaryOp<UnaryOp, XprType> >
typedef typename XprType::Nested XprTypeNested;
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
enum {
- Flags = _XprTypeNested::Flags & (
- HereditaryBits | LinearAccessBit | AlignedBit
- | (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)),
- CoeffReadCost = _XprTypeNested::CoeffReadCost + functor_traits<UnaryOp>::Cost
+ Flags = _XprTypeNested::Flags & RowMajorBit
};
};
}
@@ -63,6 +60,7 @@ class CwiseUnaryOp : internal::no_assignment_operator,
typedef typename CwiseUnaryOpImpl<UnaryOp, XprType,typename internal::traits<XprType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp)
+ typedef typename internal::remove_all<XprType>::type NestedExpression;
EIGEN_DEVICE_FUNC
inline CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp())
@@ -92,42 +90,13 @@ class CwiseUnaryOp : internal::no_assignment_operator,
const UnaryOp m_functor;
};
-// This is the generic implementation for dense storage.
-// It can be used for any expression types implementing the dense concept.
-template<typename UnaryOp, typename XprType>
-class CwiseUnaryOpImpl<UnaryOp,XprType,Dense>
- : public internal::dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type
+// Generic API dispatcher
+template<typename UnaryOp, typename XprType, typename StorageKind>
+class CwiseUnaryOpImpl
+ : public internal::generic_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type
{
- public:
-
- typedef CwiseUnaryOp<UnaryOp, XprType> Derived;
- typedef typename internal::dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const
- {
- return derived().functor()(derived().nestedExpression().coeff(rowId, colId));
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
- {
- return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(rowId, colId));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
- {
- return derived().functor()(derived().nestedExpression().coeff(index));
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
- {
- return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(index));
- }
+public:
+ typedef typename internal::generic_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type Base;
};
} // end namespace Eigen
diff --git a/Eigen/src/Core/CwiseUnaryView.h b/Eigen/src/Core/CwiseUnaryView.h
index b2638d326..71249a39c 100644
--- a/Eigen/src/Core/CwiseUnaryView.h
+++ b/Eigen/src/Core/CwiseUnaryView.h
@@ -37,8 +37,7 @@ struct traits<CwiseUnaryView<ViewOp, MatrixType> >
typedef typename MatrixType::Nested MatrixTypeNested;
typedef typename remove_all<MatrixTypeNested>::type _MatrixTypeNested;
enum {
- Flags = (traits<_MatrixTypeNested>::Flags & (HereditaryBits | LvalueBit | LinearAccessBit | DirectAccessBit)),
- CoeffReadCost = traits<_MatrixTypeNested>::CoeffReadCost + functor_traits<ViewOp>::Cost,
+ Flags = traits<_MatrixTypeNested>::Flags & (RowMajorBit | LvalueBit | DirectAccessBit), // FIXME DirectAccessBit should not be handled by expressions
MatrixTypeInnerStride = inner_stride_at_compile_time<MatrixType>::ret,
// need to cast the sizeof's from size_t to int explicitly, otherwise:
// "error: no integral type can represent all of the enumerator values
@@ -62,6 +61,7 @@ class CwiseUnaryView : public CwiseUnaryViewImpl<ViewOp, MatrixType, typename in
typedef typename CwiseUnaryViewImpl<ViewOp, MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryView)
+ typedef typename internal::remove_all<MatrixType>::type NestedExpression;
inline CwiseUnaryView(const MatrixType& mat, const ViewOp& func = ViewOp())
: m_matrix(mat), m_functor(func) {}
@@ -88,6 +88,15 @@ class CwiseUnaryView : public CwiseUnaryViewImpl<ViewOp, MatrixType, typename in
ViewOp m_functor;
};
+// Generic API dispatcher
+template<typename ViewOp, typename XprType, typename StorageKind>
+class CwiseUnaryViewImpl
+ : public internal::generic_xpr_base<CwiseUnaryView<ViewOp, XprType> >::type
+{
+public:
+ typedef typename internal::generic_xpr_base<CwiseUnaryView<ViewOp, XprType> >::type Base;
+};
+
template<typename ViewOp, typename MatrixType>
class CwiseUnaryViewImpl<ViewOp,MatrixType,Dense>
: public internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType> >::type
@@ -100,8 +109,8 @@ class CwiseUnaryViewImpl<ViewOp,MatrixType,Dense>
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryViewImpl)
- inline Scalar* data() { return &coeffRef(0); }
- inline const Scalar* data() const { return &coeff(0); }
+ inline Scalar* data() { return &(this->coeffRef(0)); }
+ inline const Scalar* data() const { return &(this->coeff(0)); }
inline Index innerStride() const
{
@@ -112,26 +121,6 @@ class CwiseUnaryViewImpl<ViewOp,MatrixType,Dense>
{
return derived().nestedExpression().outerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
}
-
- EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
- {
- return derived().functor()(derived().nestedExpression().coeff(row, col));
- }
-
- EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- return derived().functor()(derived().nestedExpression().coeff(index));
- }
-
- EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
- {
- return derived().functor()(const_cast_derived().nestedExpression().coeffRef(row, col));
- }
-
- EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
- {
- return derived().functor()(const_cast_derived().nestedExpression().coeffRef(index));
- }
};
} // end namespace Eigen
diff --git a/Eigen/src/Core/DenseBase.h b/Eigen/src/Core/DenseBase.h
index bd5dd14ed..6078af553 100644
--- a/Eigen/src/Core/DenseBase.h
+++ b/Eigen/src/Core/DenseBase.h
@@ -74,16 +74,6 @@ template<typename Derived> class DenseBase
using Base::colIndexByOuterInner;
using Base::coeff;
using Base::coeffByOuterInner;
- using Base::packet;
- using Base::packetByOuterInner;
- using Base::writePacket;
- using Base::writePacketByOuterInner;
- using Base::coeffRef;
- using Base::coeffRefByOuterInner;
- using Base::copyCoeff;
- using Base::copyCoeffByOuterInner;
- using Base::copyPacket;
- using Base::copyPacketByOuterInner;
using Base::operator();
using Base::operator[];
using Base::x;
@@ -169,11 +159,6 @@ template<typename Derived> class DenseBase
InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime)
: int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
- CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
- /**< This is a rough measure of how expensive it is to read one coefficient from
- * this expression.
- */
-
InnerStrideAtCompileTime = internal::inner_stride_at_compile_time<Derived>::ret,
OuterStrideAtCompileTime = internal::outer_stride_at_compile_time<Derived>::ret
};
@@ -278,7 +263,8 @@ template<typename Derived> class DenseBase
Derived& operator=(const ReturnByValue<OtherDerived>& func);
#ifndef EIGEN_PARSED_BY_DOXYGEN
- /** Copies \a other into *this without evaluating other. \returns a reference to *this. */
+ /** Copies \a other into *this without evaluating other. \returns a reference to *this.
+ * \deprecated */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& lazyAssign(const DenseBase<OtherDerived>& other);
@@ -287,8 +273,10 @@ template<typename Derived> class DenseBase
EIGEN_DEVICE_FUNC
CommaInitializer<Derived> operator<< (const Scalar& s);
+ // TODO flagged is temporarly disabled. It seems useless now
template<unsigned int Added,unsigned int Removed>
- const Flagged<Derived, Added, Removed> flagged() const;
+ const Derived& flagged() const
+ { return derived(); }
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
@@ -301,13 +289,6 @@ template<typename Derived> class DenseBase
ConstTransposeReturnType transpose() const;
EIGEN_DEVICE_FUNC
void transposeInPlace();
-#ifndef EIGEN_NO_DEBUG
- protected:
- template<typename OtherDerived>
- void checkTransposeAliasing(const OtherDerived& other) const;
- public:
-#endif
-
EIGEN_DEVICE_FUNC static const ConstantReturnType
Constant(Index rows, Index cols, const Scalar& value);
@@ -387,7 +368,7 @@ template<typename Derived> class DenseBase
// size types on MSVC.
return typename internal::eval<Derived>::type(derived());
}
-
+
/** swaps *this with the expression \a other.
*
*/
@@ -396,7 +377,8 @@ template<typename Derived> class DenseBase
void swap(const DenseBase<OtherDerived>& other,
int = OtherDerived::ThisConstantIsPrivateInPlainObjectBase)
{
- SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
+ eigen_assert(rows()==other.rows() && cols()==other.cols());
+ call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>());
}
/** swaps *this with the matrix or array \a other.
@@ -406,10 +388,10 @@ template<typename Derived> class DenseBase
EIGEN_DEVICE_FUNC
void swap(PlainObjectBase<OtherDerived>& other)
{
- SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
+ eigen_assert(rows()==other.rows() && cols()==other.cols());
+ call_assignment(derived(), other.derived(), internal::swap_assign_op<Scalar>());
}
-
EIGEN_DEVICE_FUNC inline const NestByValue<Derived> nestByValue() const;
EIGEN_DEVICE_FUNC inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
EIGEN_DEVICE_FUNC inline ForceAlignedAccess<Derived> forceAlignedAccess();
diff --git a/Eigen/src/Core/DenseCoeffsBase.h b/Eigen/src/Core/DenseCoeffsBase.h
index 4e986e875..a9e4dbaf9 100644
--- a/Eigen/src/Core/DenseCoeffsBase.h
+++ b/Eigen/src/Core/DenseCoeffsBase.h
@@ -97,8 +97,8 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
{
eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- return derived().coeff(row, col);
+ && col >= 0 && col < cols());
+ return typename internal::evaluator<Derived>::type(derived()).coeff(row,col);
}
EIGEN_DEVICE_FUNC
@@ -117,7 +117,7 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
{
eigen_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
- return derived().coeff(row, col);
+ return coeff(row, col);
}
/** Short version: don't use this function, use
@@ -140,7 +140,7 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
coeff(Index index) const
{
eigen_internal_assert(index >= 0 && index < size());
- return derived().coeff(index);
+ return typename internal::evaluator<Derived>::type(derived()).coeff(index);
}
@@ -159,7 +159,7 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
eigen_assert(index >= 0 && index < size());
- return derived().coeff(index);
+ return coeff(index);
}
/** \returns the coefficient at given index.
@@ -177,7 +177,7 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
operator()(Index index) const
{
eigen_assert(index >= 0 && index < size());
- return derived().coeff(index);
+ return coeff(index);
}
/** equivalent to operator[](0). */
@@ -217,9 +217,8 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const
{
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- return derived().template packet<LoadMode>(row,col);
+ eigen_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols());
+ return typename internal::evaluator<Derived>::type(derived()).template packet<LoadMode>(row,col);
}
@@ -245,7 +244,7 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
eigen_internal_assert(index >= 0 && index < size());
- return derived().template packet<LoadMode>(index);
+ return typename internal::evaluator<Derived>::type(derived()).template packet<LoadMode>(index);
}
protected:
@@ -325,8 +324,8 @@ class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived,
EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
{
eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- return derived().coeffRef(row, col);
+ && col >= 0 && col < cols());
+ return typename internal::evaluator<Derived>::type(derived()).coeffRef(row,col);
}
EIGEN_DEVICE_FUNC
@@ -348,7 +347,7 @@ class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived,
{
eigen_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
- return derived().coeffRef(row, col);
+ return coeffRef(row, col);
}
@@ -372,7 +371,7 @@ class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived,
coeffRef(Index index)
{
eigen_internal_assert(index >= 0 && index < size());
- return derived().coeffRef(index);
+ return typename internal::evaluator<Derived>::type(derived()).coeffRef(index);
}
/** \returns a reference to the coefficient at given index.
@@ -389,7 +388,7 @@ class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived,
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
eigen_assert(index >= 0 && index < size());
- return derived().coeffRef(index);
+ return coeffRef(index);
}
/** \returns a reference to the coefficient at given index.
@@ -406,7 +405,7 @@ class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived,
operator()(Index index)
{
eigen_assert(index >= 0 && index < size());
- return derived().coeffRef(index);
+ return coeffRef(index);
}
/** equivalent to operator[](0). */
@@ -432,144 +431,6 @@ class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived,
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
w() { return (*this)[3]; }
-
- /** \internal
- * Stores the given packet of coefficients, at the given row and column of this expression. It is your responsibility
- * to ensure that a packet really starts there. This method is only available on expressions having the
- * PacketAccessBit.
- *
- * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
- * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
- * starting at an address which is a multiple of the packet size.
- */
-
- template<int StoreMode>
- EIGEN_STRONG_INLINE void writePacket
- (Index row, Index col, const typename internal::packet_traits<Scalar>::type& val)
- {
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- derived().template writePacket<StoreMode>(row,col,val);
- }
-
-
- /** \internal */
- template<int StoreMode>
- EIGEN_STRONG_INLINE void writePacketByOuterInner
- (Index outer, Index inner, const typename internal::packet_traits<Scalar>::type& val)
- {
- writePacket<StoreMode>(rowIndexByOuterInner(outer, inner),
- colIndexByOuterInner(outer, inner),
- val);
- }
-
- /** \internal
- * Stores the given packet of coefficients, at the given index in this expression. It is your responsibility
- * to ensure that a packet really starts there. This method is only available on expressions having the
- * PacketAccessBit and the LinearAccessBit.
- *
- * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select
- * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
- * starting at an address which is a multiple of the packet size.
- */
- template<int StoreMode>
- EIGEN_STRONG_INLINE void writePacket
- (Index index, const typename internal::packet_traits<Scalar>::type& val)
- {
- eigen_internal_assert(index >= 0 && index < size());
- derived().template writePacket<StoreMode>(index,val);
- }
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-
- /** \internal Copies the coefficient at position (row,col) of other into *this.
- *
- * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
- * with usual assignments.
- *
- * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
- */
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
- {
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- derived().coeffRef(row, col) = other.derived().coeff(row, col);
- }
-
- /** \internal Copies the coefficient at the given index of other into *this.
- *
- * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
- * with usual assignments.
- *
- * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
- */
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
- {
- eigen_internal_assert(index >= 0 && index < size());
- derived().coeffRef(index) = other.derived().coeff(index);
- }
-
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE void copyCoeffByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
- {
- const Index row = rowIndexByOuterInner(outer,inner);
- const Index col = colIndexByOuterInner(outer,inner);
- // derived() is important here: copyCoeff() may be reimplemented in Derived!
- derived().copyCoeff(row, col, other);
- }
-
- /** \internal Copies the packet at position (row,col) of other into *this.
- *
- * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
- * with usual assignments.
- *
- * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
- */
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- EIGEN_STRONG_INLINE void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
- {
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- derived().template writePacket<StoreMode>(row, col,
- other.derived().template packet<LoadMode>(row, col));
- }
-
- /** \internal Copies the packet at the given index of other into *this.
- *
- * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
- * with usual assignments.
- *
- * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
- */
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- EIGEN_STRONG_INLINE void copyPacket(Index index, const DenseBase<OtherDerived>& other)
- {
- eigen_internal_assert(index >= 0 && index < size());
- derived().template writePacket<StoreMode>(index,
- other.derived().template packet<LoadMode>(index));
- }
-
- /** \internal */
- template<typename OtherDerived, int StoreMode, int LoadMode>
- EIGEN_STRONG_INLINE void copyPacketByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
- {
- const Index row = rowIndexByOuterInner(outer,inner);
- const Index col = colIndexByOuterInner(outer,inner);
- // derived() is important here: copyCoeff() may be reimplemented in Derived!
- derived().template copyPacket< OtherDerived, StoreMode, LoadMode>(row, col, other);
- }
-#endif
-
};
/** \brief Base class providing direct read-only coefficient access to matrices and arrays.
diff --git a/Eigen/src/Core/Diagonal.h b/Eigen/src/Core/Diagonal.h
index b160479ab..1ffcd97f9 100644
--- a/Eigen/src/Core/Diagonal.h
+++ b/Eigen/src/Core/Diagonal.h
@@ -52,8 +52,7 @@ struct traits<Diagonal<MatrixType,DiagIndex> >
MatrixType::MaxColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))),
MaxColsAtCompileTime = 1,
MaskLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
- Flags = (unsigned int)_MatrixTypeNested::Flags & (HereditaryBits | LinearAccessBit | MaskLvalueBit | DirectAccessBit) & ~RowMajorBit,
- CoeffReadCost = _MatrixTypeNested::CoeffReadCost,
+ Flags = (unsigned int)_MatrixTypeNested::Flags & (RowMajorBit | MaskLvalueBit | DirectAccessBit) & ~RowMajorBit, // FIXME DirectAccessBit should not be handled by expressions
MatrixTypeOuterStride = outer_stride_at_compile_time<MatrixType>::ret,
InnerStrideAtCompileTime = MatrixTypeOuterStride == Dynamic ? Dynamic : MatrixTypeOuterStride+1,
OuterStrideAtCompileTime = 0
diff --git a/Eigen/src/Core/DiagonalMatrix.h b/Eigen/src/Core/DiagonalMatrix.h
index 96b65483d..44c249aa6 100644
--- a/Eigen/src/Core/DiagonalMatrix.h
+++ b/Eigen/src/Core/DiagonalMatrix.h
@@ -30,7 +30,7 @@ class DiagonalBase : public EigenBase<Derived>
MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
IsVectorAtCompileTime = 0,
- Flags = 0
+ Flags = NoPreferredStorageOrderBit
};
typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime> DenseMatrixType;
@@ -44,18 +44,7 @@ class DiagonalBase : public EigenBase<Derived>
EIGEN_DEVICE_FUNC
DenseMatrixType toDenseMatrix() const { return derived(); }
- template<typename DenseDerived>
- EIGEN_DEVICE_FUNC
- void evalTo(MatrixBase<DenseDerived> &other) const;
- template<typename DenseDerived>
- EIGEN_DEVICE_FUNC
- void addTo(MatrixBase<DenseDerived> &other) const
- { other.diagonal() += diagonal(); }
- template<typename DenseDerived>
- EIGEN_DEVICE_FUNC
- void subTo(MatrixBase<DenseDerived> &other) const
- { other.diagonal() -= diagonal(); }
-
+
EIGEN_DEVICE_FUNC
inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); }
EIGEN_DEVICE_FUNC
@@ -66,14 +55,12 @@ class DiagonalBase : public EigenBase<Derived>
EIGEN_DEVICE_FUNC
inline Index cols() const { return diagonal().size(); }
- /** \returns the diagonal matrix product of \c *this by the matrix \a matrix.
- */
template<typename MatrixDerived>
EIGEN_DEVICE_FUNC
- const DiagonalProduct<MatrixDerived, Derived, OnTheLeft>
+ const Product<Derived,MatrixDerived,LazyProduct>
operator*(const MatrixBase<MatrixDerived> &matrix) const
{
- return DiagonalProduct<MatrixDerived, Derived, OnTheLeft>(matrix.derived(), derived());
+ return Product<Derived, MatrixDerived, LazyProduct>(derived(),matrix.derived());
}
EIGEN_DEVICE_FUNC
@@ -97,13 +84,6 @@ class DiagonalBase : public EigenBase<Derived>
}
};
-template<typename Derived>
-template<typename DenseDerived>
-void DiagonalBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
-{
- other.setZero();
- other.diagonal() = diagonal();
-}
#endif
/** \class DiagonalMatrix
@@ -125,10 +105,10 @@ struct traits<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
: traits<Matrix<_Scalar,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef Matrix<_Scalar,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1> DiagonalVectorType;
- typedef Dense StorageKind;
+ typedef DiagonalShape StorageKind;
typedef DenseIndex Index;
enum {
- Flags = LvalueBit
+ Flags = LvalueBit | NoPreferredStorageOrderBit
};
};
}
@@ -249,13 +229,14 @@ struct traits<DiagonalWrapper<_DiagonalVectorType> >
typedef _DiagonalVectorType DiagonalVectorType;
typedef typename DiagonalVectorType::Scalar Scalar;
typedef typename DiagonalVectorType::Index Index;
- typedef typename DiagonalVectorType::StorageKind StorageKind;
+ typedef DiagonalShape StorageKind;
+ typedef typename traits<DiagonalVectorType>::XprKind XprKind;
enum {
RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
- MaxRowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
- MaxColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
- Flags = traits<DiagonalVectorType>::Flags & LvalueBit
+ MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
+ MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
+ Flags = (traits<DiagonalVectorType>::Flags & LvalueBit) | NoPreferredStorageOrderBit
};
};
}
@@ -326,6 +307,27 @@ bool MatrixBase<Derived>::isDiagonal(const RealScalar& prec) const
return true;
}
+namespace internal {
+
+template<> struct storage_kind_to_shape<DiagonalShape> { typedef DiagonalShape Shape; };
+
+struct Diagonal2Dense {};
+
+template<> struct AssignmentKind<DenseShape,DiagonalShape> { typedef Diagonal2Dense Kind; };
+
+// Diagonal matrix to Dense assignment
+template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
+struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Dense, Scalar>
+{
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar> &/*func*/)
+ {
+ dst.setZero();
+ dst.diagonal() = src.diagonal();
+ }
+};
+
+} // namespace internal
+
} // end namespace Eigen
#endif // EIGEN_DIAGONALMATRIX_H
diff --git a/Eigen/src/Core/DiagonalProduct.h b/Eigen/src/Core/DiagonalProduct.h
index c03a0c2e1..d372b938f 100644
--- a/Eigen/src/Core/DiagonalProduct.h
+++ b/Eigen/src/Core/DiagonalProduct.h
@@ -13,116 +13,14 @@
namespace Eigen {
-namespace internal {
-template<typename MatrixType, typename DiagonalType, int ProductOrder>
-struct traits<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
- : traits<MatrixType>
-{
- typedef typename scalar_product_traits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
-
- _StorageOrder = MatrixType::Flags & RowMajorBit ? RowMajor : ColMajor,
- _ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft)
- ||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)),
- _SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
- // FIXME currently we need same types, but in the future the next rule should be the one
- //_Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagonalType::DiagonalVectorType::Flags)&PacketAccessBit))),
- _Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagonalType::DiagonalVectorType::Flags)&PacketAccessBit))),
- _LinearAccessMask = (RowsAtCompileTime==1 || ColsAtCompileTime==1) ? LinearAccessBit : 0,
-
- Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixType::Flags)) | (_Vectorizable ? PacketAccessBit : 0) | AlignedBit,//(int(MatrixType::Flags)&int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit),
- CoeffReadCost = NumTraits<Scalar>::MulCost + MatrixType::CoeffReadCost + DiagonalType::DiagonalVectorType::CoeffReadCost
- };
-};
-}
-
-template<typename MatrixType, typename DiagonalType, int ProductOrder>
-class DiagonalProduct : internal::no_assignment_operator,
- public MatrixBase<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
-{
- public:
-
- typedef MatrixBase<DiagonalProduct> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(DiagonalProduct)
-
- inline DiagonalProduct(const MatrixType& matrix, const DiagonalType& diagonal)
- : m_matrix(matrix), m_diagonal(diagonal)
- {
- eigen_assert(diagonal.diagonal().size() == (ProductOrder == OnTheLeft ? matrix.rows() : matrix.cols()));
- }
-
- EIGEN_STRONG_INLINE Index rows() const { return m_matrix.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return m_matrix.cols(); }
-
- EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
- {
- return m_diagonal.diagonal().coeff(ProductOrder == OnTheLeft ? row : col) * m_matrix.coeff(row, col);
- }
-
- EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const
- {
- enum {
- StorageOrder = int(MatrixType::Flags) & RowMajorBit ? RowMajor : ColMajor
- };
- return coeff(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
- {
- enum {
- StorageOrder = Flags & RowMajorBit ? RowMajor : ColMajor
- };
- const Index indexInDiagonalVector = ProductOrder == OnTheLeft ? row : col;
- return packet_impl<LoadMode>(row,col,indexInDiagonalVector,typename internal::conditional<
- ((int(StorageOrder) == RowMajor && int(ProductOrder) == OnTheLeft)
- ||(int(StorageOrder) == ColMajor && int(ProductOrder) == OnTheRight)), internal::true_type, internal::false_type>::type());
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index idx) const
- {
- enum {
- StorageOrder = int(MatrixType::Flags) & RowMajorBit ? RowMajor : ColMajor
- };
- return packet<LoadMode>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
- }
-
- protected:
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::true_type) const
- {
- return internal::pmul(m_matrix.template packet<LoadMode>(row, col),
- internal::pset1<PacketScalar>(m_diagonal.diagonal().coeff(id)));
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::false_type) const
- {
- enum {
- InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
- DiagonalVectorPacketLoadMode = (LoadMode == Aligned && (((InnerSize%16) == 0) || (int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit)==AlignedBit) ? Aligned : Unaligned)
- };
- return internal::pmul(m_matrix.template packet<LoadMode>(row, col),
- m_diagonal.diagonal().template packet<DiagonalVectorPacketLoadMode>(id));
- }
-
- typename MatrixType::Nested m_matrix;
- typename DiagonalType::Nested m_diagonal;
-};
-
/** \returns the diagonal matrix product of \c *this by the diagonal matrix \a diagonal.
*/
template<typename Derived>
template<typename DiagonalDerived>
-inline const DiagonalProduct<Derived, DiagonalDerived, OnTheRight>
+inline const Product<Derived, DiagonalDerived, LazyProduct>
MatrixBase<Derived>::operator*(const DiagonalBase<DiagonalDerived> &a_diagonal) const
{
- return DiagonalProduct<Derived, DiagonalDerived, OnTheRight>(derived(), a_diagonal.derived());
+ return Product<Derived, DiagonalDerived, LazyProduct>(derived(),a_diagonal.derived());
}
} // end namespace Eigen
diff --git a/Eigen/src/Core/Dot.h b/Eigen/src/Core/Dot.h
index db16e4acc..68e9c2660 100644
--- a/Eigen/src/Core/Dot.h
+++ b/Eigen/src/Core/Dot.h
@@ -113,8 +113,7 @@ template<typename Derived>
inline const typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::normalized() const
{
- typedef typename internal::nested<Derived>::type Nested;
- typedef typename internal::remove_reference<Nested>::type _Nested;
+ typedef typename internal::nested_eval<Derived,2>::type _Nested;
_Nested n(derived());
return n / n.norm();
}
@@ -206,8 +205,8 @@ template<typename OtherDerived>
bool MatrixBase<Derived>::isOrthogonal
(const MatrixBase<OtherDerived>& other, const RealScalar& prec) const
{
- typename internal::nested<Derived,2>::type nested(derived());
- typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
+ typename internal::nested_eval<Derived,2>::type nested(derived());
+ typename internal::nested_eval<OtherDerived,2>::type otherNested(other.derived());
return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
}
diff --git a/Eigen/src/Core/EigenBase.h b/Eigen/src/Core/EigenBase.h
index 1a577c2dc..52b66e6dc 100644
--- a/Eigen/src/Core/EigenBase.h
+++ b/Eigen/src/Core/EigenBase.h
@@ -121,7 +121,7 @@ template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator=(const EigenBase<OtherDerived> &other)
{
- other.derived().evalTo(derived());
+ call_assignment(derived(), other.derived());
return derived();
}
@@ -129,7 +129,7 @@ template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator+=(const EigenBase<OtherDerived> &other)
{
- other.derived().addTo(derived());
+ call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar>());
return derived();
}
@@ -137,7 +137,7 @@ template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator-=(const EigenBase<OtherDerived> &other)
{
- other.derived().subTo(derived());
+ call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar>());
return derived();
}
diff --git a/Eigen/src/Core/Fuzzy.h b/Eigen/src/Core/Fuzzy.h
index f9a88dd3c..8cd069a0d 100644
--- a/Eigen/src/Core/Fuzzy.h
+++ b/Eigen/src/Core/Fuzzy.h
@@ -23,8 +23,8 @@ struct isApprox_selector
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
{
EIGEN_USING_STD_MATH(min);
- typename internal::nested<Derived,2>::type nested(x);
- typename internal::nested<OtherDerived,2>::type otherNested(y);
+ typename internal::nested_eval<Derived,2>::type nested(x);
+ typename internal::nested_eval<OtherDerived,2>::type otherNested(y);
return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * (min)(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
}
};
diff --git a/Eigen/src/Core/GeneralProduct.h b/Eigen/src/Core/GeneralProduct.h
index 624b8b6e8..e05ff8dce 100644
--- a/Eigen/src/Core/GeneralProduct.h
+++ b/Eigen/src/Core/GeneralProduct.h
@@ -13,28 +13,6 @@
namespace Eigen {
-/** \class GeneralProduct
- * \ingroup Core_Module
- *
- * \brief Expression of the product of two general matrices or vectors
- *
- * \param LhsNested the type used to store the left-hand side
- * \param RhsNested the type used to store the right-hand side
- * \param ProductMode the type of the product
- *
- * This class represents an expression of the product of two general matrices.
- * We call a general matrix, a dense matrix with full storage. For instance,
- * This excludes triangular, selfadjoint, and sparse matrices.
- * It is the return type of the operator* between general matrices. Its template
- * arguments are determined automatically by ProductReturnType. Therefore,
- * GeneralProduct should never be used direclty. To determine the result type of a
- * function which involves a matrix product, use ProductReturnType::Type.
- *
- * \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
- */
-template<typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs,Rhs>::value>
-class GeneralProduct;
-
enum {
Large = 2,
Small = 3
@@ -59,14 +37,14 @@ template<typename Lhs, typename Rhs> struct product_type
typedef typename remove_all<Lhs>::type _Lhs;
typedef typename remove_all<Rhs>::type _Rhs;
enum {
- MaxRows = _Lhs::MaxRowsAtCompileTime,
- Rows = _Lhs::RowsAtCompileTime,
- MaxCols = _Rhs::MaxColsAtCompileTime,
- Cols = _Rhs::ColsAtCompileTime,
- MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime,
- _Rhs::MaxRowsAtCompileTime),
- Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime,
- _Rhs::RowsAtCompileTime)
+ MaxRows = traits<_Lhs>::MaxRowsAtCompileTime,
+ Rows = traits<_Lhs>::RowsAtCompileTime,
+ MaxCols = traits<_Rhs>::MaxColsAtCompileTime,
+ Cols = traits<_Rhs>::ColsAtCompileTime,
+ MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::MaxColsAtCompileTime,
+ traits<_Rhs>::MaxRowsAtCompileTime),
+ Depth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::ColsAtCompileTime,
+ traits<_Rhs>::RowsAtCompileTime)
};
// the splitting into different lines of code here, introducing the _select enums and the typedef below,
@@ -81,7 +59,8 @@ private:
public:
enum {
- value = selector::ret
+ value = selector::ret,
+ ret = selector::ret
};
#ifdef EIGEN_DEBUG_PRODUCT
static void debug()
@@ -97,6 +76,31 @@ public:
#endif
};
+// template<typename Lhs, typename Rhs> struct product_tag
+// {
+// private:
+//
+// typedef typename remove_all<Lhs>::type _Lhs;
+// typedef typename remove_all<Rhs>::type _Rhs;
+// enum {
+// Rows = _Lhs::RowsAtCompileTime,
+// Cols = _Rhs::ColsAtCompileTime,
+// Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime, _Rhs::RowsAtCompileTime)
+// };
+//
+// enum {
+// rows_select = Rows==1 ? int(Rows) : int(Large),
+// cols_select = Cols==1 ? int(Cols) : int(Large),
+// depth_select = Depth==1 ? int(Depth) : int(Large)
+// };
+// typedef product_type_selector<rows_select, cols_select, depth_select> selector;
+//
+// public:
+// enum {
+// ret = selector::ret
+// };
+//
+// };
/* The following allows to select the kind of product at compile time
* based on the three dimensions of the product.
@@ -127,54 +131,6 @@ template<> struct product_type_selector<Large,Large,Small> { enum
} // end namespace internal
-/** \class ProductReturnType
- * \ingroup Core_Module
- *
- * \brief Helper class to get the correct and optimized returned type of operator*
- *
- * \param Lhs the type of the left-hand side
- * \param Rhs the type of the right-hand side
- * \param ProductMode the type of the product (determined automatically by internal::product_mode)
- *
- * This class defines the typename Type representing the optimized product expression
- * between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
- * is the recommended way to define the result type of a function returning an expression
- * which involve a matrix product. The class Product should never be
- * used directly.
- *
- * \sa class Product, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
- */
-template<typename Lhs, typename Rhs, int ProductType>
-struct ProductReturnType
-{
- // TODO use the nested type to reduce instanciations ????
-// typedef typename internal::nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
-// typedef typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
-
- typedef GeneralProduct<Lhs/*Nested*/, Rhs/*Nested*/, ProductType> Type;
-};
-
-template<typename Lhs, typename Rhs>
-struct ProductReturnType<Lhs,Rhs,CoeffBasedProductMode>
-{
- typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
- typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
- typedef CoeffBasedProduct<LhsNested, RhsNested, EvalBeforeAssigningBit | EvalBeforeNestingBit> Type;
-};
-
-template<typename Lhs, typename Rhs>
-struct ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
-{
- typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
- typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
- typedef CoeffBasedProduct<LhsNested, RhsNested, NestByRefBit> Type;
-};
-
-// this is a workaround for sun CC
-template<typename Lhs, typename Rhs>
-struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
-{};
-
/***********************************************************************
* Implementation of Inner Vector Vector Product
***********************************************************************/
@@ -186,119 +142,10 @@ struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedPr
// product ends up to a row-vector times col-vector product... To tackle this use
// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);
-namespace internal {
-
-template<typename Lhs, typename Rhs>
-struct traits<GeneralProduct<Lhs,Rhs,InnerProduct> >
- : traits<Matrix<typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> >
-{};
-
-}
-
-template<typename Lhs, typename Rhs>
-class GeneralProduct<Lhs, Rhs, InnerProduct>
- : internal::no_assignment_operator,
- public Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1>
-{
- typedef Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> Base;
- public:
- GeneralProduct(const Lhs& lhs, const Rhs& rhs)
- {
- EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
- Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
- }
-
- /** Convertion to scalar */
- operator const typename Base::Scalar() const {
- return Base::coeff(0,0);
- }
-};
-
/***********************************************************************
* Implementation of Outer Vector Vector Product
***********************************************************************/
-namespace internal {
-
-// Column major
-template<typename ProductType, typename Dest, typename Func>
-EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const false_type&)
-{
- typedef typename Dest::Index Index;
- // FIXME make sure lhs is sequentially stored
- // FIXME not very good if rhs is real and lhs complex while alpha is real too
- const Index cols = dest.cols();
- for (Index j=0; j<cols; ++j)
- func(dest.col(j), prod.rhs().coeff(j) * prod.lhs());
-}
-
-// Row major
-template<typename ProductType, typename Dest, typename Func>
-EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const true_type&) {
- typedef typename Dest::Index Index;
- // FIXME make sure rhs is sequentially stored
- // FIXME not very good if lhs is real and rhs complex while alpha is real too
- const Index rows = dest.rows();
- for (Index i=0; i<rows; ++i)
- func(dest.row(i), prod.lhs().coeff(i) * prod.rhs());
-}
-
-template<typename Lhs, typename Rhs>
-struct traits<GeneralProduct<Lhs,Rhs,OuterProduct> >
- : traits<ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs> >
-{};
-
-}
-
-template<typename Lhs, typename Rhs>
-class GeneralProduct<Lhs, Rhs, OuterProduct>
- : public ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs>
-{
- template<typename T> struct IsRowMajor : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
-
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
-
- GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
- {
- EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- }
-
- struct set { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } };
- struct add { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
- struct sub { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
- struct adds {
- Scalar m_scale;
- adds(const Scalar& s) : m_scale(s) {}
- template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const {
- dst.const_cast_derived() += m_scale * src;
- }
- };
-
- template<typename Dest>
- inline void evalTo(Dest& dest) const {
- internal::outer_product_selector_run(*this, dest, set(), IsRowMajor<Dest>());
- }
-
- template<typename Dest>
- inline void addTo(Dest& dest) const {
- internal::outer_product_selector_run(*this, dest, add(), IsRowMajor<Dest>());
- }
-
- template<typename Dest>
- inline void subTo(Dest& dest) const {
- internal::outer_product_selector_run(*this, dest, sub(), IsRowMajor<Dest>());
- }
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
- {
- internal::outer_product_selector_run(*this, dest, adds(alpha), IsRowMajor<Dest>());
- }
-};
-
/***********************************************************************
* Implementation of General Matrix Vector Product
***********************************************************************/
@@ -312,60 +159,13 @@ class GeneralProduct<Lhs, Rhs, OuterProduct>
*/
namespace internal {
-template<typename Lhs, typename Rhs>
-struct traits<GeneralProduct<Lhs,Rhs,GemvProduct> >
- : traits<ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs> >
-{};
-
template<int Side, int StorageOrder, bool BlasCompatible>
-struct gemv_selector;
+struct gemv_dense_sense_selector;
} // end namespace internal
-template<typename Lhs, typename Rhs>
-class GeneralProduct<Lhs, Rhs, GemvProduct>
- : public ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs>
-{
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
-
- typedef typename Lhs::Scalar LhsScalar;
- typedef typename Rhs::Scalar RhsScalar;
-
- GeneralProduct(const Lhs& a_lhs, const Rhs& a_rhs) : Base(a_lhs,a_rhs)
- {
-// EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::Scalar, typename Rhs::Scalar>::value),
-// YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- }
-
- enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
- typedef typename internal::conditional<int(Side)==OnTheRight,_LhsNested,_RhsNested>::type MatrixType;
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
- {
- eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols());
- internal::gemv_selector<Side,(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
- bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)>::run(*this, dst, alpha);
- }
-};
-
namespace internal {
-// The vector is on the left => transposition
-template<int StorageOrder, bool BlasCompatible>
-struct gemv_selector<OnTheLeft,StorageOrder,BlasCompatible>
-{
- template<typename ProductType, typename Dest>
- static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
- {
- Transpose<Dest> destT(dest);
- enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
- gemv_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
- ::run(GeneralProduct<Transpose<const typename ProductType::_RhsNested>,Transpose<const typename ProductType::_LhsNested>, GemvProduct>
- (prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha);
- }
-};
-
template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;
template<typename Scalar,int Size,int MaxSize>
@@ -402,27 +202,43 @@ struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
#endif
};
-template<> struct gemv_selector<OnTheRight,ColMajor,true>
+// The vector is on the left => transposition
+template<int StorageOrder, bool BlasCompatible>
+struct gemv_dense_sense_selector<OnTheLeft,StorageOrder,BlasCompatible>
+{
+ template<typename Lhs, typename Rhs, typename Dest>
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
+ {
+ Transpose<Dest> destT(dest);
+ enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
+ gemv_dense_sense_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
+ ::run(rhs.transpose(), lhs.transpose(), destT, alpha);
+ }
+};
+
+template<> struct gemv_dense_sense_selector<OnTheRight,ColMajor,true>
{
- template<typename ProductType, typename Dest>
- static inline void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
+ template<typename Lhs, typename Rhs, typename Dest>
+ static inline void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
- typedef typename ProductType::Index Index;
- typedef typename ProductType::LhsScalar LhsScalar;
- typedef typename ProductType::RhsScalar RhsScalar;
- typedef typename ProductType::Scalar ResScalar;
- typedef typename ProductType::RealScalar RealScalar;
- typedef typename ProductType::ActualLhsType ActualLhsType;
- typedef typename ProductType::ActualRhsType ActualRhsType;
- typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
- typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
+ typedef typename Dest::Index Index;
+ typedef typename Lhs::Scalar LhsScalar;
+ typedef typename Rhs::Scalar RhsScalar;
+ typedef typename Dest::Scalar ResScalar;
+ typedef typename Dest::RealScalar RealScalar;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+
typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
- ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
- ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());
+ ActualLhsType actualLhs = LhsBlasTraits::extract(lhs);
+ ActualRhsType actualRhs = RhsBlasTraits::extract(rhs);
- ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
- * RhsBlasTraits::extractScalarFactor(prod.rhs());
+ ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
+ * RhsBlasTraits::extractScalarFactor(rhs);
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
@@ -445,7 +261,7 @@ template<> struct gemv_selector<OnTheRight,ColMajor,true>
if(!evalToDest)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- Index size = dest.size();
+ int size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
if(!alphaIsCompatible)
@@ -475,34 +291,35 @@ template<> struct gemv_selector<OnTheRight,ColMajor,true>
}
};
-template<> struct gemv_selector<OnTheRight,RowMajor,true>
+template<> struct gemv_dense_sense_selector<OnTheRight,RowMajor,true>
{
- template<typename ProductType, typename Dest>
- static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
+ template<typename Lhs, typename Rhs, typename Dest>
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
- typedef typename ProductType::LhsScalar LhsScalar;
- typedef typename ProductType::RhsScalar RhsScalar;
- typedef typename ProductType::Scalar ResScalar;
- typedef typename ProductType::Index Index;
- typedef typename ProductType::ActualLhsType ActualLhsType;
- typedef typename ProductType::ActualRhsType ActualRhsType;
- typedef typename ProductType::_ActualRhsType _ActualRhsType;
- typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
- typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
-
- typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
- typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
-
- ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
- * RhsBlasTraits::extractScalarFactor(prod.rhs());
+ typedef typename Dest::Index Index;
+ typedef typename Lhs::Scalar LhsScalar;
+ typedef typename Rhs::Scalar RhsScalar;
+ typedef typename Dest::Scalar ResScalar;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+ typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
+
+ typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
+ typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);
+
+ ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
+ * RhsBlasTraits::extractScalarFactor(rhs);
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
- DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
+ DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1
};
- gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
+ gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
@@ -510,10 +327,10 @@ template<> struct gemv_selector<OnTheRight,RowMajor,true>
if(!DirectlyUseRhs)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- Index size = actualRhs.size();
+ int size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
- Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
+ Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
}
general_matrix_vector_product
@@ -526,29 +343,29 @@ template<> struct gemv_selector<OnTheRight,RowMajor,true>
}
};
-template<> struct gemv_selector<OnTheRight,ColMajor,false>
+template<> struct gemv_dense_sense_selector<OnTheRight,ColMajor,false>
{
- template<typename ProductType, typename Dest>
- static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
+ template<typename Lhs, typename Rhs, typename Dest>
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
typedef typename Dest::Index Index;
// TODO makes sure dest is sequentially stored in memory, otherwise use a temp
- const Index size = prod.rhs().rows();
+ const Index size = rhs.rows();
for(Index k=0; k<size; ++k)
- dest += (alpha*prod.rhs().coeff(k)) * prod.lhs().col(k);
+ dest += (alpha*rhs.coeff(k)) * lhs.col(k);
}
};
-template<> struct gemv_selector<OnTheRight,RowMajor,false>
+template<> struct gemv_dense_sense_selector<OnTheRight,RowMajor,false>
{
- template<typename ProductType, typename Dest>
- static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
+ template<typename Lhs, typename Rhs, typename Dest>
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
typedef typename Dest::Index Index;
// TODO makes sure rhs is sequentially stored in memory, otherwise use a temp
- const Index rows = prod.rows();
+ const Index rows = dest.rows();
for(Index i=0; i<rows; ++i)
- dest.coeffRef(i) += alpha * (prod.lhs().row(i).cwiseProduct(prod.rhs().transpose())).sum();
+ dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(rhs.transpose())).sum();
}
};
@@ -566,7 +383,6 @@ template<> struct gemv_selector<OnTheRight,RowMajor,false>
*/
#ifndef __CUDACC__
-#ifdef EIGEN_TEST_EVALUATORS
template<typename Derived>
template<typename OtherDerived>
inline const Product<Derived, OtherDerived>
@@ -597,39 +413,9 @@ MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
return Product<Derived, OtherDerived>(derived(), other.derived());
}
-#else
-template<typename Derived>
-template<typename OtherDerived>
-inline const typename ProductReturnType<Derived, OtherDerived>::Type
-MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
-{
- // A note regarding the function declaration: In MSVC, this function will sometimes
- // not be inlined since DenseStorage is an unwindable object for dynamic
- // matrices and product types are holding a member to store the result.
- // Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
- enum {
- ProductIsValid = Derived::ColsAtCompileTime==Dynamic
- || OtherDerived::RowsAtCompileTime==Dynamic
- || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
- AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
- SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
- };
- // note to the lost user:
- // * for a dot product use: v1.dot(v2)
- // * for a coeff-wise product use: v1.cwiseProduct(v2)
- EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
- INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
- EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
- INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
- EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
-#ifdef EIGEN_DEBUG_PRODUCT
- internal::product_type<Derived,OtherDerived>::debug();
-#endif
- return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
-}
-#endif
-#endif
+#endif // __CUDACC__
+
/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
*
* The returned product will behave like any other expressions: the coefficients of the product will be
@@ -643,7 +429,7 @@ MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
*/
template<typename Derived>
template<typename OtherDerived>
-const typename LazyProductReturnType<Derived,OtherDerived>::Type
+const Product<Derived,OtherDerived,LazyProduct>
MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
{
enum {
@@ -662,7 +448,7 @@ MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
- return typename LazyProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
+ return Product<Derived,OtherDerived,LazyProduct>(derived(), other.derived());
}
} // end namespace Eigen
diff --git a/Eigen/src/Core/Inverse.h b/Eigen/src/Core/Inverse.h
new file mode 100644
index 000000000..5cfa7e50c
--- /dev/null
+++ b/Eigen/src/Core/Inverse.h
@@ -0,0 +1,130 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_INVERSE_H
+#define EIGEN_INVERSE_H
+
+namespace Eigen {
+
+// TODO move the general declaration in Core, and rename this file DenseInverseImpl.h, or something like this...
+
+template<typename XprType,typename StorageKind> class InverseImpl;
+
+namespace internal {
+
+template<typename XprType>
+struct traits<Inverse<XprType> >
+ : traits<typename XprType::PlainObject>
+{
+ typedef typename XprType::PlainObject PlainObject;
+ typedef traits<PlainObject> BaseTraits;
+ enum {
+ Flags = BaseTraits::Flags & RowMajorBit,
+ CoeffReadCost = Dynamic
+ };
+};
+
+} // end namespace internal
+
+/** \class Inverse
+ *
+ * \brief Expression of the inverse of another expression
+ *
+ * \tparam XprType the type of the expression we are taking the inverse
+ *
+ * This class represents an abstract expression of A.inverse()
+ * and most of the time this is the only way it is used.
+ *
+ */
+template<typename XprType>
+class Inverse : public InverseImpl<XprType,typename internal::traits<XprType>::StorageKind>
+{
+public:
+ typedef typename XprType::Index Index;
+ typedef typename XprType::PlainObject PlainObject;
+ typedef typename internal::nested<XprType>::type XprTypeNested;
+ typedef typename internal::remove_all<XprTypeNested>::type XprTypeNestedCleaned;
+
+ Inverse(const XprType &xpr)
+ : m_xpr(xpr)
+ {}
+
+ EIGEN_DEVICE_FUNC Index rows() const { return m_xpr.rows(); }
+ EIGEN_DEVICE_FUNC Index cols() const { return m_xpr.cols(); }
+
+ EIGEN_DEVICE_FUNC const XprTypeNestedCleaned& nestedExpression() const { return m_xpr; }
+
+protected:
+ XprTypeNested m_xpr;
+};
+
+/** \internal
+ * Specialization of the Inverse expression for dense expressions.
+ * Direct access to the coefficients are discared.
+ * FIXME this intermediate class is probably not needed anymore.
+ */
+template<typename XprType>
+class InverseImpl<XprType,Dense>
+ : public MatrixBase<Inverse<XprType> >
+{
+ typedef Inverse<XprType> Derived;
+
+public:
+
+ typedef MatrixBase<Derived> Base;
+ EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
+ typedef typename internal::remove_all<XprType>::type NestedExpression;
+
+private:
+
+ Scalar coeff(Index row, Index col) const;
+ Scalar coeff(Index i) const;
+};
+
+namespace internal {
+
+/** \internal
+ * \brief Default evaluator for Inverse expression.
+ *
+ * This default evaluator for Inverse expression simply evaluate the inverse into a temporary
+ * by a call to internal::call_assignment_no_alias.
+ * Therefore, inverse implementers only have to specialize Assignment<Dst,Inverse<...>, ...> for
+ * there own nested expression.
+ *
+ * \sa class Inverse
+ */
+template<typename ArgType>
+struct unary_evaluator<Inverse<ArgType> >
+ : public evaluator<typename Inverse<ArgType>::PlainObject>::type
+{
+ typedef Inverse<ArgType> InverseType;
+ typedef typename InverseType::PlainObject PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
+
+ typedef evaluator<InverseType> type;
+ typedef evaluator<InverseType> nestedType;
+
+ enum { Flags = Base::Flags | EvalBeforeNestingBit };
+
+ unary_evaluator(const InverseType& inv_xpr)
+ : m_result(inv_xpr.rows(), inv_xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ internal::call_assignment_no_alias(m_result, inv_xpr);
+ }
+
+protected:
+ PlainObject m_result;
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_INVERSE_H
diff --git a/Eigen/src/Core/Map.h b/Eigen/src/Core/Map.h
index ced1b76ba..87c1787bf 100644
--- a/Eigen/src/Core/Map.h
+++ b/Eigen/src/Core/Map.h
@@ -79,22 +79,9 @@ struct traits<Map<PlainObjectType, MapOptions, StrideType> >
OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
? int(PlainObjectType::OuterStrideAtCompileTime)
: int(StrideType::OuterStrideAtCompileTime),
- HasNoInnerStride = InnerStrideAtCompileTime == 1,
- HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0,
- HasNoStride = HasNoInnerStride && HasNoOuterStride,
IsAligned = bool(EIGEN_ALIGN) && ((int(MapOptions)&Aligned)==Aligned),
- IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic,
- KeepsPacketAccess = bool(HasNoInnerStride)
- && ( bool(IsDynamicSize)
- || HasNoOuterStride
- || ( OuterStrideAtCompileTime!=Dynamic
- && ((static_cast<int>(sizeof(Scalar))*OuterStrideAtCompileTime)%EIGEN_ALIGN_BYTES)==0 ) ),
Flags0 = TraitsBase::Flags & (~NestByRefBit),
- Flags1 = IsAligned ? (int(Flags0) | AlignedBit) : (int(Flags0) & ~AlignedBit),
- Flags2 = (bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime))
- ? int(Flags1) : int(Flags1 & ~LinearAccessBit),
- Flags3 = is_lvalue<PlainObjectType>::value ? int(Flags2) : (int(Flags2) & ~LvalueBit),
- Flags = KeepsPacketAccess ? int(Flags3) : (int(Flags3) & ~PacketAccessBit)
+ Flags = is_lvalue<PlainObjectType>::value ? int(Flags0) : (int(Flags0) & ~LvalueBit)
};
private:
enum { Options }; // Expressions don't have Options
diff --git a/Eigen/src/Core/MapBase.h b/Eigen/src/Core/MapBase.h
index e8ecb175b..6d3b344e8 100644
--- a/Eigen/src/Core/MapBase.h
+++ b/Eigen/src/Core/MapBase.h
@@ -12,7 +12,7 @@
#define EIGEN_MAPBASE_H
#define EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) \
- EIGEN_STATIC_ASSERT((int(internal::traits<Derived>::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \
+ EIGEN_STATIC_ASSERT((int(internal::evaluator<Derived>::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \
YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT)
namespace Eigen {
@@ -161,11 +161,7 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
EIGEN_DEVICE_FUNC
void checkSanity() const
{
- EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(internal::traits<Derived>::Flags&PacketAccessBit,
- internal::inner_stride_at_compile_time<Derived>::ret==1),
- PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1);
- eigen_assert(EIGEN_IMPLIES(internal::traits<Derived>::Flags&AlignedBit, (size_t(m_data) % EIGEN_ALIGN_BYTES) == 0)
- && "data is not aligned");
+ eigen_assert(EIGEN_IMPLIES(internal::traits<Derived>::IsAligned, (size_t(m_data) % EIGEN_ALIGN_BYTES) == 0) && "data is not aligned");
}
PointerType m_data;
diff --git a/Eigen/src/Core/MathFunctions.h b/Eigen/src/Core/MathFunctions.h
index 20fc2be74..73859b0ee 100644
--- a/Eigen/src/Core/MathFunctions.h
+++ b/Eigen/src/Core/MathFunctions.h
@@ -12,6 +12,15 @@
namespace Eigen {
+// On WINCE, std::abs is defined for int only, so let's defined our own overloads:
+// This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too.
+#if defined(_WIN32_WCE) && defined(_MSC_VER) && _MSC_VER<=1500
+long abs(long x) { return (labs(x)); }
+double abs(double x) { return (fabs(x)); }
+float abs(float x) { return (fabsf(x)); }
+long double abs(long double x) { return (fabsl(x)); }
+#endif
+
namespace internal {
/** \internal \struct global_math_functions_filtering_base
@@ -308,10 +317,17 @@ struct hypot_impl
using std::sqrt;
RealScalar _x = abs(x);
RealScalar _y = abs(y);
- RealScalar p = (max)(_x, _y);
- if(p==RealScalar(0)) return 0;
- RealScalar q = (min)(_x, _y);
- RealScalar qp = q/p;
+ Scalar p, qp;
+ if(_x>_y)
+ {
+ p = _x;
+ qp = _y / p;
+ }
+ else
+ {
+ p = _y;
+ qp = _x / p;
+ }
return p * sqrt(RealScalar(1) + qp*qp);
}
};
@@ -678,6 +694,21 @@ bool (isfinite)(const std::complex<T>& x)
return isfinite(real(x)) && isfinite(imag(x));
}
+// Log base 2 for 32 bits positive integers.
+// Conveniently returns 0 for x==0.
+inline int log2(int x)
+{
+ eigen_assert(x>=0);
+ unsigned int v(x);
+ static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ return table[(v * 0x07C4ACDDU) >> 27];
+}
+
} // end namespace numext
namespace internal {
diff --git a/Eigen/src/Core/Matrix.h b/Eigen/src/Core/Matrix.h
index 8c95ee3ca..8a5821548 100644
--- a/Eigen/src/Core/Matrix.h
+++ b/Eigen/src/Core/Matrix.h
@@ -115,7 +115,8 @@ struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
MaxRowsAtCompileTime = _MaxRows,
MaxColsAtCompileTime = _MaxCols,
Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
- CoeffReadCost = NumTraits<Scalar>::ReadCost,
+ // FIXME, the following flag in only used to define NeedsToAlign in PlainObjectBase
+ EvaluatorFlags = compute_matrix_evaluator_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
Options = _Options,
InnerStrideAtCompileTime = 1,
OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime
diff --git a/Eigen/src/Core/MatrixBase.h b/Eigen/src/Core/MatrixBase.h
index f5987d194..9dbbd6fb5 100644
--- a/Eigen/src/Core/MatrixBase.h
+++ b/Eigen/src/Core/MatrixBase.h
@@ -66,8 +66,7 @@ template<typename Derived> class MatrixBase
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
- using Base::CoeffReadCost;
-
+
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
@@ -81,6 +80,7 @@ template<typename Derived> class MatrixBase
using Base::operator-=;
using Base::operator*=;
using Base::operator/=;
+ using Base::operator*;
typedef typename Base::CoeffReturnType CoeffReturnType;
typedef typename Base::ConstTransposeReturnType ConstTransposeReturnType;
@@ -185,21 +185,15 @@ template<typename Derived> class MatrixBase
{ return this->lazyProduct(other); }
#else
-#ifdef EIGEN_TEST_EVALUATORS
template<typename OtherDerived>
const Product<Derived,OtherDerived>
operator*(const MatrixBase<OtherDerived> &other) const;
-#else
- template<typename OtherDerived>
- const typename ProductReturnType<Derived,OtherDerived>::Type
- operator*(const MatrixBase<OtherDerived> &other) const;
-#endif
#endif
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
- const typename LazyProductReturnType<Derived,OtherDerived>::Type
+ const Product<Derived,OtherDerived,LazyProduct>
lazyProduct(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
@@ -213,7 +207,7 @@ template<typename Derived> class MatrixBase
template<typename DiagonalDerived>
EIGEN_DEVICE_FUNC
- const DiagonalProduct<Derived, DiagonalDerived, OnTheRight>
+ const Product<Derived, DiagonalDerived, LazyProduct>
operator*(const DiagonalBase<DiagonalDerived> &diagonal) const;
template<typename OtherDerived>
@@ -333,10 +327,12 @@ template<typename Derived> class MatrixBase
NoAlias<Derived,Eigen::MatrixBase > noalias();
- inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
- inline ForceAlignedAccess<Derived> forceAlignedAccess();
- template<bool Enable> inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type forceAlignedAccessIf() const;
- template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();
+ // TODO forceAlignedAccess is temporarly disabled
+ // Need to find a nicer workaround.
+ inline const Derived& forceAlignedAccess() const { return derived(); }
+ inline Derived& forceAlignedAccess() { return derived(); }
+ template<bool Enable> inline const Derived& forceAlignedAccessIf() const { return derived(); }
+ template<bool Enable> inline Derived& forceAlignedAccessIf() { return derived(); }
Scalar trace() const;
@@ -360,7 +356,8 @@ template<typename Derived> class MatrixBase
const PartialPivLU<PlainObject> lu() const;
EIGEN_DEVICE_FUNC
- const internal::inverse_impl<Derived> inverse() const;
+ const Inverse<Derived> inverse() const;
+
template<typename ResultType>
void computeInverseAndDetWithCheck(
ResultType& inverse,
diff --git a/Eigen/src/Core/NoAlias.h b/Eigen/src/Core/NoAlias.h
index 0a1c32743..097c9c062 100644
--- a/Eigen/src/Core/NoAlias.h
+++ b/Eigen/src/Core/NoAlias.h
@@ -30,68 +30,35 @@ namespace Eigen {
template<typename ExpressionType, template <typename> class StorageBase>
class NoAlias
{
- typedef typename ExpressionType::Scalar Scalar;
public:
+ typedef typename ExpressionType::Scalar Scalar;
+
NoAlias(ExpressionType& expression) : m_expression(expression) {}
-
- /** Behaves like MatrixBase::lazyAssign(other)
- * \sa MatrixBase::lazyAssign() */
+
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE ExpressionType& operator=(const StorageBase<OtherDerived>& other)
- { return internal::assign_selector<ExpressionType,OtherDerived,false>::run(m_expression,other.derived()); }
-
- /** \sa MatrixBase::operator+= */
+ {
+ call_assignment_no_alias(m_expression, other.derived(), internal::assign_op<Scalar>());
+ return m_expression;
+ }
+
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE ExpressionType& operator+=(const StorageBase<OtherDerived>& other)
{
- typedef SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, ExpressionType, OtherDerived> SelfAdder;
- SelfAdder tmp(m_expression);
- typedef typename internal::nested<OtherDerived>::type OtherDerivedNested;
- typedef typename internal::remove_all<OtherDerivedNested>::type _OtherDerivedNested;
- internal::assign_selector<SelfAdder,_OtherDerivedNested,false>::run(tmp,OtherDerivedNested(other.derived()));
+ call_assignment_no_alias(m_expression, other.derived(), internal::add_assign_op<Scalar>());
return m_expression;
}
-
- /** \sa MatrixBase::operator-= */
+
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE ExpressionType& operator-=(const StorageBase<OtherDerived>& other)
{
- typedef SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, ExpressionType, OtherDerived> SelfAdder;
- SelfAdder tmp(m_expression);
- typedef typename internal::nested<OtherDerived>::type OtherDerivedNested;
- typedef typename internal::remove_all<OtherDerivedNested>::type _OtherDerivedNested;
- internal::assign_selector<SelfAdder,_OtherDerivedNested,false>::run(tmp,OtherDerivedNested(other.derived()));
+ call_assignment_no_alias(m_expression, other.derived(), internal::sub_assign_op<Scalar>());
return m_expression;
}
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE ExpressionType& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
- { other.derived().addTo(m_expression); return m_expression; }
-
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE ExpressionType& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
- { other.derived().subTo(m_expression); return m_expression; }
-
- template<typename Lhs, typename Rhs, int NestingFlags>
- EIGEN_STRONG_INLINE ExpressionType& operator+=(const CoeffBasedProduct<Lhs,Rhs,NestingFlags>& other)
- { return m_expression.derived() += CoeffBasedProduct<Lhs,Rhs,NestByRefBit>(other.lhs(), other.rhs()); }
-
- template<typename Lhs, typename Rhs, int NestingFlags>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE ExpressionType& operator-=(const CoeffBasedProduct<Lhs,Rhs,NestingFlags>& other)
- { return m_expression.derived() -= CoeffBasedProduct<Lhs,Rhs,NestByRefBit>(other.lhs(), other.rhs()); }
-
- template<typename OtherDerived>
- ExpressionType& operator=(const ReturnByValue<OtherDerived>& func)
- { return m_expression = func; }
-#endif
-
EIGEN_DEVICE_FUNC
ExpressionType& expression() const
{
diff --git a/Eigen/src/Core/PermutationMatrix.h b/Eigen/src/Core/PermutationMatrix.h
index 8aa4c8bc5..200518173 100644
--- a/Eigen/src/Core/PermutationMatrix.h
+++ b/Eigen/src/Core/PermutationMatrix.h
@@ -13,7 +13,8 @@
namespace Eigen {
-template<int RowCol,typename IndicesType,typename MatrixType, typename StorageKind> class PermutedImpl;
+// TODO: this does not seems to be needed at all:
+// template<int RowCol,typename IndicesType,typename MatrixType, typename StorageKind> class PermutedImpl;
/** \class PermutationBase
* \ingroup Core_Module
@@ -60,7 +61,6 @@ class PermutationBase : public EigenBase<Derived>
typedef typename Traits::IndicesType IndicesType;
enum {
Flags = Traits::Flags,
- CoeffReadCost = Traits::CoeffReadCost,
RowsAtCompileTime = Traits::RowsAtCompileTime,
ColsAtCompileTime = Traits::ColsAtCompileTime,
MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
@@ -274,6 +274,7 @@ template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndexType> >
: traits<Matrix<_StorageIndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
+ typedef PermutationStorage StorageKind;
typedef Matrix<_StorageIndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
typedef typename IndicesType::Index Index;
typedef _StorageIndexType StorageIndexType;
@@ -287,6 +288,8 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
typedef internal::traits<PermutationMatrix> Traits;
public:
+ typedef const PermutationMatrix& Nested;
+
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Traits::IndicesType IndicesType;
typedef typename Traits::StorageIndexType StorageIndexType;
@@ -391,6 +394,7 @@ template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex
struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndexType>,_PacketAccess> >
: traits<Matrix<_StorageIndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
+ typedef PermutationStorage StorageKind;
typedef Map<const Matrix<_StorageIndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
typedef typename IndicesType::Index Index;
typedef _StorageIndexType StorageIndexType;
@@ -462,8 +466,6 @@ class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageInd
* \sa class PermutationBase, class PermutationMatrix
*/
-struct PermutationStorage {};
-
template<typename _IndicesType> class TranspositionsWrapper;
namespace internal {
template<typename _IndicesType>
@@ -477,10 +479,9 @@ struct traits<PermutationWrapper<_IndicesType> >
enum {
RowsAtCompileTime = _IndicesType::SizeAtCompileTime,
ColsAtCompileTime = _IndicesType::SizeAtCompileTime,
- MaxRowsAtCompileTime = IndicesType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = IndicesType::MaxColsAtCompileTime,
- Flags = 0,
- CoeffReadCost = _IndicesType::CoeffReadCost
+ MaxRowsAtCompileTime = IndicesType::MaxSizeAtCompileTime,
+ MaxColsAtCompileTime = IndicesType::MaxSizeAtCompileTime,
+ Flags = 0
};
};
}
@@ -509,35 +510,39 @@ class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesTyp
typename IndicesType::Nested m_indices;
};
+
+// TODO: Do we need to define these operator* functions? Would it be better to have them inherited
+// from MatrixBase?
+
/** \returns the matrix with the permutation applied to the columns.
*/
-template<typename Derived, typename PermutationDerived>
-inline const internal::permut_matrix_product_retval<PermutationDerived, Derived, OnTheRight>
-operator*(const MatrixBase<Derived>& matrix,
- const PermutationBase<PermutationDerived> &permutation)
+template<typename MatrixDerived, typename PermutationDerived>
+EIGEN_DEVICE_FUNC
+const Product<MatrixDerived, PermutationDerived, DefaultProduct>
+operator*(const MatrixBase<MatrixDerived> &matrix,
+ const PermutationBase<PermutationDerived>& permutation)
{
- return internal::permut_matrix_product_retval
- <PermutationDerived, Derived, OnTheRight>
- (permutation.derived(), matrix.derived());
+ return Product<MatrixDerived, PermutationDerived, DefaultProduct>
+ (matrix.derived(), permutation.derived());
}
/** \returns the matrix with the permutation applied to the rows.
*/
-template<typename Derived, typename PermutationDerived>
-inline const internal::permut_matrix_product_retval
- <PermutationDerived, Derived, OnTheLeft>
+template<typename PermutationDerived, typename MatrixDerived>
+EIGEN_DEVICE_FUNC
+const Product<PermutationDerived, MatrixDerived, DefaultProduct>
operator*(const PermutationBase<PermutationDerived> &permutation,
- const MatrixBase<Derived>& matrix)
+ const MatrixBase<MatrixDerived>& matrix)
{
- return internal::permut_matrix_product_retval
- <PermutationDerived, Derived, OnTheLeft>
- (permutation.derived(), matrix.derived());
+ return Product<PermutationDerived, MatrixDerived, DefaultProduct>
+ (permutation.derived(), matrix.derived());
}
namespace internal {
template<typename PermutationType, typename MatrixType, int Side, bool Transposed>
struct traits<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> >
+ : traits<typename MatrixType::PlainObject>
{
typedef typename MatrixType::PlainObject ReturnType;
};
@@ -617,6 +622,8 @@ struct traits<Transpose<PermutationBase<Derived> > >
} // end namespace internal
+// TODO: the specificties should be handled by the evaluator,
+// at the very least we should only specialize TransposeImpl
template<typename Derived>
class Transpose<PermutationBase<Derived> >
: public EigenBase<Transpose<PermutationBase<Derived> > >
@@ -631,7 +638,6 @@ class Transpose<PermutationBase<Derived> >
typedef typename Derived::DenseMatrixType DenseMatrixType;
enum {
Flags = Traits::Flags,
- CoeffReadCost = Traits::CoeffReadCost,
RowsAtCompileTime = Traits::RowsAtCompileTime,
ColsAtCompileTime = Traits::ColsAtCompileTime,
MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
@@ -663,19 +669,19 @@ class Transpose<PermutationBase<Derived> >
/** \returns the matrix with the inverse permutation applied to the columns.
*/
template<typename OtherDerived> friend
- inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>
+ const Product<OtherDerived, Transpose, DefaultProduct>
operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trPerm)
{
- return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>(trPerm.m_permutation, matrix.derived());
+ return Product<OtherDerived, Transpose, DefaultProduct>(matrix.derived(), trPerm.derived());
}
/** \returns the matrix with the inverse permutation applied to the rows.
*/
template<typename OtherDerived>
- inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>
+ const Product<Transpose, OtherDerived, DefaultProduct>
operator*(const MatrixBase<OtherDerived>& matrix) const
{
- return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>(m_permutation, matrix.derived());
+ return Product<Transpose, OtherDerived, DefaultProduct>(*this, matrix.derived());
}
const PermutationType& nestedPermutation() const { return m_permutation; }
@@ -690,6 +696,38 @@ const PermutationWrapper<const Derived> MatrixBase<Derived>::asPermutation() con
return derived();
}
+namespace internal {
+
+// TODO currently a permutation matrix expression has the form PermutationMatrix or PermutationWrapper
+// or their transpose; in the future shape should be defined by the expression traits
+template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
+struct evaluator_traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
+{
+ typedef typename storage_kind_to_evaluator_kind<Dense>::Kind Kind;
+ typedef PermutationShape Shape;
+ static const int AssumeAliasing = 0;
+};
+
+template<typename IndicesType>
+struct evaluator_traits<PermutationWrapper<IndicesType> >
+{
+ typedef typename storage_kind_to_evaluator_kind<Dense>::Kind Kind;
+ typedef PermutationShape Shape;
+ static const int AssumeAliasing = 0;
+};
+
+template<typename Derived>
+struct evaluator_traits<Transpose<PermutationBase<Derived> > >
+{
+ typedef typename storage_kind_to_evaluator_kind<Dense>::Kind Kind;
+ typedef PermutationShape Shape;
+ static const int AssumeAliasing = 0;
+};
+
+template<> struct AssignmentKind<DenseShape,PermutationShape> { typedef EigenBase2EigenBase Kind; };
+
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_PERMUTATIONMATRIX_H
diff --git a/Eigen/src/Core/PlainObjectBase.h b/Eigen/src/Core/PlainObjectBase.h
index 69f34bd3e..3b0e56445 100644
--- a/Eigen/src/Core/PlainObjectBase.h
+++ b/Eigen/src/Core/PlainObjectBase.h
@@ -128,7 +128,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
DenseStorage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage;
public:
- enum { NeedsToAlign = SizeAtCompileTime != Dynamic && (internal::traits<Derived>::Flags & AlignedBit) != 0 };
+ enum { NeedsToAlign = SizeAtCompileTime != Dynamic && (internal::traits<Derived>::EvaluatorFlags & AlignedBit) != 0 };
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
EIGEN_DEVICE_FUNC
@@ -639,22 +639,17 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
*
* \internal
*/
+ // aliasing is dealt once in internall::call_assignment
+ // so at this stage we have to assume aliasing... and resising has to be done later.
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& _set(const DenseBase<OtherDerived>& other)
{
- _set_selector(other.derived(), typename internal::conditional<static_cast<bool>(int(OtherDerived::Flags) & EvalBeforeAssigningBit), internal::true_type, internal::false_type>::type());
+ internal::call_assignment(this->derived(), other.derived());
+ return this->derived();
return this->derived();
}
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::true_type&) { _set_noalias(other.eval()); }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::false_type&) { _set_noalias(other); }
-
/** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
* is the case when creating a new matrix) so one can enforce lazy evaluation.
*
@@ -669,7 +664,8 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
//_resize_to_match(other);
// the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
// it wouldn't allow to copy a row-vector into a column-vector.
- return internal::assign_selector<Derived,OtherDerived,false>::run(this->derived(), other.derived());
+ internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op<Scalar>());
+ return this->derived();
}
template<typename T0, typename T1>
@@ -704,9 +700,12 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
m_storage.data()[1] = Scalar(val1);
}
+ // The argument is convertible to the Index type and we either have a non 1x1 Matrix, or a dynamic-sized Array,
+ // then the argument is meant to be the size of the object.
template<typename T>
EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE void _init1(Index size, typename internal::enable_if<Base::SizeAtCompileTime!=1 || !internal::is_convertible<T, Scalar>::value,T>::type* = 0)
+ EIGEN_STRONG_INLINE void _init1(Index size, typename internal::enable_if< (Base::SizeAtCompileTime!=1 || !internal::is_convertible<T, Scalar>::value)
+ && ((!internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value || Base::SizeAtCompileTime==Dynamic)),T>::type* = 0)
{
// NOTE MSVC 2008 complains if we directly put bool(NumTraits<T>::IsInteger) as the EIGEN_STATIC_ASSERT argument.
const bool is_integer = NumTraits<T>::IsInteger;
@@ -714,6 +713,8 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED)
resize(size);
}
+
+ // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type can be implicitely converted)
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Scalar& val0, typename internal::enable_if<Base::SizeAtCompileTime==1 && internal::is_convertible<T, Scalar>::value,T>::type* = 0)
@@ -722,6 +723,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
m_storage.data()[0] = val0;
}
+ // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type match the index type)
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Index& val0,
@@ -734,18 +736,21 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
m_storage.data()[0] = Scalar(val0);
}
+ // Initialize a fixed size matrix from a pointer to raw data
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Scalar* data){
this->_set_noalias(ConstMapType(data));
}
+ // Initialize an arbitrary matrix from a dense expression
template<typename T, typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const DenseBase<OtherDerived>& other){
this->_set_noalias(other);
}
+ // Initialize an arbitrary matrix from a generic Eigen expression
template<typename T, typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const EigenBase<OtherDerived>& other){
@@ -766,6 +771,31 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
{
this->derived() = r;
}
+
+ // For fixed -size arrays:
+ template<typename T>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE void _init1(const Scalar& val0,
+ typename internal::enable_if< Base::SizeAtCompileTime!=Dynamic
+ && Base::SizeAtCompileTime!=1
+ && internal::is_convertible<T, Scalar>::value
+ && internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T>::type* = 0)
+ {
+ Base::setConstant(val0);
+ }
+
+ template<typename T>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE void _init1(const Index& val0,
+ typename internal::enable_if< (!internal::is_same<Index,Scalar>::value)
+ && (internal::is_same<Index,T>::value)
+ && Base::SizeAtCompileTime!=Dynamic
+ && Base::SizeAtCompileTime!=1
+ && internal::is_convertible<T, Scalar>::value
+ && internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T*>::type* = 0)
+ {
+ Base::setConstant(val0);
+ }
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
friend struct internal::matrix_swap_impl;
diff --git a/Eigen/src/Core/Product.h b/Eigen/src/Core/Product.h
index 5d3789be7..ae64d5200 100644
--- a/Eigen/src/Core/Product.h
+++ b/Eigen/src/Core/Product.h
@@ -12,8 +12,7 @@
namespace Eigen {
-template<typename Lhs, typename Rhs> class Product;
-template<typename Lhs, typename Rhs, typename StorageKind> class ProductImpl;
+template<typename Lhs, typename Rhs, int Option, typename StorageKind> class ProductImpl;
/** \class Product
* \ingroup Core_Module
@@ -24,38 +23,93 @@ template<typename Lhs, typename Rhs, typename StorageKind> class ProductImpl;
* \param Rhs the type of the right-hand side expression
*
* This class represents an expression of the product of two arbitrary matrices.
+ *
+ * The other template parameters are:
+ * \tparam Option can be DefaultProduct or LazyProduct
*
*/
-// Use ProductReturnType to get correct traits, in particular vectorization flags
+
namespace internal {
-template<typename Lhs, typename Rhs>
-struct traits<Product<Lhs, Rhs> >
- : traits<typename ProductReturnType<Lhs, Rhs>::Type>
-{
- // We want A+B*C to be of type Product<Matrix, Sum> and not Product<Matrix, Matrix>
- // TODO: This flag should eventually go in a separate evaluator traits class
+
+// Determine the scalar of Product<Lhs, Rhs>. This is normally the same as Lhs::Scalar times
+// Rhs::Scalar, but product with permutation matrices inherit the scalar of the other factor.
+template<typename Lhs, typename Rhs, typename LhsShape = typename evaluator_traits<Lhs>::Shape,
+ typename RhsShape = typename evaluator_traits<Rhs>::Shape >
+struct product_result_scalar
+{
+ typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
+};
+
+template<typename Lhs, typename Rhs, typename RhsShape>
+struct product_result_scalar<Lhs, Rhs, PermutationShape, RhsShape>
+{
+ typedef typename Rhs::Scalar Scalar;
+};
+
+template<typename Lhs, typename Rhs, typename LhsShape>
+ struct product_result_scalar<Lhs, Rhs, LhsShape, PermutationShape>
+{
+ typedef typename Lhs::Scalar Scalar;
+};
+
+template<typename Lhs, typename Rhs, int Option>
+struct traits<Product<Lhs, Rhs, Option> >
+{
+ typedef typename remove_all<Lhs>::type LhsCleaned;
+ typedef typename remove_all<Rhs>::type RhsCleaned;
+ typedef traits<LhsCleaned> LhsTraits;
+ typedef traits<RhsCleaned> RhsTraits;
+
+ typedef MatrixXpr XprKind;
+
+ typedef typename product_result_scalar<LhsCleaned,RhsCleaned>::Scalar Scalar;
+ typedef typename product_promote_storage_type<typename LhsTraits::StorageKind,
+ typename RhsTraits::StorageKind,
+ internal::product_type<Lhs,Rhs>::ret>::ret StorageKind;
+ typedef typename promote_index_type<typename LhsTraits::Index,
+ typename RhsTraits::Index>::type Index;
+
enum {
- Flags = traits<typename ProductReturnType<Lhs, Rhs>::Type>::Flags & ~(EvalBeforeNestingBit | DirectAccessBit)
+ RowsAtCompileTime = LhsTraits::RowsAtCompileTime,
+ ColsAtCompileTime = RhsTraits::ColsAtCompileTime,
+ MaxRowsAtCompileTime = LhsTraits::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = RhsTraits::MaxColsAtCompileTime,
+
+ // FIXME: only needed by GeneralMatrixMatrixTriangular
+ InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsTraits::ColsAtCompileTime, RhsTraits::RowsAtCompileTime),
+
+ // The storage order is somewhat arbitrary here. The correct one will be determined through the evaluator.
+ Flags = ( (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1)
+ || ((LhsTraits::Flags&NoPreferredStorageOrderBit) && (RhsTraits::Flags&RowMajorBit))
+ || ((RhsTraits::Flags&NoPreferredStorageOrderBit) && (LhsTraits::Flags&RowMajorBit)) )
+ ? RowMajorBit : (MaxColsAtCompileTime==1 ? 0 : NoPreferredStorageOrderBit)
};
};
+
} // end namespace internal
-template<typename Lhs, typename Rhs>
-class Product : public ProductImpl<Lhs,Rhs,typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
- typename internal::traits<Rhs>::StorageKind>::ret>
+template<typename _Lhs, typename _Rhs, int Option>
+class Product : public ProductImpl<_Lhs,_Rhs,Option,
+ typename internal::product_promote_storage_type<typename internal::traits<_Lhs>::StorageKind,
+ typename internal::traits<_Rhs>::StorageKind,
+ internal::product_type<_Lhs,_Rhs>::ret>::ret>
{
public:
+ typedef _Lhs Lhs;
+ typedef _Rhs Rhs;
+
typedef typename ProductImpl<
- Lhs, Rhs,
- typename internal::promote_storage_type<typename Lhs::StorageKind,
- typename Rhs::StorageKind>::ret>::Base Base;
+ Lhs, Rhs, Option,
+ typename internal::product_promote_storage_type<typename internal::traits<Lhs>::StorageKind,
+ typename internal::traits<Rhs>::StorageKind,
+ internal::product_type<Lhs,Rhs>::ret>::ret>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
- typedef typename Lhs::Nested LhsNested;
- typedef typename Rhs::Nested RhsNested;
+ typedef typename internal::nested<Lhs>::type LhsNested;
+ typedef typename internal::nested<Rhs>::type RhsNested;
typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
@@ -78,14 +132,77 @@ class Product : public ProductImpl<Lhs,Rhs,typename internal::promote_storage_ty
RhsNested m_rhs;
};
-template<typename Lhs, typename Rhs>
-class ProductImpl<Lhs,Rhs,Dense> : public internal::dense_xpr_base<Product<Lhs,Rhs> >::type
+namespace internal {
+
+template<typename Lhs, typename Rhs, int Option, int ProductTag = internal::product_type<Lhs,Rhs>::ret>
+class dense_product_base
+ : public internal::dense_xpr_base<Product<Lhs,Rhs,Option> >::type
+{};
+
+/** Convertion to scalar for inner-products */
+template<typename Lhs, typename Rhs, int Option>
+class dense_product_base<Lhs, Rhs, Option, InnerProduct>
+ : public internal::dense_xpr_base<Product<Lhs,Rhs,Option> >::type
+{
+ typedef Product<Lhs,Rhs,Option> ProductXpr;
+ typedef typename internal::dense_xpr_base<ProductXpr>::type Base;
+public:
+ using Base::derived;
+ typedef typename Base::Scalar Scalar;
+ typedef typename Base::Index Index;
+
+ operator const Scalar() const
+ {
+ return typename internal::evaluator<ProductXpr>::type(derived()).coeff(0,0);
+ }
+};
+
+} // namespace internal
+
+// Generic API dispatcher
+template<typename Lhs, typename Rhs, int Option, typename StorageKind>
+class ProductImpl : public internal::generic_xpr_base<Product<Lhs,Rhs,Option>, MatrixXpr, StorageKind>::type
{
- typedef Product<Lhs, Rhs> Derived;
public:
+ typedef typename internal::generic_xpr_base<Product<Lhs,Rhs,Option>, MatrixXpr, StorageKind>::type Base;
+};
- typedef typename internal::dense_xpr_base<Product<Lhs, Rhs> >::type Base;
+template<typename Lhs, typename Rhs, int Option>
+class ProductImpl<Lhs,Rhs,Option,Dense>
+ : public internal::dense_product_base<Lhs,Rhs,Option>
+{
+ typedef Product<Lhs, Rhs, Option> Derived;
+
+ public:
+
+ typedef typename internal::dense_product_base<Lhs, Rhs, Option> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
+ protected:
+ enum {
+ IsOneByOne = (RowsAtCompileTime == 1 || RowsAtCompileTime == Dynamic) &&
+ (ColsAtCompileTime == 1 || ColsAtCompileTime == Dynamic),
+ EnableCoeff = IsOneByOne || Option==LazyProduct
+ };
+
+ public:
+
+ Scalar coeff(Index row, Index col) const
+ {
+ EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS);
+ eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) );
+
+ return typename internal::evaluator<Derived>::type(derived()).coeff(row,col);
+ }
+
+ Scalar coeff(Index i) const
+ {
+ EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS);
+ eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) );
+
+ return typename internal::evaluator<Derived>::type(derived()).coeff(i);
+ }
+
+
};
/***************************************************************************
@@ -102,6 +219,15 @@ prod(const Lhs& lhs, const Rhs& rhs)
return Product<Lhs,Rhs>(lhs,rhs);
}
+/** \internal used to test the evaluator only
+ */
+template<typename Lhs,typename Rhs>
+const Product<Lhs,Rhs,LazyProduct>
+lazyprod(const Lhs& lhs, const Rhs& rhs)
+{
+ return Product<Lhs,Rhs,LazyProduct>(lhs,rhs);
+}
+
} // end namespace Eigen
#endif // EIGEN_PRODUCT_H
diff --git a/Eigen/src/Core/ProductBase.h b/Eigen/src/Core/ProductBase.h
index 483914a9b..050343b2d 100644
--- a/Eigen/src/Core/ProductBase.h
+++ b/Eigen/src/Core/ProductBase.h
@@ -12,253 +12,6 @@
namespace Eigen {
-/** \class ProductBase
- * \ingroup Core_Module
- *
- */
-
-namespace internal {
-template<typename Derived, typename _Lhs, typename _Rhs>
-struct traits<ProductBase<Derived,_Lhs,_Rhs> >
-{
- typedef MatrixXpr XprKind;
- typedef typename remove_all<_Lhs>::type Lhs;
- typedef typename remove_all<_Rhs>::type Rhs;
- typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
- typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
- typename traits<Rhs>::StorageKind>::ret StorageKind;
- typedef typename promote_index_type<typename traits<Lhs>::Index,
- typename traits<Rhs>::Index>::type Index;
- enum {
- RowsAtCompileTime = traits<Lhs>::RowsAtCompileTime,
- ColsAtCompileTime = traits<Rhs>::ColsAtCompileTime,
- MaxRowsAtCompileTime = traits<Lhs>::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = traits<Rhs>::MaxColsAtCompileTime,
- Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0)
- | EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit,
- // Note that EvalBeforeNestingBit and NestByRefBit
- // are not used in practice because nested is overloaded for products
- CoeffReadCost = 0 // FIXME why is it needed ?
- };
-};
-}
-
-#define EIGEN_PRODUCT_PUBLIC_INTERFACE(Derived) \
- typedef ProductBase<Derived, Lhs, Rhs > Base; \
- EIGEN_DENSE_PUBLIC_INTERFACE(Derived) \
- typedef typename Base::LhsNested LhsNested; \
- typedef typename Base::_LhsNested _LhsNested; \
- typedef typename Base::LhsBlasTraits LhsBlasTraits; \
- typedef typename Base::ActualLhsType ActualLhsType; \
- typedef typename Base::_ActualLhsType _ActualLhsType; \
- typedef typename Base::RhsNested RhsNested; \
- typedef typename Base::_RhsNested _RhsNested; \
- typedef typename Base::RhsBlasTraits RhsBlasTraits; \
- typedef typename Base::ActualRhsType ActualRhsType; \
- typedef typename Base::_ActualRhsType _ActualRhsType; \
- using Base::m_lhs; \
- using Base::m_rhs;
-
-template<typename Derived, typename Lhs, typename Rhs>
-class ProductBase : public MatrixBase<Derived>
-{
- public:
- typedef MatrixBase<Derived> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(ProductBase)
-
- typedef typename Lhs::Nested LhsNested;
- typedef typename internal::remove_all<LhsNested>::type _LhsNested;
- typedef internal::blas_traits<_LhsNested> LhsBlasTraits;
- typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
- typedef typename internal::remove_all<ActualLhsType>::type _ActualLhsType;
- typedef typename internal::traits<Lhs>::Scalar LhsScalar;
-
- typedef typename Rhs::Nested RhsNested;
- typedef typename internal::remove_all<RhsNested>::type _RhsNested;
- typedef internal::blas_traits<_RhsNested> RhsBlasTraits;
- typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
- typedef typename internal::remove_all<ActualRhsType>::type _ActualRhsType;
- typedef typename internal::traits<Rhs>::Scalar RhsScalar;
-
- // Diagonal of a product: no need to evaluate the arguments because they are going to be evaluated only once
- typedef CoeffBasedProduct<LhsNested, RhsNested, 0> FullyLazyCoeffBaseProductType;
-
- public:
-
- typedef typename Base::PlainObject PlainObject;
-
- ProductBase(const Lhs& a_lhs, const Rhs& a_rhs)
- : m_lhs(a_lhs), m_rhs(a_rhs)
- {
- eigen_assert(a_lhs.cols() == a_rhs.rows()
- && "invalid matrix product"
- && "if you wanted a coeff-wise or a dot product use the respective explicit functions");
- }
-
- inline Index rows() const { return m_lhs.rows(); }
- inline Index cols() const { return m_rhs.cols(); }
-
- template<typename Dest>
- inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst,Scalar(1)); }
-
- template<typename Dest>
- inline void addTo(Dest& dst) const { scaleAndAddTo(dst,Scalar(1)); }
-
- template<typename Dest>
- inline void subTo(Dest& dst) const { scaleAndAddTo(dst,Scalar(-1)); }
-
- template<typename Dest>
- inline void scaleAndAddTo(Dest& dst, const Scalar& alpha) const { derived().scaleAndAddTo(dst,alpha); }
-
- const _LhsNested& lhs() const { return m_lhs; }
- const _RhsNested& rhs() const { return m_rhs; }
-
- // Implicit conversion to the nested type (trigger the evaluation of the product)
- operator const PlainObject& () const
- {
- m_result.resize(m_lhs.rows(), m_rhs.cols());
- derived().evalTo(m_result);
- return m_result;
- }
-
- const Diagonal<const FullyLazyCoeffBaseProductType,0> diagonal() const
- { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); }
-
- template<int Index>
- const Diagonal<FullyLazyCoeffBaseProductType,Index> diagonal() const
- { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); }
-
- const Diagonal<FullyLazyCoeffBaseProductType,Dynamic> diagonal(Index index) const
- { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs).diagonal(index); }
-
- // restrict coeff accessors to 1x1 expressions. No need to care about mutators here since this isn't an Lvalue expression
- typename Base::CoeffReturnType coeff(Index row, Index col) const
- {
- EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
- eigen_assert(this->rows() == 1 && this->cols() == 1);
- Matrix<Scalar,1,1> result = *this;
- return result.coeff(row,col);
- }
-
- typename Base::CoeffReturnType coeff(Index i) const
- {
- EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
- eigen_assert(this->rows() == 1 && this->cols() == 1);
- Matrix<Scalar,1,1> result = *this;
- return result.coeff(i);
- }
-
- const Scalar& coeffRef(Index row, Index col) const
- {
- EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
- eigen_assert(this->rows() == 1 && this->cols() == 1);
- return derived().coeffRef(row,col);
- }
-
- const Scalar& coeffRef(Index i) const
- {
- EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
- eigen_assert(this->rows() == 1 && this->cols() == 1);
- return derived().coeffRef(i);
- }
-
- protected:
-
- LhsNested m_lhs;
- RhsNested m_rhs;
-
- mutable PlainObject m_result;
-};
-
-// here we need to overload the nested rule for products
-// such that the nested type is a const reference to a plain matrix
-namespace internal {
-template<typename Lhs, typename Rhs, int Mode, int N, typename PlainObject>
-struct nested<GeneralProduct<Lhs,Rhs,Mode>, N, PlainObject>
-{
- typedef PlainObject const& type;
-};
-}
-
-template<typename NestedProduct>
-class ScaledProduct;
-
-// Note that these two operator* functions are not defined as member
-// functions of ProductBase, because, otherwise we would have to
-// define all overloads defined in MatrixBase. Furthermore, Using
-// "using Base::operator*" would not work with MSVC.
-//
-// Also note that here we accept any compatible scalar types
-template<typename Derived,typename Lhs,typename Rhs>
-const ScaledProduct<Derived>
-operator*(const ProductBase<Derived,Lhs,Rhs>& prod, const typename Derived::Scalar& x)
-{ return ScaledProduct<Derived>(prod.derived(), x); }
-
-template<typename Derived,typename Lhs,typename Rhs>
-typename internal::enable_if<!internal::is_same<typename Derived::Scalar,typename Derived::RealScalar>::value,
- const ScaledProduct<Derived> >::type
-operator*(const ProductBase<Derived,Lhs,Rhs>& prod, const typename Derived::RealScalar& x)
-{ return ScaledProduct<Derived>(prod.derived(), x); }
-
-
-template<typename Derived,typename Lhs,typename Rhs>
-const ScaledProduct<Derived>
-operator*(const typename Derived::Scalar& x,const ProductBase<Derived,Lhs,Rhs>& prod)
-{ return ScaledProduct<Derived>(prod.derived(), x); }
-
-template<typename Derived,typename Lhs,typename Rhs>
-typename internal::enable_if<!internal::is_same<typename Derived::Scalar,typename Derived::RealScalar>::value,
- const ScaledProduct<Derived> >::type
-operator*(const typename Derived::RealScalar& x,const ProductBase<Derived,Lhs,Rhs>& prod)
-{ return ScaledProduct<Derived>(prod.derived(), x); }
-
-namespace internal {
-template<typename NestedProduct>
-struct traits<ScaledProduct<NestedProduct> >
- : traits<ProductBase<ScaledProduct<NestedProduct>,
- typename NestedProduct::_LhsNested,
- typename NestedProduct::_RhsNested> >
-{
- typedef typename traits<NestedProduct>::StorageKind StorageKind;
-};
-}
-
-template<typename NestedProduct>
-class ScaledProduct
- : public ProductBase<ScaledProduct<NestedProduct>,
- typename NestedProduct::_LhsNested,
- typename NestedProduct::_RhsNested>
-{
- public:
- typedef ProductBase<ScaledProduct<NestedProduct>,
- typename NestedProduct::_LhsNested,
- typename NestedProduct::_RhsNested> Base;
- typedef typename Base::Scalar Scalar;
- typedef typename Base::PlainObject PlainObject;
-// EIGEN_PRODUCT_PUBLIC_INTERFACE(ScaledProduct)
-
- ScaledProduct(const NestedProduct& prod, const Scalar& x)
- : Base(prod.lhs(),prod.rhs()), m_prod(prod), m_alpha(x) {}
-
- template<typename Dest>
- inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst, Scalar(1)); }
-
- template<typename Dest>
- inline void addTo(Dest& dst) const { scaleAndAddTo(dst, Scalar(1)); }
-
- template<typename Dest>
- inline void subTo(Dest& dst) const { scaleAndAddTo(dst, Scalar(-1)); }
-
- template<typename Dest>
- inline void scaleAndAddTo(Dest& dst, const Scalar& a_alpha) const { m_prod.derived().scaleAndAddTo(dst,a_alpha * m_alpha); }
-
- const Scalar& alpha() const { return m_alpha; }
-
- protected:
- const NestedProduct& m_prod;
- Scalar m_alpha;
-};
-
/** \internal
* Overloaded to perform an efficient C = (A*B).lazy() */
template<typename Derived>
diff --git a/Eigen/src/Core/ProductEvaluators.h b/Eigen/src/Core/ProductEvaluators.h
index 855914f2e..f880e7696 100644
--- a/Eigen/src/Core/ProductEvaluators.h
+++ b/Eigen/src/Core/ProductEvaluators.h
@@ -16,95 +16,344 @@
namespace Eigen {
namespace internal {
+
+/** \internal
+ * Evaluator of a product expression.
+ * Since products require special treatments to handle all possible cases,
+ * we simply deffer the evaluation logic to a product_evaluator class
+ * which offers more partial specialization possibilities.
+ *
+ * \sa class product_evaluator
+ */
+template<typename Lhs, typename Rhs, int Options>
+struct evaluator<Product<Lhs, Rhs, Options> >
+ : public product_evaluator<Product<Lhs, Rhs, Options> >
+{
+ typedef Product<Lhs, Rhs, Options> XprType;
+ typedef product_evaluator<XprType> Base;
+
+ typedef evaluator type;
+ typedef evaluator nestedType;
-// We can evaluate the product either all at once, like GeneralProduct and its evalTo() function, or
-// traverse the matrix coefficient by coefficient, like CoeffBasedProduct. Use the existing logic
-// in ProductReturnType to decide.
+ evaluator(const XprType& xpr) : Base(xpr) {}
+};
+
+// Catch scalar * ( A * B ) and transform it to (A*scalar) * B
+// TODO we should apply that rule only if that's really helpful
+template<typename Lhs, typename Rhs, typename Scalar>
+struct evaluator<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Product<Lhs, Rhs, DefaultProduct> > >
+ : public evaluator<Product<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>,const Lhs>, Rhs, DefaultProduct> >
+{
+ typedef CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Product<Lhs, Rhs, DefaultProduct> > XprType;
+ typedef evaluator<Product<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>,const Lhs>, Rhs, DefaultProduct> > Base;
+
+ typedef evaluator type;
+ typedef evaluator nestedType;
+
+ evaluator(const XprType& xpr)
+ : Base(xpr.functor().m_other * xpr.nestedExpression().lhs() * xpr.nestedExpression().rhs())
+ {}
+};
-template<typename XprType, typename ProductType>
-struct product_evaluator_dispatcher;
+
+template<typename Lhs, typename Rhs, int DiagIndex>
+struct evaluator<Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> >
+ : public evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> >
+{
+ typedef Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> XprType;
+ typedef evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > Base;
+
+ typedef evaluator type;
+ typedef evaluator nestedType;
+
+ evaluator(const XprType& xpr)
+ : Base(Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>(
+ Product<Lhs, Rhs, LazyProduct>(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()),
+ xpr.index() ))
+ {}
+};
+
+
+// Helper class to perform a matrix product with the destination at hand.
+// Depending on the sizes of the factors, there are different evaluation strategies
+// as controlled by internal::product_type.
+template< typename Lhs, typename Rhs,
+ typename LhsShape = typename evaluator_traits<Lhs>::Shape,
+ typename RhsShape = typename evaluator_traits<Rhs>::Shape,
+ int ProductType = internal::product_type<Lhs,Rhs>::value>
+struct generic_product_impl;
template<typename Lhs, typename Rhs>
-struct evaluator_impl<Product<Lhs, Rhs> >
- : product_evaluator_dispatcher<Product<Lhs, Rhs>, typename ProductReturnType<Lhs, Rhs>::Type>
+struct evaluator_traits<Product<Lhs, Rhs, DefaultProduct> >
+ : evaluator_traits_base<Product<Lhs, Rhs, DefaultProduct> >
{
- typedef Product<Lhs, Rhs> XprType;
- typedef product_evaluator_dispatcher<XprType, typename ProductReturnType<Lhs, Rhs>::Type> Base;
+ enum { AssumeAliasing = 1 };
+};
- evaluator_impl(const XprType& xpr) : Base(xpr)
- { }
+// This is the default evaluator implementation for products:
+// It creates a temporary and call generic_product_impl
+template<typename Lhs, typename Rhs, int ProductTag, typename LhsShape, typename RhsShape>
+struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, ProductTag, LhsShape, RhsShape, typename traits<Lhs>::Scalar, typename traits<Rhs>::Scalar>
+ : public evaluator<typename Product<Lhs, Rhs, DefaultProduct>::PlainObject>::type
+{
+ typedef Product<Lhs, Rhs, DefaultProduct> XprType;
+// enum {
+// CoeffReadCost = 0 // FIXME why is it needed? (this was already the case before the evaluators, see traits<ProductBase>)
+// };
+ typedef typename XprType::PlainObject PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
+
+ product_evaluator(const XprType& xpr)
+ : m_result(xpr.rows(), xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+
+// FIXME shall we handle nested_eval here?
+// typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
+// typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
+// typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
+// typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
+//
+// const LhsNested lhs(xpr.lhs());
+// const RhsNested rhs(xpr.rhs());
+//
+// generic_product_impl<LhsNestedCleaned, RhsNestedCleaned>::evalTo(m_result, lhs, rhs);
+
+ generic_product_impl<Lhs, Rhs, LhsShape, RhsShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
+ }
+
+protected:
+ PlainObject m_result;
};
-template<typename XprType, typename ProductType>
-struct product_evaluator_traits_dispatcher;
+// Dense = Product
+template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
+struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::assign_op<Scalar>, Dense2Dense, Scalar>
+{
+ typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
+ {
+ // FIXME shall we handle nested_eval here?
+ generic_product_impl<Lhs, Rhs>::evalTo(dst, src.lhs(), src.rhs());
+ }
+};
-template<typename Lhs, typename Rhs>
-struct evaluator_traits<Product<Lhs, Rhs> >
- : product_evaluator_traits_dispatcher<Product<Lhs, Rhs>, typename ProductReturnType<Lhs, Rhs>::Type>
-{
- static const int AssumeAliasing = 1;
+// Dense += Product
+template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
+struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::add_assign_op<Scalar>, Dense2Dense, Scalar>
+{
+ typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar> &)
+ {
+ // FIXME shall we handle nested_eval here?
+ generic_product_impl<Lhs, Rhs>::addTo(dst, src.lhs(), src.rhs());
+ }
};
-// Case 1: Evaluate all at once
-//
-// We can view the GeneralProduct class as a part of the product evaluator.
-// Four sub-cases: InnerProduct, OuterProduct, GemmProduct and GemvProduct.
-// InnerProduct is special because GeneralProduct does not have an evalTo() method in this case.
+// Dense -= Product
+template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
+struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::sub_assign_op<Scalar>, Dense2Dense, Scalar>
+{
+ typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar> &)
+ {
+ // FIXME shall we handle nested_eval here?
+ generic_product_impl<Lhs, Rhs>::subTo(dst, src.lhs(), src.rhs());
+ }
+};
-template<typename Lhs, typename Rhs>
-struct product_evaluator_traits_dispatcher<Product<Lhs, Rhs>, GeneralProduct<Lhs, Rhs, InnerProduct> >
+
+// Dense ?= scalar * Product
+// TODO we should apply that rule if that's really helpful
+// for instance, this is not good for inner products
+template< typename DstXprType, typename Lhs, typename Rhs, typename AssignFunc, typename Scalar, typename ScalarBis>
+struct Assignment<DstXprType, CwiseUnaryOp<internal::scalar_multiple_op<ScalarBis>,
+ const Product<Lhs,Rhs,DefaultProduct> >, AssignFunc, Dense2Dense, Scalar>
{
- static const int HasEvalTo = 0;
+ typedef CwiseUnaryOp<internal::scalar_multiple_op<ScalarBis>,
+ const Product<Lhs,Rhs,DefaultProduct> > SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const AssignFunc& func)
+ {
+ // TODO use operator* instead of prod() once we have made enough progress
+ call_assignment(dst.noalias(), prod(src.functor().m_other * src.nestedExpression().lhs(), src.nestedExpression().rhs()), func);
+ }
};
+
template<typename Lhs, typename Rhs>
-struct product_evaluator_dispatcher<Product<Lhs, Rhs>, GeneralProduct<Lhs, Rhs, InnerProduct> >
- : public evaluator<typename Product<Lhs, Rhs>::PlainObject>::type
+struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,InnerProduct>
{
- typedef Product<Lhs, Rhs> XprType;
- typedef typename XprType::PlainObject PlainObject;
- typedef typename evaluator<PlainObject>::type evaluator_base;
+ template<typename Dst>
+ static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
+ }
+
+ template<typename Dst>
+ static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ dst.coeffRef(0,0) += (lhs.transpose().cwiseProduct(rhs)).sum();
+ }
+
+ template<typename Dst>
+ static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ { dst.coeffRef(0,0) -= (lhs.transpose().cwiseProduct(rhs)).sum(); }
+};
+
- // TODO: Computation is too early (?)
- product_evaluator_dispatcher(const XprType& xpr) : evaluator_base(m_result)
+/***********************************************************************
+* Implementation of outer dense * dense vector product
+***********************************************************************/
+
+// Column major result
+template<typename Dst, typename Lhs, typename Rhs, typename Func>
+EIGEN_DONT_INLINE void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const false_type&)
+{
+ typedef typename Dst::Index Index;
+ // FIXME make sure lhs is sequentially stored
+ // FIXME not very good if rhs is real and lhs complex while alpha is real too
+ // FIXME we should probably build an evaluator for dst and rhs
+ const Index cols = dst.cols();
+ for (Index j=0; j<cols; ++j)
+ func(dst.col(j), rhs.coeff(0,j) * lhs);
+}
+
+// Row major result
+template<typename Dst, typename Lhs, typename Rhs, typename Func>
+EIGEN_DONT_INLINE void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const true_type&) {
+ typedef typename Dst::Index Index;
+ // FIXME make sure rhs is sequentially stored
+ // FIXME not very good if lhs is real and rhs complex while alpha is real too
+ // FIXME we should probably build an evaluator for dst and lhs
+ const Index rows = dst.rows();
+ for (Index i=0; i<rows; ++i)
+ func(dst.row(i), lhs.coeff(i,0) * rhs);
+}
+
+template<typename Lhs, typename Rhs>
+struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,OuterProduct>
+{
+ template<typename T> struct IsRowMajor : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+
+ // TODO it would be nice to be able to exploit our *_assign_op functors for that purpose
+ struct set { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } };
+ struct add { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
+ struct sub { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
+ struct adds {
+ Scalar m_scale;
+ adds(const Scalar& s) : m_scale(s) {}
+ template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const {
+ dst.const_cast_derived() += m_scale * src;
+ }
+ };
+
+ template<typename Dst>
+ static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
- m_result.coeffRef(0,0) = (xpr.lhs().transpose().cwiseProduct(xpr.rhs())).sum();
+ internal::outer_product_selector_run(dst, lhs, rhs, set(), IsRowMajor<Dst>());
+ }
+
+ template<typename Dst>
+ static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ internal::outer_product_selector_run(dst, lhs, rhs, add(), IsRowMajor<Dst>());
+ }
+
+ template<typename Dst>
+ static inline void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ internal::outer_product_selector_run(dst, lhs, rhs, sub(), IsRowMajor<Dst>());
+ }
+
+ template<typename Dst>
+ static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
+ {
+ internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), IsRowMajor<Dst>());
}
-protected:
- PlainObject m_result;
};
-// For the other three subcases, simply call the evalTo() method of GeneralProduct
-// TODO: GeneralProduct should take evaluators, not expression objects.
-template<typename Lhs, typename Rhs, int ProductType>
-struct product_evaluator_traits_dispatcher<Product<Lhs, Rhs>, GeneralProduct<Lhs, Rhs, ProductType> >
+// This base class provides default implementations for evalTo, addTo, subTo, in terms of scaleAndAddTo
+template<typename Lhs, typename Rhs, typename Derived>
+struct generic_product_impl_base
{
- static const int HasEvalTo = 1;
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+
+ template<typename Dst>
+ static void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); }
+
+ template<typename Dst>
+ static void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ { scaleAndAddTo(dst,lhs, rhs, Scalar(1)); }
+
+ template<typename Dst>
+ static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ { scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); }
+
+ template<typename Dst>
+ static void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
+ { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); }
+
};
-template<typename Lhs, typename Rhs, int ProductType>
-struct product_evaluator_dispatcher<Product<Lhs, Rhs>, GeneralProduct<Lhs, Rhs, ProductType> >
+template<typename Lhs, typename Rhs>
+struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct>
+ : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct> >
{
- typedef Product<Lhs, Rhs> XprType;
- typedef typename XprType::PlainObject PlainObject;
- typedef typename evaluator<PlainObject>::type evaluator_base;
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+ enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
+ typedef typename internal::conditional<int(Side)==OnTheRight,Lhs,Rhs>::type MatrixType;
+
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
+ {
+ internal::gemv_dense_sense_selector<Side,
+ (int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
+ bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)
+ >::run(lhs, rhs, dst, alpha);
+ }
+};
+
+template<typename Lhs, typename Rhs>
+struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode>
+{
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
- product_evaluator_dispatcher(const XprType& xpr) : m_xpr(xpr)
- { }
+ template<typename Dst>
+ static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ // TODO: use the following instead of calling call_assignment, same for the other methods
+ // dst = lazyprod(lhs,rhs);
+ call_assignment(dst, lazyprod(lhs,rhs), internal::assign_op<Scalar>());
+ }
+
+ template<typename Dst>
+ static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ // dst += lazyprod(lhs,rhs);
+ call_assignment(dst, lazyprod(lhs,rhs), internal::add_assign_op<Scalar>());
+ }
- template<typename DstEvaluatorType, typename DstXprType>
- void evalTo(DstEvaluatorType /* not used */, DstXprType& dst) const
+ template<typename Dst>
+ static inline void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
- dst.resize(m_xpr.rows(), m_xpr.cols());
- GeneralProduct<Lhs, Rhs, ProductType>(m_xpr.lhs(), m_xpr.rhs()).evalTo(dst);
+ // dst -= lazyprod(lhs,rhs);
+ call_assignment(dst, lazyprod(lhs,rhs), internal::sub_assign_op<Scalar>());
}
-protected:
- const XprType& m_xpr;
+// template<typename Dst>
+// static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
+// { dst += alpha * lazyprod(lhs,rhs); }
};
+// This specialization enforces the use of a coefficient-based evaluation strategy
+template<typename Lhs, typename Rhs>
+struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,LazyCoeffBasedProductMode>
+ : generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> {};
+
// Case 2: Evaluate coeff by coeff
//
// This is mostly taken from CoeffBasedProduct.h
@@ -117,65 +366,116 @@ struct etor_product_coeff_impl;
template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl;
-template<typename Lhs, typename Rhs, typename LhsNested, typename RhsNested, int Flags>
-struct product_evaluator_traits_dispatcher<Product<Lhs, Rhs>, CoeffBasedProduct<LhsNested, RhsNested, Flags> >
+template<typename Lhs, typename Rhs, int ProductTag>
+struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, DenseShape, typename Lhs::Scalar, typename Rhs::Scalar >
+ : evaluator_base<Product<Lhs, Rhs, LazyProduct> >
{
- static const int HasEvalTo = 0;
-};
-
-template<typename Lhs, typename Rhs, typename LhsNested, typename RhsNested, int Flags>
-struct product_evaluator_dispatcher<Product<Lhs, Rhs>, CoeffBasedProduct<LhsNested, RhsNested, Flags> >
- : evaluator_impl_base<Product<Lhs, Rhs> >
-{
- typedef Product<Lhs, Rhs> XprType;
- typedef CoeffBasedProduct<LhsNested, RhsNested, Flags> CoeffBasedProductType;
-
- product_evaluator_dispatcher(const XprType& xpr)
- : m_lhsImpl(xpr.lhs()),
- m_rhsImpl(xpr.rhs()),
- m_innerDim(xpr.lhs().cols())
- { }
-
+ typedef Product<Lhs, Rhs, LazyProduct> XprType;
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketScalar PacketScalar;
typedef typename XprType::PacketReturnType PacketReturnType;
+ product_evaluator(const XprType& xpr)
+ : m_lhs(xpr.lhs()),
+ m_rhs(xpr.rhs()),
+ m_lhsImpl(m_lhs), // FIXME the creation of the evaluator objects should result in a no-op, but check that!
+ m_rhsImpl(m_rhs), // Moreover, they are only useful for the packet path, so we could completely disable them when not needed,
+ // or perhaps declare them on the fly on the packet method... We have experiment to check what's best.
+ m_innerDim(xpr.lhs().cols())
+ { }
+
// Everything below here is taken from CoeffBasedProduct.h
+ typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
+ typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
+
+ typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
+ typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
+
+ typedef typename evaluator<LhsNestedCleaned>::type LhsEtorType;
+ typedef typename evaluator<RhsNestedCleaned>::type RhsEtorType;
+
enum {
- RowsAtCompileTime = traits<CoeffBasedProductType>::RowsAtCompileTime,
+ RowsAtCompileTime = LhsNestedCleaned::RowsAtCompileTime,
+ ColsAtCompileTime = RhsNestedCleaned::ColsAtCompileTime,
+ InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime),
+ MaxRowsAtCompileTime = LhsNestedCleaned::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = RhsNestedCleaned::MaxColsAtCompileTime,
+
PacketSize = packet_traits<Scalar>::size,
- InnerSize = traits<CoeffBasedProductType>::InnerSize,
- CoeffReadCost = traits<CoeffBasedProductType>::CoeffReadCost,
+
+ LhsCoeffReadCost = LhsEtorType::CoeffReadCost,
+ RhsCoeffReadCost = RhsEtorType::CoeffReadCost,
+ CoeffReadCost = (InnerSize == Dynamic || LhsCoeffReadCost==Dynamic || RhsCoeffReadCost==Dynamic || NumTraits<Scalar>::AddCost==Dynamic || NumTraits<Scalar>::MulCost==Dynamic) ? Dynamic
+ : InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
+ + (InnerSize - 1) * NumTraits<Scalar>::AddCost,
+
Unroll = CoeffReadCost != Dynamic && CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
- CanVectorizeInner = traits<CoeffBasedProductType>::CanVectorizeInner
+
+ LhsFlags = LhsEtorType::Flags,
+ RhsFlags = RhsEtorType::Flags,
+
+ LhsRowMajor = LhsFlags & RowMajorBit,
+ RhsRowMajor = RhsFlags & RowMajorBit,
+
+ SameType = is_same<typename LhsNestedCleaned::Scalar,typename RhsNestedCleaned::Scalar>::value,
+
+ CanVectorizeRhs = RhsRowMajor && (RhsFlags & PacketAccessBit)
+ && (ColsAtCompileTime == Dynamic
+ || ( (ColsAtCompileTime % packet_traits<Scalar>::size) == 0
+ && (RhsFlags&AlignedBit)
+ )
+ ),
+
+ CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit)
+ && (RowsAtCompileTime == Dynamic
+ || ( (RowsAtCompileTime % packet_traits<Scalar>::size) == 0
+ && (LhsFlags&AlignedBit)
+ )
+ ),
+
+ EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
+ : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
+ : (RhsRowMajor && !CanVectorizeLhs),
+
+ Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit)
+ | (EvalToRowMajor ? RowMajorBit : 0)
+ | (CanVectorizeLhs ? (LhsFlags & AlignedBit) : 0)
+ | (CanVectorizeRhs ? (RhsFlags & AlignedBit) : 0)
+ // TODO enable vectorization for mixed types
+ | (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0),
+
+ /* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
+ * of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
+ * loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
+ * the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
+ */
+ CanVectorizeInner = SameType
+ && LhsRowMajor
+ && (!RhsRowMajor)
+ && (LhsFlags & RhsFlags & ActualPacketAccessBit)
+ && (LhsFlags & RhsFlags & AlignedBit)
+ && (InnerSize % packet_traits<Scalar>::size == 0)
};
-
- typedef typename evaluator<Lhs>::type LhsEtorType;
- typedef typename evaluator<Rhs>::type RhsEtorType;
- typedef etor_product_coeff_impl<CanVectorizeInner ? InnerVectorizedTraversal : DefaultTraversal,
- Unroll ? InnerSize-1 : Dynamic,
- LhsEtorType, RhsEtorType, Scalar> CoeffImpl;
-
+
const CoeffReturnType coeff(Index row, Index col) const
{
- Scalar res;
- CoeffImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
- return res;
+ // TODO check performance regression wrt to Eigen 3.2 which has special handling of this function
+ return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
}
/* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
* which is why we don't set the LinearAccessBit.
+ * TODO: this seems possible when the result is a vector
*/
const CoeffReturnType coeff(Index index) const
{
- Scalar res;
const Index row = RowsAtCompileTime == 1 ? 0 : index;
const Index col = RowsAtCompileTime == 1 ? index : 0;
- CoeffImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
- return res;
+ // TODO check performance regression wrt to Eigen 3.2 which has special handling of this function
+ return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
}
template<int LoadMode>
@@ -183,224 +483,376 @@ struct product_evaluator_dispatcher<Product<Lhs, Rhs>, CoeffBasedProduct<LhsNest
{
PacketScalar res;
typedef etor_product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
- Unroll ? InnerSize-1 : Dynamic,
- LhsEtorType, RhsEtorType, PacketScalar, LoadMode> PacketImpl;
+ Unroll ? InnerSize-1 : Dynamic,
+ LhsEtorType, RhsEtorType, PacketScalar, LoadMode> PacketImpl;
+
PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
return res;
}
protected:
- typename evaluator<Lhs>::type m_lhsImpl;
- typename evaluator<Rhs>::type m_rhsImpl;
+ const LhsNested m_lhs;
+ const RhsNested m_rhs;
+
+ LhsEtorType m_lhsImpl;
+ RhsEtorType m_rhsImpl;
// TODO: Get rid of m_innerDim if known at compile time
Index m_innerDim;
};
-/***************************************************************************
-* Normal product .coeff() implementation (with meta-unrolling)
-***************************************************************************/
+template<typename Lhs, typename Rhs>
+struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, LazyCoeffBasedProductMode, DenseShape, DenseShape, typename traits<Lhs>::Scalar, typename traits<Rhs>::Scalar >
+ : product_evaluator<Product<Lhs, Rhs, LazyProduct>, CoeffBasedProductMode, DenseShape, DenseShape, typename traits<Lhs>::Scalar, typename traits<Rhs>::Scalar >
+{
+ typedef Product<Lhs, Rhs, DefaultProduct> XprType;
+ typedef Product<Lhs, Rhs, LazyProduct> BaseProduct;
+ typedef product_evaluator<BaseProduct, CoeffBasedProductMode, DenseShape, DenseShape, typename Lhs::Scalar, typename Rhs::Scalar > Base;
+ product_evaluator(const XprType& xpr)
+ : Base(BaseProduct(xpr.lhs(),xpr.rhs()))
+ {}
+};
-/**************************************
-*** Scalar path - no vectorization ***
-**************************************/
+/****************************************
+*** Coeff based product, Packet path ***
+****************************************/
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
-struct etor_product_coeff_impl<DefaultTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
+template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
+struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, RetScalar &res)
+ static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
{
- etor_product_coeff_impl<DefaultTraversal, UnrollingIndex-1, Lhs, Rhs, RetScalar>::run(row, col, lhs, rhs, innerDim, res);
- res += lhs.coeff(row, UnrollingIndex) * rhs.coeff(UnrollingIndex, col);
+ etor_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
+ res = pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex)), rhs.template packet<LoadMode>(UnrollingIndex, col), res);
}
};
-template<typename Lhs, typename Rhs, typename RetScalar>
-struct etor_product_coeff_impl<DefaultTraversal, 0, Lhs, Rhs, RetScalar>
+template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
+struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, RetScalar &res)
+ static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
{
- res = lhs.coeff(row, 0) * rhs.coeff(0, col);
+ etor_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
+ res = pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex), pset1<Packet>(rhs.coeff(UnrollingIndex, col)), res);
}
};
-template<typename Lhs, typename Rhs, typename RetScalar>
-struct etor_product_coeff_impl<DefaultTraversal, Dynamic, Lhs, Rhs, RetScalar>
+template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
+struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, RetScalar& res)
+ static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
{
- eigen_assert(innerDim>0 && "you are using a non initialized matrix");
- res = lhs.coeff(row, 0) * rhs.coeff(0, col);
- for(Index i = 1; i < innerDim; ++i)
- res += lhs.coeff(row, i) * rhs.coeff(i, col);
+ res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
}
};
-/*******************************************
-*** Scalar path with inner vectorization ***
-*******************************************/
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet>
-struct etor_product_coeff_vectorized_unroller
+template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
+struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
- enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, typename Lhs::PacketScalar &pres)
+ static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
{
- etor_product_coeff_vectorized_unroller<UnrollingIndex-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, innerDim, pres);
- pres = padd(pres, pmul( lhs.template packet<Aligned>(row, UnrollingIndex) , rhs.template packet<Aligned>(UnrollingIndex, col) ));
+ res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
}
};
-template<typename Lhs, typename Rhs, typename Packet>
-struct etor_product_coeff_vectorized_unroller<0, Lhs, Rhs, Packet>
+template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
+struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::PacketScalar &pres)
+ static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
{
- pres = pmul(lhs.template packet<Aligned>(row, 0) , rhs.template packet<Aligned>(0, col));
+ eigen_assert(innerDim>0 && "you are using a non initialized matrix");
+ res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
+ for(Index i = 1; i < innerDim; ++i)
+ res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
}
};
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
-struct etor_product_coeff_impl<InnerVectorizedTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
+template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
+struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
- typedef typename Lhs::PacketScalar Packet;
typedef typename Lhs::Index Index;
- enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, RetScalar &res)
+ static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
{
- Packet pres;
- etor_product_coeff_vectorized_unroller<UnrollingIndex+1-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, innerDim, pres);
- etor_product_coeff_impl<DefaultTraversal,UnrollingIndex,Lhs,Rhs,RetScalar>::run(row, col, lhs, rhs, innerDim, res);
- res = predux(pres);
+ eigen_assert(innerDim>0 && "you are using a non initialized matrix");
+ res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
+ for(Index i = 1; i < innerDim; ++i)
+ res = pmadd(lhs.template packet<LoadMode>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
}
};
-template<typename Lhs, typename Rhs, int LhsRows = Lhs::RowsAtCompileTime, int RhsCols = Rhs::ColsAtCompileTime>
-struct etor_product_coeff_vectorized_dyn_selector
+
+/***************************************************************************
+* Triangular products
+***************************************************************************/
+template<int Mode, bool LhsIsTriangular,
+ typename Lhs, bool LhsIsVector,
+ typename Rhs, bool RhsIsVector>
+struct triangular_product_impl;
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag>
+ : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag> >
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::Scalar &res)
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
- res = lhs.row(row).transpose().cwiseProduct(rhs.col(col)).sum();
+ triangular_product_impl<Lhs::Mode,true,typename Lhs::MatrixType,false,Rhs, Rhs::ColsAtCompileTime==1>
+ ::run(dst, lhs.nestedExpression(), rhs, alpha);
}
};
-// NOTE the 3 following specializations are because taking .col(0) on a vector is a bit slower
-// NOTE maybe they are now useless since we have a specialization for Block<Matrix>
-template<typename Lhs, typename Rhs, int RhsCols>
-struct etor_product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,RhsCols>
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag>
+: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag> >
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index /*row*/, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::Scalar &res)
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
- res = lhs.transpose().cwiseProduct(rhs.col(col)).sum();
+ triangular_product_impl<Rhs::Mode,false,Lhs,Lhs::RowsAtCompileTime==1, typename Rhs::MatrixType, false>::run(dst, lhs, rhs.nestedExpression(), alpha);
}
};
-template<typename Lhs, typename Rhs, int LhsRows>
-struct etor_product_coeff_vectorized_dyn_selector<Lhs,Rhs,LhsRows,1>
+
+/***************************************************************************
+* SelfAdjoint products
+***************************************************************************/
+template <typename Lhs, int LhsMode, bool LhsIsVector,
+ typename Rhs, int RhsMode, bool RhsIsVector>
+struct selfadjoint_product_impl;
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag>
+ : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag> >
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index /*col*/, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::Scalar &res)
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
- res = lhs.row(row).transpose().cwiseProduct(rhs).sum();
+ selfadjoint_product_impl<typename Lhs::MatrixType,Lhs::Mode,false,Rhs,0,Rhs::IsVectorAtCompileTime>::run(dst, lhs.nestedExpression(), rhs, alpha);
}
};
-template<typename Lhs, typename Rhs>
-struct etor_product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,1>
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag>
+: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag> >
{
- typedef typename Lhs::Index Index;
- EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::Scalar &res)
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
- res = lhs.transpose().cwiseProduct(rhs).sum();
+ selfadjoint_product_impl<Lhs,0,Lhs::IsVectorAtCompileTime,typename Rhs::MatrixType,Rhs::Mode,false>::run(dst, lhs, rhs.nestedExpression(), alpha);
}
};
-template<typename Lhs, typename Rhs, typename RetScalar>
-struct etor_product_coeff_impl<InnerVectorizedTraversal, Dynamic, Lhs, Rhs, RetScalar>
+
+/***************************************************************************
+* Diagonal products
+***************************************************************************/
+
+template<typename MatrixType, typename DiagonalType, typename Derived, int ProductOrder>
+struct diagonal_product_evaluator_base
+ : evaluator_base<Derived>
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, typename Lhs::Scalar &res)
+ typedef typename MatrixType::Index Index;
+ typedef typename scalar_product_traits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
+ typedef typename internal::packet_traits<Scalar>::type PacketScalar;
+public:
+ enum {
+ CoeffReadCost = NumTraits<Scalar>::MulCost + evaluator<MatrixType>::CoeffReadCost + evaluator<DiagonalType>::CoeffReadCost,
+
+ MatrixFlags = evaluator<MatrixType>::Flags,
+ DiagFlags = evaluator<DiagonalType>::Flags,
+ _StorageOrder = MatrixFlags & RowMajorBit ? RowMajor : ColMajor,
+ _ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft)
+ ||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)),
+ _SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
+ // FIXME currently we need same types, but in the future the next rule should be the one
+ //_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagFlags)&PacketAccessBit))),
+ _Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagFlags)&PacketAccessBit))),
+ _LinearAccessMask = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0,
+ Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixFlags)) | (_Vectorizable ? PacketAccessBit : 0) | AlignedBit
+ //(int(MatrixFlags)&int(DiagFlags)&AlignedBit),
+ };
+
+ diagonal_product_evaluator_base(const MatrixType &mat, const DiagonalType &diag)
+ : m_diagImpl(diag), m_matImpl(mat)
+ {
+ }
+
+ EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const
{
- etor_product_coeff_vectorized_dyn_selector<Lhs,Rhs>::run(row, col, lhs, rhs, innerDim, res);
+ return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx);
}
+
+protected:
+ template<int LoadMode>
+ EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::true_type) const
+ {
+ return internal::pmul(m_matImpl.template packet<LoadMode>(row, col),
+ internal::pset1<PacketScalar>(m_diagImpl.coeff(id)));
+ }
+
+ template<int LoadMode>
+ EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::false_type) const
+ {
+ enum {
+ InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
+ DiagonalPacketLoadMode = (LoadMode == Aligned && (((InnerSize%16) == 0) || (int(DiagFlags)&AlignedBit)==AlignedBit) ? Aligned : Unaligned)
+ };
+ return internal::pmul(m_matImpl.template packet<LoadMode>(row, col),
+ m_diagImpl.template packet<DiagonalPacketLoadMode>(id));
+ }
+
+ typename evaluator<DiagonalType>::nestedType m_diagImpl;
+ typename evaluator<MatrixType>::nestedType m_matImpl;
};
-/*******************
-*** Packet path ***
-*******************/
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
+// diagonal * dense
+template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
+struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DiagonalShape, DenseShape, typename Lhs::Scalar, typename Rhs::Scalar>
+ : diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft>
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
+ typedef diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft> Base;
+ using Base::m_diagImpl;
+ using Base::m_matImpl;
+ using Base::coeff;
+ using Base::packet_impl;
+ typedef typename Base::Scalar Scalar;
+ typedef typename Base::Index Index;
+ typedef typename Base::PacketScalar PacketScalar;
+
+ typedef Product<Lhs, Rhs, ProductKind> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+
+ enum {
+ StorageOrder = int(Rhs::Flags) & RowMajorBit ? RowMajor : ColMajor
+ };
+
+ product_evaluator(const XprType& xpr)
+ : Base(xpr.rhs(), xpr.lhs().diagonal())
{
- etor_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
- res = pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex)), rhs.template packet<LoadMode>(UnrollingIndex, col), res);
}
+
+ EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
+ {
+ return m_diagImpl.coeff(row) * m_matImpl.coeff(row, col);
+ }
+
+ template<int LoadMode>
+ EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
+ {
+ return this->template packet_impl<LoadMode>(row,col, row,
+ typename internal::conditional<int(StorageOrder)==RowMajor, internal::true_type, internal::false_type>::type());
+ }
+
+ template<int LoadMode>
+ EIGEN_STRONG_INLINE PacketScalar packet(Index idx) const
+ {
+ return packet<LoadMode>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
+ }
+
};
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
+// dense * diagonal
+template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
+struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DenseShape, DiagonalShape, typename Lhs::Scalar, typename Rhs::Scalar>
+ : diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight>
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
+ typedef diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight> Base;
+ using Base::m_diagImpl;
+ using Base::m_matImpl;
+ using Base::coeff;
+ using Base::packet_impl;
+ typedef typename Base::Scalar Scalar;
+ typedef typename Base::Index Index;
+ typedef typename Base::PacketScalar PacketScalar;
+
+ typedef Product<Lhs, Rhs, ProductKind> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+
+ enum { StorageOrder = int(Lhs::Flags) & RowMajorBit ? RowMajor : ColMajor };
+
+ product_evaluator(const XprType& xpr)
+ : Base(xpr.lhs(), xpr.rhs().diagonal())
{
- etor_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
- res = pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex), pset1<Packet>(rhs.coeff(UnrollingIndex, col)), res);
}
+
+ EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
+ {
+ return m_matImpl.coeff(row, col) * m_diagImpl.coeff(col);
+ }
+
+ template<int LoadMode>
+ EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
+ {
+ return this->template packet_impl<LoadMode>(row,col, col,
+ typename internal::conditional<int(StorageOrder)==ColMajor, internal::true_type, internal::false_type>::type());
+ }
+
+ template<int LoadMode>
+ EIGEN_STRONG_INLINE PacketScalar packet(Index idx) const
+ {
+ return packet<LoadMode>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
+ }
+
};
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
+/***************************************************************************
+* Products with permutation matrices
+***************************************************************************/
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs, Rhs, PermutationShape, DenseShape, ProductTag>
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
- res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
+ permut_matrix_product_retval<Lhs, Rhs, OnTheLeft, false> pmpr(lhs, rhs);
+ pmpr.evalTo(dst);
}
};
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs, Rhs, DenseShape, PermutationShape, ProductTag>
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
- res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
+ permut_matrix_product_retval<Rhs, Lhs, OnTheRight, false> pmpr(rhs, lhs);
+ pmpr.evalTo(dst);
}
};
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Transpose<Lhs>, Rhs, PermutationShape, DenseShape, ProductTag>
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Transpose<Lhs>& lhs, const Rhs& rhs)
{
- eigen_assert(innerDim>0 && "you are using a non initialized matrix");
- res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
- for(Index i = 1; i < innerDim; ++i)
- res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
+ permut_matrix_product_retval<Lhs, Rhs, OnTheLeft, true> pmpr(lhs.nestedPermutation(), rhs);
+ pmpr.evalTo(dst);
}
};
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs, Transpose<Rhs>, DenseShape, PermutationShape, ProductTag>
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Transpose<Rhs>& rhs)
{
- eigen_assert(innerDim>0 && "you are using a non initialized matrix");
- res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
- for(Index i = 1; i < innerDim; ++i)
- res = pmadd(lhs.template packet<LoadMode>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
+ permut_matrix_product_retval<Rhs, Lhs, OnTheRight, true> pmpr(rhs.nestedPermutation(), lhs);
+ pmpr.evalTo(dst);
}
};
diff --git a/Eigen/src/Core/Redux.h b/Eigen/src/Core/Redux.h
index 5b82c9a65..c6c355d43 100644
--- a/Eigen/src/Core/Redux.h
+++ b/Eigen/src/Core/Redux.h
@@ -65,6 +65,25 @@ public:
? CompleteUnrolling
: NoUnrolling
};
+
+#ifdef EIGEN_DEBUG_ASSIGN
+ static void debug()
+ {
+ std::cerr << "Xpr: " << typeid(typename Derived::XprType).name() << std::endl;
+ std::cerr.setf(std::ios::hex, std::ios::basefield);
+ EIGEN_DEBUG_VAR(Derived::Flags)
+ std::cerr.unsetf(std::ios::hex);
+ EIGEN_DEBUG_VAR(InnerMaxSize)
+ EIGEN_DEBUG_VAR(PacketSize)
+ EIGEN_DEBUG_VAR(MightVectorize)
+ EIGEN_DEBUG_VAR(MayLinearVectorize)
+ EIGEN_DEBUG_VAR(MaySliceVectorize)
+ EIGEN_DEBUG_VAR(Traversal)
+ EIGEN_DEBUG_VAR(UnrollingLimit)
+ EIGEN_DEBUG_VAR(Unrolling)
+ std::cerr << std::endl;
+ }
+#endif
};
/***************************************************************************
@@ -174,7 +193,7 @@ struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>
typedef typename Derived::Scalar Scalar;
typedef typename Derived::Index Index;
EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
+ static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
{
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
Scalar res;
@@ -200,14 +219,14 @@ struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
typedef typename packet_traits<Scalar>::type PacketScalar;
typedef typename Derived::Index Index;
- static Scalar run(const Derived& mat, const Func& func)
+ static Scalar run(const Derived &mat, const Func& func)
{
const Index size = mat.size();
- eigen_assert(size && "you are using an empty matrix");
+
const Index packetSize = packet_traits<Scalar>::size;
const Index alignedStart = internal::first_aligned(mat);
enum {
- alignment = bool(Derived::Flags & DirectAccessBit) || bool(Derived::Flags & AlignedBit)
+ alignment = (bool(Derived::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar)) || bool(Derived::Flags & AlignedBit)
? Aligned : Unaligned
};
const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize);
@@ -258,7 +277,7 @@ struct redux_impl<Func, Derived, SliceVectorizedTraversal, NoUnrolling>
typedef typename packet_traits<Scalar>::type PacketScalar;
typedef typename Derived::Index Index;
- static Scalar run(const Derived& mat, const Func& func)
+ static Scalar run(const Derived &mat, const Func& func)
{
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
const Index innerSize = mat.innerSize();
@@ -300,7 +319,7 @@ struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
Size = Derived::SizeAtCompileTime,
VectorizedSize = (Size / PacketSize) * PacketSize
};
- static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
+ static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
{
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
if (VectorizedSize > 0) {
@@ -315,6 +334,63 @@ struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
}
};
+// evaluator adaptor
+template<typename _XprType>
+class redux_evaluator
+{
+public:
+ typedef _XprType XprType;
+ redux_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) {}
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename XprType::PacketScalar PacketScalar;
+ typedef typename XprType::PacketReturnType PacketReturnType;
+
+ enum {
+ MaxRowsAtCompileTime = XprType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = XprType::MaxColsAtCompileTime,
+ // TODO we should not remove DirectAccessBit and rather find an elegant way to query the alignment offset at runtime from the evaluator
+ Flags = evaluator<XprType>::Flags & ~DirectAccessBit,
+ IsRowMajor = XprType::IsRowMajor,
+ SizeAtCompileTime = XprType::SizeAtCompileTime,
+ InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime,
+ CoeffReadCost = evaluator<XprType>::CoeffReadCost
+ };
+
+ Index rows() const { return m_xpr.rows(); }
+ Index cols() const { return m_xpr.cols(); }
+ Index size() const { return m_xpr.size(); }
+ Index innerSize() const { return m_xpr.innerSize(); }
+ Index outerSize() const { return m_xpr.outerSize(); }
+
+ CoeffReturnType coeff(Index row, Index col) const
+ { return m_evaluator.coeff(row, col); }
+
+ CoeffReturnType coeff(Index index) const
+ { return m_evaluator.coeff(index); }
+
+ template<int LoadMode>
+ PacketReturnType packet(Index row, Index col) const
+ { return m_evaluator.template packet<LoadMode>(row, col); }
+
+ template<int LoadMode>
+ PacketReturnType packet(Index index) const
+ { return m_evaluator.template packet<LoadMode>(index); }
+
+ CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
+ { return m_evaluator.coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
+
+ template<int LoadMode>
+ PacketReturnType packetByOuterInner(Index outer, Index inner) const
+ { return m_evaluator.template packet<LoadMode>(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
+
+protected:
+ typename internal::evaluator<XprType>::nestedType m_evaluator;
+ const XprType &m_xpr;
+};
+
} // end namespace internal
/***************************************************************************
@@ -325,7 +401,7 @@ struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
/** \returns the result of a full redux operation on the whole matrix or vector using \a func
*
* The template parameter \a BinaryOp is the type of the functor \a func which must be
- * an associative operator. Both current STL and TR1 functor styles are handled.
+ * an associative operator. Both current C++98 and C++11 functor styles are handled.
*
* \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
*/
@@ -334,9 +410,22 @@ template<typename Func>
EIGEN_STRONG_INLINE typename internal::result_of<Func(typename internal::traits<Derived>::Scalar)>::type
DenseBase<Derived>::redux(const Func& func) const
{
- typedef typename internal::remove_all<typename Derived::Nested>::type ThisNested;
- return internal::redux_impl<Func, ThisNested>
- ::run(derived(), func);
+ eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
+
+ // FIXME, eval_nest should be handled by redux_evaluator, however:
+ // - it is currently difficult to provide the right Flags since they are still handled by the expressions
+ // - handling it here might reduce the number of template instantiations
+// typedef typename internal::nested_eval<Derived,1>::type ThisNested;
+// typedef typename internal::remove_all<ThisNested>::type ThisNestedCleaned;
+// typedef typename internal::redux_evaluator<ThisNestedCleaned> ThisEvaluator;
+//
+// ThisNested thisNested(derived());
+// ThisEvaluator thisEval(thisNested);
+
+ typedef typename internal::redux_evaluator<Derived> ThisEvaluator;
+ ThisEvaluator thisEval(derived());
+
+ return internal::redux_impl<Func, ThisEvaluator>::run(thisEval, func);
}
/** \returns the minimum of all coefficients of \c *this.
@@ -346,7 +435,7 @@ template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
DenseBase<Derived>::minCoeff() const
{
- return this->redux(Eigen::internal::scalar_min_op<Scalar>());
+ return derived().redux(Eigen::internal::scalar_min_op<Scalar>());
}
/** \returns the maximum of all coefficients of \c *this.
@@ -356,7 +445,7 @@ template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
DenseBase<Derived>::maxCoeff() const
{
- return this->redux(Eigen::internal::scalar_max_op<Scalar>());
+ return derived().redux(Eigen::internal::scalar_max_op<Scalar>());
}
/** \returns the sum of all coefficients of *this
@@ -369,7 +458,7 @@ DenseBase<Derived>::sum() const
{
if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
return Scalar(0);
- return this->redux(Eigen::internal::scalar_sum_op<Scalar>());
+ return derived().redux(Eigen::internal::scalar_sum_op<Scalar>());
}
/** \returns the mean of all coefficients of *this
@@ -380,7 +469,7 @@ template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
DenseBase<Derived>::mean() const
{
- return Scalar(this->redux(Eigen::internal::scalar_sum_op<Scalar>())) / Scalar(this->size());
+ return Scalar(derived().redux(Eigen::internal::scalar_sum_op<Scalar>())) / Scalar(this->size());
}
/** \returns the product of all coefficients of *this
@@ -396,7 +485,7 @@ DenseBase<Derived>::prod() const
{
if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
return Scalar(1);
- return this->redux(Eigen::internal::scalar_product_op<Scalar>());
+ return derived().redux(Eigen::internal::scalar_product_op<Scalar>());
}
/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
diff --git a/Eigen/src/Core/Ref.h b/Eigen/src/Core/Ref.h
index 92614c6e2..09921c9e7 100644
--- a/Eigen/src/Core/Ref.h
+++ b/Eigen/src/Core/Ref.h
@@ -12,10 +12,6 @@
namespace Eigen {
-template<typename Derived> class RefBase;
-template<typename PlainObjectType, int Options = 0,
- typename StrideType = typename internal::conditional<PlainObjectType::IsVectorAtCompileTime,InnerStride<1>,OuterStride<> >::type > class Ref;
-
/** \class Ref
* \ingroup Core_Module
*
@@ -247,7 +243,7 @@ template<typename TPlainObjectType, int Options, typename StrideType> class Ref<
template<typename Expression>
void construct(const Expression& expr, internal::false_type)
{
- m_object.lazyAssign(expr);
+ internal::call_assignment_no_alias(m_object,expr,internal::assign_op<Scalar>());
Base::construct(m_object);
}
diff --git a/Eigen/src/Core/Replicate.h b/Eigen/src/Core/Replicate.h
index dde86a834..3777049ee 100644
--- a/Eigen/src/Core/Replicate.h
+++ b/Eigen/src/Core/Replicate.h
@@ -53,8 +53,9 @@ struct traits<Replicate<MatrixType,RowFactor,ColFactor> >
IsRowMajor = MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1 ? 1
: MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1 ? 0
: (MatrixType::Flags & RowMajorBit) ? 1 : 0,
- Flags = (_MatrixTypeNested::Flags & HereditaryBits & ~RowMajorBit) | (IsRowMajor ? RowMajorBit : 0),
- CoeffReadCost = _MatrixTypeNested::CoeffReadCost
+
+ // FIXME enable DirectAccess with negative strides?
+ Flags = IsRowMajor ? RowMajorBit : 0
};
};
}
@@ -68,6 +69,7 @@ template<typename MatrixType,int RowFactor,int ColFactor> class Replicate
typedef typename internal::dense_xpr_base<Replicate>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Replicate)
+ typedef typename internal::remove_all<MatrixType>::type NestedExpression;
template<typename OriginalMatrixType>
inline explicit Replicate(const OriginalMatrixType& a_matrix)
diff --git a/Eigen/src/Core/ReturnByValue.h b/Eigen/src/Core/ReturnByValue.h
index 7834f6cbc..f4e12a93b 100644
--- a/Eigen/src/Core/ReturnByValue.h
+++ b/Eigen/src/Core/ReturnByValue.h
@@ -38,9 +38,10 @@ struct traits<ReturnByValue<Derived> >
* So internal::nested always gives the plain return matrix type.
*
* FIXME: I don't understand why we need this specialization: isn't this taken care of by the EvalBeforeNestingBit ??
+ * Answer: EvalBeforeNestingBit should be deprecated since we have the evaluators
*/
template<typename Derived,int n,typename PlainObject>
-struct nested<ReturnByValue<Derived>, n, PlainObject>
+struct nested_eval<ReturnByValue<Derived>, n, PlainObject>
{
typedef typename traits<Derived>::ReturnType type;
};
@@ -73,6 +74,7 @@ template<typename Derived> class ReturnByValue
const Unusable& coeff(Index,Index) const { return *reinterpret_cast<const Unusable*>(this); }
Unusable& coeffRef(Index) { return *reinterpret_cast<Unusable*>(this); }
Unusable& coeffRef(Index,Index) { return *reinterpret_cast<Unusable*>(this); }
+#undef Unusable
#endif
};
@@ -84,6 +86,36 @@ Derived& DenseBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
return derived();
}
+namespace internal {
+
+// Expression is evaluated in a temporary; default implementation of Assignment is bypassed so that
+// when a ReturnByValue expression is assigned, the evaluator is not constructed.
+// TODO: Finalize port to new regime; ReturnByValue should not exist in the expression world
+
+template<typename Derived>
+struct evaluator<ReturnByValue<Derived> >
+ : public evaluator<typename internal::traits<Derived>::ReturnType>::type
+{
+ typedef ReturnByValue<Derived> XprType;
+ typedef typename internal::traits<Derived>::ReturnType PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
+
+ typedef evaluator type;
+ typedef evaluator nestedType;
+
+ evaluator(const XprType& xpr)
+ : m_result(xpr.rows(), xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ xpr.evalTo(m_result);
+ }
+
+protected:
+ PlainObject m_result;
+};
+
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_RETURNBYVALUE_H
diff --git a/Eigen/src/Core/Reverse.h b/Eigen/src/Core/Reverse.h
index e30ae3d28..01de90800 100644
--- a/Eigen/src/Core/Reverse.h
+++ b/Eigen/src/Core/Reverse.h
@@ -44,14 +44,7 @@ struct traits<Reverse<MatrixType, Direction> >
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
-
- // let's enable LinearAccess only with vectorization because of the product overhead
- LinearAccess = ( (Direction==BothDirections) && (int(_MatrixTypeNested::Flags)&PacketAccessBit) )
- ? LinearAccessBit : 0,
-
- Flags = int(_MatrixTypeNested::Flags) & (HereditaryBits | LvalueBit | PacketAccessBit | LinearAccess),
-
- CoeffReadCost = _MatrixTypeNested::CoeffReadCost
+ Flags = _MatrixTypeNested::Flags & (RowMajorBit | LvalueBit)
};
};
@@ -74,6 +67,7 @@ template<typename MatrixType, int Direction> class Reverse
typedef typename internal::dense_xpr_base<Reverse>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Reverse)
+ typedef typename internal::remove_all<MatrixType>::type NestedExpression;
using Base::IsRowMajor;
// next line is necessary because otherwise const version of operator()
diff --git a/Eigen/src/Core/Select.h b/Eigen/src/Core/Select.h
index 87993bbb5..0cb85a4ad 100644
--- a/Eigen/src/Core/Select.h
+++ b/Eigen/src/Core/Select.h
@@ -43,10 +43,7 @@ struct traits<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
ColsAtCompileTime = ConditionMatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = ConditionMatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = ConditionMatrixType::MaxColsAtCompileTime,
- Flags = (unsigned int)ThenMatrixType::Flags & ElseMatrixType::Flags & HereditaryBits,
- CoeffReadCost = traits<typename remove_all<ConditionMatrixNested>::type>::CoeffReadCost
- + EIGEN_SIZE_MAX(traits<typename remove_all<ThenMatrixNested>::type>::CoeffReadCost,
- traits<typename remove_all<ElseMatrixNested>::type>::CoeffReadCost)
+ Flags = (unsigned int)ThenMatrixType::Flags & ElseMatrixType::Flags & RowMajorBit
};
};
}
diff --git a/Eigen/src/Core/SelfAdjointView.h b/Eigen/src/Core/SelfAdjointView.h
index 6c2733650..19cb232c9 100644
--- a/Eigen/src/Core/SelfAdjointView.h
+++ b/Eigen/src/Core/SelfAdjointView.h
@@ -35,26 +35,22 @@ struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType>
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
typedef MatrixType ExpressionType;
- typedef typename MatrixType::PlainObject DenseMatrixType;
+ typedef typename MatrixType::PlainObject FullMatrixType;
enum {
Mode = UpLo | SelfAdjoint,
Flags = MatrixTypeNestedCleaned::Flags & (HereditaryBits)
- & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)), // FIXME these flags should be preserved
- CoeffReadCost = MatrixTypeNestedCleaned::CoeffReadCost
+ & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)) // FIXME these flags should be preserved
};
};
}
-template <typename Lhs, int LhsMode, bool LhsIsVector,
- typename Rhs, int RhsMode, bool RhsIsVector>
-struct SelfadjointProductMatrix;
-
// FIXME could also be called SelfAdjointWrapper to be consistent with DiagonalWrapper ??
-template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
- : public TriangularBase<SelfAdjointView<MatrixType, UpLo> >
+template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView
+ : public TriangularBase<SelfAdjointView<_MatrixType, UpLo> >
{
public:
+ typedef _MatrixType MatrixType;
typedef TriangularBase<SelfAdjointView> Base;
typedef typename internal::traits<SelfAdjointView>::MatrixTypeNested MatrixTypeNested;
typedef typename internal::traits<SelfAdjointView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;
@@ -65,7 +61,8 @@ template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
typedef typename MatrixType::Index Index;
enum {
- Mode = internal::traits<SelfAdjointView>::Mode
+ Mode = internal::traits<SelfAdjointView>::Mode,
+ Flags = internal::traits<SelfAdjointView>::Flags
};
typedef typename MatrixType::PlainObject PlainObject;
@@ -111,26 +108,29 @@ template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
EIGEN_DEVICE_FUNC
MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); }
- /** Efficient self-adjoint matrix times vector/matrix product */
+ /** Efficient triangular matrix times vector/matrix product */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
- SelfadjointProductMatrix<MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
+ const Product<SelfAdjointView,OtherDerived>
operator*(const MatrixBase<OtherDerived>& rhs) const
{
- return SelfadjointProductMatrix
- <MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
- (m_matrix, rhs.derived());
+ return Product<SelfAdjointView,OtherDerived>(*this, rhs.derived());
}
- /** Efficient vector/matrix times self-adjoint matrix product */
+ /** Efficient vector/matrix times triangular matrix product */
template<typename OtherDerived> friend
EIGEN_DEVICE_FUNC
- SelfadjointProductMatrix<OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
+ const Product<OtherDerived,SelfAdjointView>
operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView& rhs)
{
- return SelfadjointProductMatrix
- <OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
- (lhs.derived(),rhs.m_matrix);
+ return Product<OtherDerived,SelfAdjointView>(lhs.derived(),rhs);
+ }
+
+ friend EIGEN_DEVICE_FUNC
+ const SelfAdjointView<const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>,MatrixType>,UpLo>
+ operator*(const Scalar& s, const SelfAdjointView& mat)
+ {
+ return (s*mat.nestedExpression()).template selfadjointView<UpLo>();
}
/** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this:
@@ -194,96 +194,57 @@ template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
namespace internal {
-template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount, ClearOpposite>
-{
- enum {
- col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
- row = (UnrollCount-1) % Derived1::RowsAtCompileTime
- };
-
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount-1, ClearOpposite>::run(dst, src);
-
- if(row == col)
- dst.coeffRef(row, col) = numext::real(src.coeff(row, col));
- else if(row < col)
- dst.coeffRef(col, row) = numext::conj(dst.coeffRef(row, col) = src.coeff(row, col));
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, 0, ClearOpposite>
+// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.>
+// in the future selfadjoint-ness should be defined by the expression traits
+// such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
+template<typename MatrixType, unsigned int Mode>
+struct evaluator_traits<SelfAdjointView<MatrixType,Mode> >
{
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &, const Derived2 &) {}
+ typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
+ typedef SelfAdjointShape Shape;
+
+ static const int AssumeAliasing = 0;
};
-template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount, ClearOpposite>
+template<int UpLo, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version>
+class triangular_dense_assignment_kernel<UpLo,SelfAdjoint,SetOpposite,DstEvaluatorTypeT,SrcEvaluatorTypeT,Functor,Version>
+ : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version>
{
- enum {
- col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
- row = (UnrollCount-1) % Derived1::RowsAtCompileTime
- };
-
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
+protected:
+ typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> Base;
+ typedef typename Base::DstXprType DstXprType;
+ typedef typename Base::SrcXprType SrcXprType;
+ using Base::m_dst;
+ using Base::m_src;
+ using Base::m_functor;
+public:
+
+ typedef typename Base::DstEvaluatorType DstEvaluatorType;
+ typedef typename Base::SrcEvaluatorType SrcEvaluatorType;
+ typedef typename Base::Scalar Scalar;
+ typedef typename Base::Index Index;
+ typedef typename Base::AssignmentTraits AssignmentTraits;
+
+
+ triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
+ : Base(dst, src, func, dstExpr)
+ {}
+
+ void assignCoeff(Index row, Index col)
{
- triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount-1, ClearOpposite>::run(dst, src);
-
- if(row == col)
- dst.coeffRef(row, col) = numext::real(src.coeff(row, col));
- else if(row > col)
- dst.coeffRef(col, row) = numext::conj(dst.coeffRef(row, col) = src.coeff(row, col));
+ eigen_internal_assert(row!=col);
+ Scalar tmp = m_src.coeff(row,col);
+ m_functor.assignCoeff(m_dst.coeffRef(row,col), tmp);
+ m_functor.assignCoeff(m_dst.coeffRef(col,row), numext::conj(tmp));
}
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, 0, ClearOpposite>
-{
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &, const Derived2 &) {}
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
+
+ void assignDiagonalCoeff(Index id)
{
- for(Index j = 0; j < dst.cols(); ++j)
- {
- for(Index i = 0; i < j; ++i)
- {
- dst.copyCoeff(i, j, src);
- dst.coeffRef(j,i) = numext::conj(dst.coeff(i,j));
- }
- dst.copyCoeff(j, j, src);
- }
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, Dynamic, ClearOpposite>
-{
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- typedef typename Derived1::Index Index;
- for(Index i = 0; i < dst.rows(); ++i)
- {
- for(Index j = 0; j < i; ++j)
- {
- dst.copyCoeff(i, j, src);
- dst.coeffRef(j,i) = numext::conj(dst.coeff(i,j));
- }
- dst.copyCoeff(i, i, src);
- }
+ Base::assignCoeff(id,id);
}
+
+ void assignOppositeCoeff(Index, Index)
+ { eigen_internal_assert(false && "should never be called"); }
};
} // end namespace internal
diff --git a/Eigen/src/Core/SelfCwiseBinaryOp.h b/Eigen/src/Core/SelfCwiseBinaryOp.h
index 65864adf8..38185d9d7 100644
--- a/Eigen/src/Core/SelfCwiseBinaryOp.h
+++ b/Eigen/src/Core/SelfCwiseBinaryOp.h
@@ -12,179 +12,11 @@
namespace Eigen {
-/** \class SelfCwiseBinaryOp
- * \ingroup Core_Module
- *
- * \internal
- *
- * \brief Internal helper class for optimizing operators like +=, -=
- *
- * This is a pseudo expression class re-implementing the copyCoeff/copyPacket
- * method to directly performs a +=/-= operations in an optimal way. In particular,
- * this allows to make sure that the input/output data are loaded only once using
- * aligned packet loads.
- *
- * \sa class SwapWrapper for a similar trick.
- */
-
-namespace internal {
-template<typename BinaryOp, typename Lhs, typename Rhs>
-struct traits<SelfCwiseBinaryOp<BinaryOp,Lhs,Rhs> >
- : traits<CwiseBinaryOp<BinaryOp,Lhs,Rhs> >
-{
- enum {
- // Note that it is still a good idea to preserve the DirectAccessBit
- // so that assign can correctly align the data.
- Flags = traits<CwiseBinaryOp<BinaryOp,Lhs,Rhs> >::Flags | (Lhs::Flags&AlignedBit) | (Lhs::Flags&DirectAccessBit) | (Lhs::Flags&LvalueBit),
- OuterStrideAtCompileTime = Lhs::OuterStrideAtCompileTime,
- InnerStrideAtCompileTime = Lhs::InnerStrideAtCompileTime
- };
-};
-}
-
-template<typename BinaryOp, typename Lhs, typename Rhs> class SelfCwiseBinaryOp
- : public internal::dense_xpr_base< SelfCwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
-{
- public:
-
- typedef typename internal::dense_xpr_base<SelfCwiseBinaryOp>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(SelfCwiseBinaryOp)
-
- typedef typename internal::packet_traits<Scalar>::type Packet;
-
- EIGEN_DEVICE_FUNC
- inline SelfCwiseBinaryOp(Lhs& xpr, const BinaryOp& func = BinaryOp()) : m_matrix(xpr), m_functor(func) {}
-
- EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows(); }
- EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols(); }
- EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_matrix.outerStride(); }
- EIGEN_DEVICE_FUNC inline Index innerStride() const { return m_matrix.innerStride(); }
- EIGEN_DEVICE_FUNC inline const Scalar* data() const { return m_matrix.data(); }
-
- // note that this function is needed by assign to correctly align loads/stores
- // TODO make Assign use .data()
- EIGEN_DEVICE_FUNC
- inline Scalar& coeffRef(Index row, Index col)
- {
- EIGEN_STATIC_ASSERT_LVALUE(Lhs)
- return m_matrix.const_cast_derived().coeffRef(row, col);
- }
- EIGEN_DEVICE_FUNC
- inline const Scalar& coeffRef(Index row, Index col) const
- {
- return m_matrix.coeffRef(row, col);
- }
-
- // note that this function is needed by assign to correctly align loads/stores
- // TODO make Assign use .data()
- EIGEN_DEVICE_FUNC
- inline Scalar& coeffRef(Index index)
- {
- EIGEN_STATIC_ASSERT_LVALUE(Lhs)
- return m_matrix.const_cast_derived().coeffRef(index);
- }
- EIGEN_DEVICE_FUNC
- inline const Scalar& coeffRef(Index index) const
- {
- return m_matrix.const_cast_derived().coeffRef(index);
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- Scalar& tmp = m_matrix.coeffRef(row,col);
- tmp = m_functor(tmp, _other.coeff(row,col));
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(index >= 0 && index < m_matrix.size());
- Scalar& tmp = m_matrix.coeffRef(index);
- tmp = m_functor(tmp, _other.coeff(index));
- }
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- m_matrix.template writePacket<StoreMode>(row, col,
- m_functor.packetOp(m_matrix.template packet<StoreMode>(row, col),_other.template packet<LoadMode>(row, col)) );
- }
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- void copyPacket(Index index, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(index >= 0 && index < m_matrix.size());
- m_matrix.template writePacket<StoreMode>(index,
- m_functor.packetOp(m_matrix.template packet<StoreMode>(index),_other.template packet<LoadMode>(index)) );
- }
-
- // reimplement lazyAssign to handle complex *= real
- // see CwiseBinaryOp ctor for details
- template<typename RhsDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE SelfCwiseBinaryOp& lazyAssign(const DenseBase<RhsDerived>& rhs)
- {
- EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs,RhsDerived)
- EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename RhsDerived::Scalar);
-
- #ifdef EIGEN_DEBUG_ASSIGN
- internal::assign_traits<SelfCwiseBinaryOp, RhsDerived>::debug();
- #endif
- eigen_assert(rows() == rhs.rows() && cols() == rhs.cols());
- internal::assign_impl<SelfCwiseBinaryOp, RhsDerived>::run(*this,rhs.derived());
- #ifndef EIGEN_NO_DEBUG
- this->checkTransposeAliasing(rhs.derived());
- #endif
- return *this;
- }
-
- // overloaded to honor evaluation of special matrices
- // maybe another solution would be to not use SelfCwiseBinaryOp
- // at first...
- EIGEN_DEVICE_FUNC
- SelfCwiseBinaryOp& operator=(const Rhs& _rhs)
- {
- typename internal::nested<Rhs>::type rhs(_rhs);
- return Base::operator=(rhs);
- }
-
- EIGEN_DEVICE_FUNC
- Lhs& expression() const
- {
- return m_matrix;
- }
-
- EIGEN_DEVICE_FUNC
- const BinaryOp& functor() const
- {
- return m_functor;
- }
-
- protected:
- Lhs& m_matrix;
- const BinaryOp& m_functor;
-
- private:
- SelfCwiseBinaryOp& operator=(const SelfCwiseBinaryOp&);
-};
-
template<typename Derived>
inline Derived& DenseBase<Derived>::operator*=(const Scalar& other)
{
typedef typename Derived::PlainObject PlainObject;
- SelfCwiseBinaryOp<internal::scalar_product_op<Scalar>, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
- tmp = PlainObject::Constant(rows(),cols(),other);
+ internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::mul_assign_op<Scalar>());
return derived();
}
@@ -192,8 +24,7 @@ template<typename Derived>
inline Derived& ArrayBase<Derived>::operator+=(const Scalar& other)
{
typedef typename Derived::PlainObject PlainObject;
- SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
- tmp = PlainObject::Constant(rows(),cols(),other);
+ internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::add_assign_op<Scalar>());
return derived();
}
@@ -201,23 +32,15 @@ template<typename Derived>
inline Derived& ArrayBase<Derived>::operator-=(const Scalar& other)
{
typedef typename Derived::PlainObject PlainObject;
- SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
- tmp = PlainObject::Constant(rows(),cols(),other);
+ internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::sub_assign_op<Scalar>());
return derived();
}
template<typename Derived>
inline Derived& DenseBase<Derived>::operator/=(const Scalar& other)
{
- typedef typename internal::conditional<NumTraits<Scalar>::IsInteger,
- internal::scalar_quotient_op<Scalar>,
- internal::scalar_product_op<Scalar> >::type BinOp;
typedef typename Derived::PlainObject PlainObject;
- SelfCwiseBinaryOp<BinOp, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
- Scalar actual_other;
- if(NumTraits<Scalar>::IsInteger) actual_other = other;
- else actual_other = Scalar(1)/other;
- tmp = PlainObject::Constant(rows(),cols(), actual_other);
+ internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::div_assign_op<Scalar>());
return derived();
}
diff --git a/Eigen/src/Core/Solve.h b/Eigen/src/Core/Solve.h
new file mode 100644
index 000000000..7b12be1e6
--- /dev/null
+++ b/Eigen/src/Core/Solve.h
@@ -0,0 +1,152 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SOLVE_H
+#define EIGEN_SOLVE_H
+
+namespace Eigen {
+
+template<typename Decomposition, typename RhsType, typename StorageKind> class SolveImpl;
+
+/** \class Solve
+ * \ingroup Core_Module
+ *
+ * \brief Pseudo expression representing a solving operation
+ *
+ * \tparam Decomposition the type of the matrix or decomposion object
+ * \tparam Rhstype the type of the right-hand side
+ *
+ * This class represents an expression of A.solve(B)
+ * and most of the time this is the only way it is used.
+ *
+ */
+namespace internal {
+
+// this solve_traits class permits to determine the evaluation type with respect to storage kind (Dense vs Sparse)
+template<typename Decomposition, typename RhsType,typename StorageKind> struct solve_traits;
+
+template<typename Decomposition, typename RhsType>
+struct solve_traits<Decomposition,RhsType,Dense>
+{
+ typedef typename Decomposition::MatrixType MatrixType;
+ typedef Matrix<typename RhsType::Scalar,
+ MatrixType::ColsAtCompileTime,
+ RhsType::ColsAtCompileTime,
+ RhsType::PlainObject::Options,
+ MatrixType::MaxColsAtCompileTime,
+ RhsType::MaxColsAtCompileTime> PlainObject;
+};
+
+template<typename Decomposition, typename RhsType>
+struct traits<Solve<Decomposition, RhsType> >
+ : traits<typename solve_traits<Decomposition,RhsType,typename internal::traits<RhsType>::StorageKind>::PlainObject>
+{
+ typedef typename solve_traits<Decomposition,RhsType,typename internal::traits<RhsType>::StorageKind>::PlainObject PlainObject;
+ typedef traits<PlainObject> BaseTraits;
+ enum {
+ Flags = BaseTraits::Flags & RowMajorBit,
+ CoeffReadCost = Dynamic
+ };
+};
+
+}
+
+
+template<typename Decomposition, typename RhsType>
+class Solve : public SolveImpl<Decomposition,RhsType,typename internal::traits<RhsType>::StorageKind>
+{
+public:
+ typedef typename RhsType::Index Index;
+ typedef typename internal::traits<Solve>::PlainObject PlainObject;
+
+ Solve(const Decomposition &dec, const RhsType &rhs)
+ : m_dec(dec), m_rhs(rhs)
+ {}
+
+ EIGEN_DEVICE_FUNC Index rows() const { return m_dec.cols(); }
+ EIGEN_DEVICE_FUNC Index cols() const { return m_rhs.cols(); }
+
+ EIGEN_DEVICE_FUNC const Decomposition& dec() const { return m_dec; }
+ EIGEN_DEVICE_FUNC const RhsType& rhs() const { return m_rhs; }
+
+protected:
+ const Decomposition &m_dec;
+ const RhsType &m_rhs;
+};
+
+
+// Specialization of the Solve expression for dense results
+template<typename Decomposition, typename RhsType>
+class SolveImpl<Decomposition,RhsType,Dense>
+ : public MatrixBase<Solve<Decomposition,RhsType> >
+{
+ typedef Solve<Decomposition,RhsType> Derived;
+
+public:
+
+ typedef MatrixBase<Solve<Decomposition,RhsType> > Base;
+ EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
+
+private:
+
+ Scalar coeff(Index row, Index col) const;
+ Scalar coeff(Index i) const;
+};
+
+// Generic API dispatcher
+template<typename Decomposition, typename RhsType, typename StorageKind>
+class SolveImpl : public internal::generic_xpr_base<Solve<Decomposition,RhsType>, MatrixXpr, StorageKind>::type
+{
+ public:
+ typedef typename internal::generic_xpr_base<Solve<Decomposition,RhsType>, MatrixXpr, StorageKind>::type Base;
+};
+
+namespace internal {
+
+// Evaluator of Solve -> eval into a temporary
+template<typename Decomposition, typename RhsType>
+struct evaluator<Solve<Decomposition,RhsType> >
+ : public evaluator<typename Solve<Decomposition,RhsType>::PlainObject>::type
+{
+ typedef Solve<Decomposition,RhsType> SolveType;
+ typedef typename SolveType::PlainObject PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
+
+ typedef evaluator type;
+ typedef evaluator nestedType;
+
+ evaluator(const SolveType& solve)
+ : m_result(solve.rows(), solve.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ solve.dec()._solve_impl(solve.rhs(), m_result);
+ }
+
+protected:
+ PlainObject m_result;
+};
+
+// Specialization for "dst = dec.solve(rhs)"
+// NOTE we need to specialize it for Dense2Dense to avoid ambiguous specialization error and a Sparse2Sparse specialization must exist somewhere
+template<typename DstXprType, typename DecType, typename RhsType, typename Scalar>
+struct Assignment<DstXprType, Solve<DecType,RhsType>, internal::assign_op<Scalar>, Dense2Dense, Scalar>
+{
+ typedef Solve<DecType,RhsType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
+ {
+ // FIXME shall we resize dst here?
+ src.dec()._solve_impl(src.rhs(), dst);
+ }
+};
+
+} // end namepsace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SOLVE_H
diff --git a/Eigen/src/Core/SolveTriangular.h b/Eigen/src/Core/SolveTriangular.h
index ef17f288e..0f17e3a89 100644
--- a/Eigen/src/Core/SolveTriangular.h
+++ b/Eigen/src/Core/SolveTriangular.h
@@ -171,10 +171,10 @@ struct triangular_solver_selector<Lhs,Rhs,OnTheRight,Mode,CompleteUnrolling,1> {
*/
template<typename MatrixType, unsigned int Mode>
template<int Side, typename OtherDerived>
-void TriangularView<MatrixType,Mode>::solveInPlace(const MatrixBase<OtherDerived>& _other) const
+void TriangularViewImpl<MatrixType,Mode,Dense>::solveInPlace(const MatrixBase<OtherDerived>& _other) const
{
OtherDerived& other = _other.const_cast_derived();
- eigen_assert( cols() == rows() && ((Side==OnTheLeft && cols() == other.rows()) || (Side==OnTheRight && cols() == other.cols())) );
+ eigen_assert( derived().cols() == derived().rows() && ((Side==OnTheLeft && derived().cols() == other.rows()) || (Side==OnTheRight && derived().cols() == other.cols())) );
eigen_assert((!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower)));
enum { copy = internal::traits<OtherDerived>::Flags & RowMajorBit && OtherDerived::IsVectorAtCompileTime };
@@ -183,7 +183,7 @@ void TriangularView<MatrixType,Mode>::solveInPlace(const MatrixBase<OtherDerived
OtherCopy otherCopy(other);
internal::triangular_solver_selector<MatrixType, typename internal::remove_reference<OtherCopy>::type,
- Side, Mode>::run(nestedExpression(), otherCopy);
+ Side, Mode>::run(derived().nestedExpression(), otherCopy);
if (copy)
other = otherCopy;
@@ -213,9 +213,9 @@ void TriangularView<MatrixType,Mode>::solveInPlace(const MatrixBase<OtherDerived
template<typename Derived, unsigned int Mode>
template<int Side, typename Other>
const internal::triangular_solve_retval<Side,TriangularView<Derived,Mode>,Other>
-TriangularView<Derived,Mode>::solve(const MatrixBase<Other>& other) const
+TriangularViewImpl<Derived,Mode,Dense>::solve(const MatrixBase<Other>& other) const
{
- return internal::triangular_solve_retval<Side,TriangularView,Other>(*this, other.derived());
+ return internal::triangular_solve_retval<Side,TriangularViewType,Other>(derived(), other.derived());
}
namespace internal {
diff --git a/Eigen/src/Core/StableNorm.h b/Eigen/src/Core/StableNorm.h
index 525620bad..64d43e1b1 100644
--- a/Eigen/src/Core/StableNorm.h
+++ b/Eigen/src/Core/StableNorm.h
@@ -20,7 +20,7 @@ inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& sc
using std::max;
Scalar maxCoeff = bl.cwiseAbs().maxCoeff();
- if (maxCoeff>scale)
+ if(maxCoeff>scale)
{
ssq = ssq * numext::abs2(scale/maxCoeff);
Scalar tmp = Scalar(1)/maxCoeff;
@@ -29,12 +29,21 @@ inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& sc
invScale = NumTraits<Scalar>::highest();
scale = Scalar(1)/invScale;
}
+ else if(maxCoeff>NumTraits<Scalar>::highest()) // we got a INF
+ {
+ invScale = Scalar(1);
+ scale = maxCoeff;
+ }
else
{
scale = maxCoeff;
invScale = tmp;
}
}
+ else if(maxCoeff!=maxCoeff) // we got a NaN
+ {
+ scale = maxCoeff;
+ }
// TODO if the maxCoeff is much much smaller than the current scale,
// then we can neglect this sub vector
@@ -55,7 +64,7 @@ blueNorm_impl(const EigenBase<Derived>& _vec)
using std::abs;
const Derived& vec(_vec.derived());
static bool initialized = false;
- static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr;
+ static RealScalar b1, b2, s1m, s2m, rbig, relerr;
if(!initialized)
{
int ibeta, it, iemin, iemax, iexp;
@@ -84,7 +93,6 @@ blueNorm_impl(const EigenBase<Derived>& _vec)
iexp = - ((iemax+it)/2);
s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for upper range
- overfl = rbig*s2m; // overflow boundary for abig
eps = RealScalar(pow(double(ibeta), 1-it));
relerr = sqrt(eps); // tolerance for neglecting asml
initialized = true;
@@ -101,13 +109,13 @@ blueNorm_impl(const EigenBase<Derived>& _vec)
else if(ax < b1) asml += numext::abs2(ax*s1m);
else amed += numext::abs2(ax);
}
+ if(amed!=amed)
+ return amed; // we got a NaN
if(abig > RealScalar(0))
{
abig = sqrt(abig);
- if(abig > overfl)
- {
- return rbig;
- }
+ if(abig > rbig) // overflow, or *this contains INF values
+ return abig; // return INF
if(amed > RealScalar(0))
{
abig = abig/s2m;
diff --git a/Eigen/src/Core/Stride.h b/Eigen/src/Core/Stride.h
index d3d454e4e..187774978 100644
--- a/Eigen/src/Core/Stride.h
+++ b/Eigen/src/Core/Stride.h
@@ -86,7 +86,7 @@ class Stride
/** \brief Convenience specialization of Stride to specify only an inner stride
* See class Map for some examples */
-template<int Value = Dynamic>
+template<int Value>
class InnerStride : public Stride<0, Value>
{
typedef Stride<0, Value> Base;
@@ -98,7 +98,7 @@ class InnerStride : public Stride<0, Value>
/** \brief Convenience specialization of Stride to specify only an outer stride
* See class Map for some examples */
-template<int Value = Dynamic>
+template<int Value>
class OuterStride : public Stride<Value, 0>
{
typedef Stride<Value, 0> Base;
diff --git a/Eigen/src/Core/Swap.h b/Eigen/src/Core/Swap.h
index d602fba65..3277cb5ba 100644
--- a/Eigen/src/Core/Swap.h
+++ b/Eigen/src/Core/Swap.h
@@ -12,129 +12,54 @@
namespace Eigen {
-/** \class SwapWrapper
- * \ingroup Core_Module
- *
- * \internal
- *
- * \brief Internal helper class for swapping two expressions
- */
namespace internal {
-template<typename ExpressionType>
-struct traits<SwapWrapper<ExpressionType> > : traits<ExpressionType> {};
-}
-template<typename ExpressionType> class SwapWrapper
- : public internal::dense_xpr_base<SwapWrapper<ExpressionType> >::type
+// Overload default assignPacket behavior for swapping them
+template<typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT>
+class generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, swap_assign_op<typename DstEvaluatorTypeT::Scalar>, Specialized>
+ : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, swap_assign_op<typename DstEvaluatorTypeT::Scalar>, BuiltIn>
{
- public:
-
- typedef typename internal::dense_xpr_base<SwapWrapper>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(SwapWrapper)
- typedef typename internal::packet_traits<Scalar>::type Packet;
-
- EIGEN_DEVICE_FUNC
- inline SwapWrapper(ExpressionType& xpr) : m_expression(xpr) {}
-
- EIGEN_DEVICE_FUNC
- inline Index rows() const { return m_expression.rows(); }
- EIGEN_DEVICE_FUNC
- inline Index cols() const { return m_expression.cols(); }
- EIGEN_DEVICE_FUNC
- inline Index outerStride() const { return m_expression.outerStride(); }
- EIGEN_DEVICE_FUNC
- inline Index innerStride() const { return m_expression.innerStride(); }
-
- typedef typename internal::conditional<
- internal::is_lvalue<ExpressionType>::value,
- Scalar,
- const Scalar
- >::type ScalarWithConstIfNotLvalue;
-
- EIGEN_DEVICE_FUNC
- inline ScalarWithConstIfNotLvalue* data() { return m_expression.data(); }
- EIGEN_DEVICE_FUNC
- inline const Scalar* data() const { return m_expression.data(); }
-
- EIGEN_DEVICE_FUNC
- inline Scalar& coeffRef(Index rowId, Index colId)
- {
- return m_expression.const_cast_derived().coeffRef(rowId, colId);
- }
-
- EIGEN_DEVICE_FUNC
- inline Scalar& coeffRef(Index index)
- {
- return m_expression.const_cast_derived().coeffRef(index);
- }
-
- EIGEN_DEVICE_FUNC
- inline Scalar& coeffRef(Index rowId, Index colId) const
- {
- return m_expression.coeffRef(rowId, colId);
- }
-
- EIGEN_DEVICE_FUNC
- inline Scalar& coeffRef(Index index) const
- {
- return m_expression.coeffRef(index);
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- void copyCoeff(Index rowId, Index colId, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(rowId >= 0 && rowId < rows()
- && colId >= 0 && colId < cols());
- Scalar tmp = m_expression.coeff(rowId, colId);
- m_expression.coeffRef(rowId, colId) = _other.coeff(rowId, colId);
- _other.coeffRef(rowId, colId) = tmp;
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(index >= 0 && index < m_expression.size());
- Scalar tmp = m_expression.coeff(index);
- m_expression.coeffRef(index) = _other.coeff(index);
- _other.coeffRef(index) = tmp;
- }
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- void copyPacket(Index rowId, Index colId, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(rowId >= 0 && rowId < rows()
- && colId >= 0 && colId < cols());
- Packet tmp = m_expression.template packet<StoreMode>(rowId, colId);
- m_expression.template writePacket<StoreMode>(rowId, colId,
- _other.template packet<LoadMode>(rowId, colId)
- );
- _other.template writePacket<LoadMode>(rowId, colId, tmp);
- }
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- void copyPacket(Index index, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(index >= 0 && index < m_expression.size());
- Packet tmp = m_expression.template packet<StoreMode>(index);
- m_expression.template writePacket<StoreMode>(index,
- _other.template packet<LoadMode>(index)
- );
- _other.template writePacket<LoadMode>(index, tmp);
- }
-
- EIGEN_DEVICE_FUNC
- ExpressionType& expression() const { return m_expression; }
-
- protected:
- ExpressionType& m_expression;
+protected:
+ typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, swap_assign_op<typename DstEvaluatorTypeT::Scalar>, BuiltIn> Base;
+ typedef typename DstEvaluatorTypeT::PacketScalar PacketScalar;
+ using Base::m_dst;
+ using Base::m_src;
+ using Base::m_functor;
+
+public:
+ typedef typename Base::Scalar Scalar;
+ typedef typename Base::Index Index;
+ typedef typename Base::DstXprType DstXprType;
+ typedef swap_assign_op<Scalar> Functor;
+
+ generic_dense_assignment_kernel(DstEvaluatorTypeT &dst, const SrcEvaluatorTypeT &src, const Functor &func, DstXprType& dstExpr)
+ : Base(dst, src, func, dstExpr)
+ {}
+
+ template<int StoreMode, int LoadMode>
+ void assignPacket(Index row, Index col)
+ {
+ m_functor.template swapPacket<StoreMode,LoadMode,PacketScalar>(&m_dst.coeffRef(row,col), &const_cast<SrcEvaluatorTypeT&>(m_src).coeffRef(row,col));
+ }
+
+ template<int StoreMode, int LoadMode>
+ void assignPacket(Index index)
+ {
+ m_functor.template swapPacket<StoreMode,LoadMode,PacketScalar>(&m_dst.coeffRef(index), &const_cast<SrcEvaluatorTypeT&>(m_src).coeffRef(index));
+ }
+
+ // TODO find a simple way not to have to copy/paste this function from generic_dense_assignment_kernel, by simple I mean no CRTP (Gael)
+ template<int StoreMode, int LoadMode>
+ void assignPacketByOuterInner(Index outer, Index inner)
+ {
+ Index row = Base::rowIndexByOuterInner(outer, inner);
+ Index col = Base::colIndexByOuterInner(outer, inner);
+ assignPacket<StoreMode,LoadMode>(row, col);
+ }
};
+} // namespace internal
+
} // end namespace Eigen
#endif // EIGEN_SWAP_H
diff --git a/Eigen/src/Core/Transpose.h b/Eigen/src/Core/Transpose.h
index aba3f6670..144bb2c01 100644
--- a/Eigen/src/Core/Transpose.h
+++ b/Eigen/src/Core/Transpose.h
@@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -29,9 +29,10 @@ namespace Eigen {
namespace internal {
template<typename MatrixType>
-struct traits<Transpose<MatrixType> > : traits<MatrixType>
+struct traits<Transpose<MatrixType> >
{
- typedef typename MatrixType::Scalar Scalar;
+ typedef typename traits<MatrixType>::Scalar Scalar;
+ typedef typename traits<MatrixType>::Index Index;
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedPlain;
typedef typename traits<MatrixType>::StorageKind StorageKind;
@@ -45,7 +46,6 @@ struct traits<Transpose<MatrixType> > : traits<MatrixType>
Flags0 = MatrixTypeNestedPlain::Flags & ~(LvalueBit | NestByRefBit),
Flags1 = Flags0 | FlagsLvalueBit,
Flags = Flags1 ^ RowMajorBit,
- CoeffReadCost = MatrixTypeNestedPlain::CoeffReadCost,
InnerStrideAtCompileTime = inner_stride_at_compile_time<MatrixType>::ret,
OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret
};
@@ -61,6 +61,7 @@ template<typename MatrixType> class Transpose
typedef typename TransposeImpl<MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)
+ typedef typename internal::remove_all<MatrixType>::type NestedExpression;
EIGEN_DEVICE_FUNC
inline Transpose(MatrixType& a_matrix) : m_matrix(a_matrix) {}
@@ -100,12 +101,22 @@ struct TransposeImpl_base<MatrixType, false>
} // end namespace internal
+// Generic API dispatcher
+template<typename XprType, typename StorageKind>
+class TransposeImpl
+ : public internal::generic_xpr_base<Transpose<XprType> >::type
+{
+public:
+ typedef typename internal::generic_xpr_base<Transpose<XprType> >::type Base;
+};
+
template<typename MatrixType> class TransposeImpl<MatrixType,Dense>
: public internal::TransposeImpl_base<MatrixType>::type
{
public:
typedef typename internal::TransposeImpl_base<MatrixType>::type Base;
+ using Base::coeffRef;
EIGEN_DENSE_PUBLIC_INTERFACE(Transpose<MatrixType>)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(TransposeImpl)
@@ -121,20 +132,7 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Dense>
inline ScalarWithConstIfNotLvalue* data() { return derived().nestedExpression().data(); }
inline const Scalar* data() const { return derived().nestedExpression().data(); }
- EIGEN_DEVICE_FUNC
- inline ScalarWithConstIfNotLvalue& coeffRef(Index rowId, Index colId)
- {
- EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
- return derived().nestedExpression().const_cast_derived().coeffRef(colId, rowId);
- }
-
- EIGEN_DEVICE_FUNC
- inline ScalarWithConstIfNotLvalue& coeffRef(Index index)
- {
- EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
- return derived().nestedExpression().const_cast_derived().coeffRef(index);
- }
-
+ // FIXME: shall we keep the const version of coeffRef?
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
@@ -146,42 +144,6 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Dense>
{
return derived().nestedExpression().coeffRef(index);
}
-
- EIGEN_DEVICE_FUNC
- inline CoeffReturnType coeff(Index rowId, Index colId) const
- {
- return derived().nestedExpression().coeff(colId, rowId);
- }
-
- EIGEN_DEVICE_FUNC
- inline CoeffReturnType coeff(Index index) const
- {
- return derived().nestedExpression().coeff(index);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index rowId, Index colId) const
- {
- return derived().nestedExpression().template packet<LoadMode>(colId, rowId);
- }
-
- template<int LoadMode>
- inline void writePacket(Index rowId, Index colId, const PacketScalar& x)
- {
- derived().nestedExpression().const_cast_derived().template writePacket<LoadMode>(colId, rowId, x);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index index) const
- {
- return derived().nestedExpression().template packet<LoadMode>(index);
- }
-
- template<int LoadMode>
- inline void writePacket(Index index, const PacketScalar& x)
- {
- derived().nestedExpression().const_cast_derived().template writePacket<LoadMode>(index, x);
- }
};
/** \returns an expression of the transpose of *this.
@@ -413,15 +375,15 @@ struct checkTransposeAliasing_impl<Derived, OtherDerived, false>
}
};
-} // end namespace internal
-
-template<typename Derived>
-template<typename OtherDerived>
-void DenseBase<Derived>::checkTransposeAliasing(const OtherDerived& other) const
+template<typename Dst, typename Src>
+void check_for_aliasing(const Dst &dst, const Src &src)
{
- internal::checkTransposeAliasing_impl<Derived, OtherDerived>::run(derived(), other);
+ internal::checkTransposeAliasing_impl<Dst, Src>::run(dst, src);
}
-#endif
+
+} // end namespace internal
+
+#endif // EIGEN_NO_DEBUG
} // end namespace Eigen
diff --git a/Eigen/src/Core/TriangularMatrix.h b/Eigen/src/Core/TriangularMatrix.h
index 72792d21b..0d315dd50 100644
--- a/Eigen/src/Core/TriangularMatrix.h
+++ b/Eigen/src/Core/TriangularMatrix.h
@@ -32,17 +32,23 @@ template<typename Derived> class TriangularBase : public EigenBase<Derived>
enum {
Mode = internal::traits<Derived>::Mode,
- CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime
+ MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
+
+ SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
+ internal::traits<Derived>::ColsAtCompileTime>::ret)
+ /**< This is equal to the number of coefficients, i.e. the number of
+ * rows times the number of columns, or to \a Dynamic if this is not
+ * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
};
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
- typedef typename internal::traits<Derived>::DenseMatrixType DenseMatrixType;
+ typedef typename internal::traits<Derived>::FullMatrixType DenseMatrixType;
typedef DenseMatrixType DenseType;
+ typedef Derived const& Nested;
EIGEN_DEVICE_FUNC
inline TriangularBase() { eigen_assert(!((Mode&UnitDiag) && (Mode&ZeroDiag))); }
@@ -55,6 +61,14 @@ template<typename Derived> class TriangularBase : public EigenBase<Derived>
inline Index outerStride() const { return derived().outerStride(); }
EIGEN_DEVICE_FUNC
inline Index innerStride() const { return derived().innerStride(); }
+
+ // dummy resize function
+ void resize(Index nbRows, Index nbCols)
+ {
+ EIGEN_UNUSED_VARIABLE(nbRows);
+ EIGEN_UNUSED_VARIABLE(nbCols);
+ eigen_assert(nbRows==rows() && nbCols==nbCols);
+ }
EIGEN_DEVICE_FUNC
inline Scalar coeff(Index row, Index col) const { return derived().coeff(row,col); }
@@ -155,49 +169,41 @@ struct traits<TriangularView<MatrixType, _Mode> > : traits<MatrixType>
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef;
typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
+ typedef typename MatrixType::PlainObject FullMatrixType;
typedef MatrixType ExpressionType;
- typedef typename MatrixType::PlainObject DenseMatrixType;
enum {
Mode = _Mode,
- Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) | Mode,
- CoeffReadCost = MatrixTypeNestedCleaned::CoeffReadCost
+ Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits | LvalueBit) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)))
};
};
}
-template<int Mode, bool LhsIsTriangular,
- typename Lhs, bool LhsIsVector,
- typename Rhs, bool RhsIsVector>
-struct TriangularProduct;
+template<typename _MatrixType, unsigned int _Mode, typename StorageKind> class TriangularViewImpl;
template<typename _MatrixType, unsigned int _Mode> class TriangularView
- : public TriangularBase<TriangularView<_MatrixType, _Mode> >
+ : public TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind >
{
public:
- typedef TriangularBase<TriangularView> Base;
+ typedef TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind > Base;
typedef typename internal::traits<TriangularView>::Scalar Scalar;
-
typedef _MatrixType MatrixType;
- typedef typename internal::traits<TriangularView>::DenseMatrixType DenseMatrixType;
- typedef DenseMatrixType PlainObject;
protected:
typedef typename internal::traits<TriangularView>::MatrixTypeNested MatrixTypeNested;
typedef typename internal::traits<TriangularView>::MatrixTypeNestedNonRef MatrixTypeNestedNonRef;
- typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;
typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType;
public:
- using Base::evalToLazy;
-
typedef typename internal::traits<TriangularView>::StorageKind StorageKind;
typedef typename internal::traits<TriangularView>::Index Index;
+ typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned NestedExpression;
enum {
Mode = _Mode,
+ Flags = internal::traits<TriangularView>::Flags,
TransposeMode = (Mode & Upper ? Lower : 0)
| (Mode & Lower ? Upper : 0)
| (Mode & (UnitDiag))
@@ -207,44 +213,160 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
EIGEN_DEVICE_FUNC
inline TriangularView(const MatrixType& matrix) : m_matrix(matrix)
{}
+
+ using Base::operator=;
+ TriangularView& operator=(const TriangularView &other)
+ { return Base::operator=(other); }
EIGEN_DEVICE_FUNC
inline Index rows() const { return m_matrix.rows(); }
EIGEN_DEVICE_FUNC
inline Index cols() const { return m_matrix.cols(); }
+
+ EIGEN_DEVICE_FUNC
+ const NestedExpression& nestedExpression() const { return m_matrix; }
+ EIGEN_DEVICE_FUNC
+ NestedExpression& nestedExpression() { return *const_cast<NestedExpression*>(&m_matrix); }
+
+ /** \sa MatrixBase::conjugate() */
+ EIGEN_DEVICE_FUNC
+ inline TriangularView<MatrixConjugateReturnType,Mode> conjugate()
+ { return m_matrix.conjugate(); }
+ /** \sa MatrixBase::conjugate() const */
+ EIGEN_DEVICE_FUNC
+ inline const TriangularView<MatrixConjugateReturnType,Mode> conjugate() const
+ { return m_matrix.conjugate(); }
+
+ /** \sa MatrixBase::adjoint() const */
+ EIGEN_DEVICE_FUNC
+ inline const TriangularView<const typename MatrixType::AdjointReturnType,TransposeMode> adjoint() const
+ { return m_matrix.adjoint(); }
+
+ /** \sa MatrixBase::transpose() */
+ EIGEN_DEVICE_FUNC
+ inline TriangularView<Transpose<MatrixType>,TransposeMode> transpose()
+ {
+ EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
+ return m_matrix.const_cast_derived().transpose();
+ }
+ /** \sa MatrixBase::transpose() const */
+ EIGEN_DEVICE_FUNC
+ inline const TriangularView<Transpose<MatrixType>,TransposeMode> transpose() const
+ {
+ return m_matrix.transpose();
+ }
+
+ template<typename Other>
+ EIGEN_DEVICE_FUNC
+ inline const Solve<TriangularView, Other>
+ solve(const MatrixBase<Other>& other) const
+ { return Solve<TriangularView, Other>(*this, other.derived()); }
+
+ // workaround MSVC ICE
+ #ifdef _MSC_VER
+ template<int Side, typename Other>
+ EIGEN_DEVICE_FUNC
+ inline const internal::triangular_solve_retval<Side,TriangularView, Other>
+ solve(const MatrixBase<Other>& other) const
+ { return Base::template solve<Side>(other); }
+ #else
+ using Base::solve;
+ #endif
+
+ EIGEN_DEVICE_FUNC
+ const SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView() const
+ {
+ EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
+ return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
+ }
+ EIGEN_DEVICE_FUNC
+ SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView()
+ {
+ EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
+ return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
+ }
+
+ EIGEN_DEVICE_FUNC
+ Scalar determinant() const
+ {
+ if (Mode & UnitDiag)
+ return 1;
+ else if (Mode & ZeroDiag)
+ return 0;
+ else
+ return m_matrix.diagonal().prod();
+ }
+
+ protected:
+
+ MatrixTypeNested m_matrix;
+};
+
+template<typename _MatrixType, unsigned int _Mode> class TriangularViewImpl<_MatrixType,_Mode,Dense>
+ : public TriangularBase<TriangularView<_MatrixType, _Mode> >
+{
+ public:
+
+ typedef TriangularView<_MatrixType, _Mode> TriangularViewType;
+ typedef TriangularBase<TriangularViewType> Base;
+ typedef typename internal::traits<TriangularViewType>::Scalar Scalar;
+
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::PlainObject DenseMatrixType;
+ typedef DenseMatrixType PlainObject;
+
+ public:
+ using Base::evalToLazy;
+ using Base::derived;
+
+ typedef typename internal::traits<TriangularViewType>::StorageKind StorageKind;
+ typedef typename internal::traits<TriangularViewType>::Index Index;
+
+ enum {
+ Mode = _Mode,
+ Flags = internal::traits<TriangularViewType>::Flags
+ };
+
EIGEN_DEVICE_FUNC
- inline Index outerStride() const { return m_matrix.outerStride(); }
+ inline Index outerStride() const { return derived().nestedExpression().outerStride(); }
EIGEN_DEVICE_FUNC
- inline Index innerStride() const { return m_matrix.innerStride(); }
+ inline Index innerStride() const { return derived().nestedExpression().innerStride(); }
/** \sa MatrixBase::operator+=() */
template<typename Other>
EIGEN_DEVICE_FUNC
- TriangularView& operator+=(const DenseBase<Other>& other) { return *this = m_matrix + other.derived(); }
+ TriangularViewType& operator+=(const DenseBase<Other>& other) {
+ internal::call_assignment_no_alias(derived(), other.derived(), internal::add_assign_op<Scalar>());
+ return derived();
+ }
/** \sa MatrixBase::operator-=() */
template<typename Other>
EIGEN_DEVICE_FUNC
- TriangularView& operator-=(const DenseBase<Other>& other) { return *this = m_matrix - other.derived(); }
+ TriangularViewType& operator-=(const DenseBase<Other>& other) {
+ internal::call_assignment_no_alias(derived(), other.derived(), internal::sub_assign_op<Scalar>());
+ return derived();
+ }
+
/** \sa MatrixBase::operator*=() */
EIGEN_DEVICE_FUNC
- TriangularView& operator*=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix * other; }
+ TriangularViewType& operator*=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = derived().nestedExpression() * other; }
/** \sa MatrixBase::operator/=() */
EIGEN_DEVICE_FUNC
- TriangularView& operator/=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix / other; }
+ TriangularViewType& operator/=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = derived().nestedExpression() / other; }
/** \sa MatrixBase::fill() */
EIGEN_DEVICE_FUNC
void fill(const Scalar& value) { setConstant(value); }
/** \sa MatrixBase::setConstant() */
EIGEN_DEVICE_FUNC
- TriangularView& setConstant(const Scalar& value)
- { return *this = MatrixType::Constant(rows(), cols(), value); }
+ TriangularViewType& setConstant(const Scalar& value)
+ { return *this = MatrixType::Constant(derived().rows(), derived().cols(), value); }
/** \sa MatrixBase::setZero() */
EIGEN_DEVICE_FUNC
- TriangularView& setZero() { return setConstant(Scalar(0)); }
+ TriangularViewType& setZero() { return setConstant(Scalar(0)); }
/** \sa MatrixBase::setOnes() */
EIGEN_DEVICE_FUNC
- TriangularView& setOnes() { return setConstant(Scalar(1)); }
+ TriangularViewType& setOnes() { return setConstant(Scalar(1)); }
/** \sa MatrixBase::coeff()
* \warning the coordinates must fit into the referenced triangular part
@@ -253,7 +375,7 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
inline Scalar coeff(Index row, Index col) const
{
Base::check_coordinates_internal(row, col);
- return m_matrix.coeff(row, col);
+ return derived().nestedExpression().coeff(row, col);
}
/** \sa MatrixBase::coeffRef()
@@ -263,26 +385,21 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
inline Scalar& coeffRef(Index row, Index col)
{
Base::check_coordinates_internal(row, col);
- return m_matrix.const_cast_derived().coeffRef(row, col);
+ return derived().nestedExpression().const_cast_derived().coeffRef(row, col);
}
- EIGEN_DEVICE_FUNC
- const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
- EIGEN_DEVICE_FUNC
- MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); }
-
/** Assigns a triangular matrix to a triangular part of a dense matrix */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
- TriangularView& operator=(const TriangularBase<OtherDerived>& other);
+ TriangularViewType& operator=(const TriangularBase<OtherDerived>& other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
- TriangularView& operator=(const MatrixBase<OtherDerived>& other);
+ TriangularViewType& operator=(const MatrixBase<OtherDerived>& other);
EIGEN_DEVICE_FUNC
- TriangularView& operator=(const TriangularView& other)
- { return *this = other.nestedExpression(); }
+ TriangularViewType& operator=(const TriangularViewImpl& other)
+ { return *this = other.derived().nestedExpression(); }
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
@@ -290,378 +407,88 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
- void lazyAssign(const MatrixBase<OtherDerived>& other);
-
- /** \sa MatrixBase::conjugate() */
- EIGEN_DEVICE_FUNC
- inline TriangularView<MatrixConjugateReturnType,Mode> conjugate()
- { return m_matrix.conjugate(); }
- /** \sa MatrixBase::conjugate() const */
- EIGEN_DEVICE_FUNC
- inline const TriangularView<MatrixConjugateReturnType,Mode> conjugate() const
- { return m_matrix.conjugate(); }
-
- /** \sa MatrixBase::adjoint() const */
- EIGEN_DEVICE_FUNC
- inline const TriangularView<const typename MatrixType::AdjointReturnType,TransposeMode> adjoint() const
- { return m_matrix.adjoint(); }
-
- /** \sa MatrixBase::transpose() */
- EIGEN_DEVICE_FUNC
- inline TriangularView<Transpose<MatrixType>,TransposeMode> transpose()
- {
- EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
- return m_matrix.const_cast_derived().transpose();
- }
- /** \sa MatrixBase::transpose() const */
- EIGEN_DEVICE_FUNC
- inline const TriangularView<Transpose<MatrixType>,TransposeMode> transpose() const
- {
- return m_matrix.transpose();
- }
+ void lazyAssign(const MatrixBase<OtherDerived>& other);
/** Efficient triangular matrix times vector/matrix product */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
- TriangularProduct<Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
+ const Product<TriangularViewType,OtherDerived>
operator*(const MatrixBase<OtherDerived>& rhs) const
{
- return TriangularProduct
- <Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
- (m_matrix, rhs.derived());
+ return Product<TriangularViewType,OtherDerived>(derived(), rhs.derived());
}
/** Efficient vector/matrix times triangular matrix product */
template<typename OtherDerived> friend
EIGEN_DEVICE_FUNC
- TriangularProduct<Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
- operator*(const MatrixBase<OtherDerived>& lhs, const TriangularView& rhs)
+ const Product<OtherDerived,TriangularViewType>
+ operator*(const MatrixBase<OtherDerived>& lhs, const TriangularViewImpl& rhs)
{
- return TriangularProduct
- <Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
- (lhs.derived(),rhs.m_matrix);
+ return Product<OtherDerived,TriangularViewType>(lhs.derived(),rhs.derived());
}
template<int Side, typename Other>
EIGEN_DEVICE_FUNC
- inline const internal::triangular_solve_retval<Side,TriangularView, Other>
+ inline const internal::triangular_solve_retval<Side,TriangularViewType, Other>
solve(const MatrixBase<Other>& other) const;
template<int Side, typename OtherDerived>
EIGEN_DEVICE_FUNC
void solveInPlace(const MatrixBase<OtherDerived>& other) const;
- template<typename Other>
- EIGEN_DEVICE_FUNC
- inline const internal::triangular_solve_retval<OnTheLeft,TriangularView, Other>
- solve(const MatrixBase<Other>& other) const
- { return solve<OnTheLeft>(other); }
-
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
void solveInPlace(const MatrixBase<OtherDerived>& other) const
{ return solveInPlace<OnTheLeft>(other); }
- EIGEN_DEVICE_FUNC
- const SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView() const
- {
- EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
- return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
- }
- EIGEN_DEVICE_FUNC
- SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView()
- {
- EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
- return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
- }
-
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
void swap(TriangularBase<OtherDerived> const & other)
{
- TriangularView<SwapWrapper<MatrixType>,Mode>(const_cast<MatrixType&>(m_matrix)).lazyAssign(other.derived());
+ call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>());
}
+ // TODO: this overload is ambiguous and it should be deprecated (Gael)
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
void swap(MatrixBase<OtherDerived> const & other)
{
- SwapWrapper<MatrixType> swaper(const_cast<MatrixType&>(m_matrix));
- TriangularView<SwapWrapper<MatrixType>,Mode>(swaper).lazyAssign(other.derived());
+ call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>());
}
+ template<typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
- Scalar determinant() const
- {
- if (Mode & UnitDiag)
- return 1;
- else if (Mode & ZeroDiag)
- return 0;
- else
- return m_matrix.diagonal().prod();
- }
-
- // TODO simplify the following:
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TriangularView& operator=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
- {
- setZero();
- return assignProduct(other,1);
- }
-
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TriangularView& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
- {
- return assignProduct(other,1);
- }
-
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TriangularView& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
- {
- return assignProduct(other,-1);
- }
-
-
- template<typename ProductDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TriangularView& operator=(const ScaledProduct<ProductDerived>& other)
- {
- setZero();
- return assignProduct(other,other.alpha());
+ EIGEN_STRONG_INLINE void _solve_impl(const RhsType &rhs, DstType &dst) const {
+ if(!(internal::is_same<RhsType,DstType>::value && internal::extract_data(dst) == internal::extract_data(rhs)))
+ dst = rhs;
+ this->solveInPlace(dst);
}
-
- template<typename ProductDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TriangularView& operator+=(const ScaledProduct<ProductDerived>& other)
- {
- return assignProduct(other,other.alpha());
- }
-
- template<typename ProductDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TriangularView& operator-=(const ScaledProduct<ProductDerived>& other)
- {
- return assignProduct(other,-other.alpha());
- }
-
- protected:
-
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TriangularView& assignProduct(const ProductBase<ProductDerived, Lhs,Rhs>& prod, const Scalar& alpha);
- MatrixTypeNested m_matrix;
+ template<typename ProductType>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TriangularViewType& _assignProduct(const ProductType& prod, const Scalar& alpha);
};
/***************************************************************************
* Implementation of triangular evaluation/assignment
***************************************************************************/
-namespace internal {
-
-template<typename Derived1, typename Derived2, unsigned int Mode, int UnrollCount, bool ClearOpposite>
-struct triangular_assignment_selector
-{
- enum {
- col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
- row = (UnrollCount-1) % Derived1::RowsAtCompileTime
- };
-
- typedef typename Derived1::Scalar Scalar;
-
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- triangular_assignment_selector<Derived1, Derived2, Mode, UnrollCount-1, ClearOpposite>::run(dst, src);
-
- eigen_assert( Mode == Upper || Mode == Lower
- || Mode == StrictlyUpper || Mode == StrictlyLower
- || Mode == UnitUpper || Mode == UnitLower);
- if((Mode == Upper && row <= col)
- || (Mode == Lower && row >= col)
- || (Mode == StrictlyUpper && row < col)
- || (Mode == StrictlyLower && row > col)
- || (Mode == UnitUpper && row < col)
- || (Mode == UnitLower && row > col))
- dst.copyCoeff(row, col, src);
- else if(ClearOpposite)
- {
- if (Mode&UnitDiag && row==col)
- dst.coeffRef(row, col) = Scalar(1);
- else
- dst.coeffRef(row, col) = Scalar(0);
- }
- }
-};
-
-// prevent buggy user code from causing an infinite recursion
-template<typename Derived1, typename Derived2, unsigned int Mode, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, Mode, 0, ClearOpposite>
-{
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &, const Derived2 &) {}
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, Upper, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- typedef typename Derived1::Scalar Scalar;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- Index maxi = (std::min)(j, dst.rows()-1);
- for(Index i = 0; i <= maxi; ++i)
- dst.copyCoeff(i, j, src);
- if (ClearOpposite)
- for(Index i = maxi+1; i < dst.rows(); ++i)
- dst.coeffRef(i, j) = Scalar(0);
- }
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, Lower, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- for(Index i = j; i < dst.rows(); ++i)
- dst.copyCoeff(i, j, src);
- Index maxi = (std::min)(j, dst.rows());
- if (ClearOpposite)
- for(Index i = 0; i < maxi; ++i)
- dst.coeffRef(i, j) = static_cast<typename Derived1::Scalar>(0);
- }
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, StrictlyUpper, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- typedef typename Derived1::Scalar Scalar;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- Index maxi = (std::min)(j, dst.rows());
- for(Index i = 0; i < maxi; ++i)
- dst.copyCoeff(i, j, src);
- if (ClearOpposite)
- for(Index i = maxi; i < dst.rows(); ++i)
- dst.coeffRef(i, j) = Scalar(0);
- }
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, StrictlyLower, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- for(Index i = j+1; i < dst.rows(); ++i)
- dst.copyCoeff(i, j, src);
- Index maxi = (std::min)(j, dst.rows()-1);
- if (ClearOpposite)
- for(Index i = 0; i <= maxi; ++i)
- dst.coeffRef(i, j) = static_cast<typename Derived1::Scalar>(0);
- }
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, UnitUpper, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- Index maxi = (std::min)(j, dst.rows());
- for(Index i = 0; i < maxi; ++i)
- dst.copyCoeff(i, j, src);
- if (ClearOpposite)
- {
- for(Index i = maxi+1; i < dst.rows(); ++i)
- dst.coeffRef(i, j) = 0;
- }
- }
- dst.diagonal().setOnes();
- }
-};
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, UnitLower, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- Index maxi = (std::min)(j, dst.rows());
- for(Index i = maxi+1; i < dst.rows(); ++i)
- dst.copyCoeff(i, j, src);
- if (ClearOpposite)
- {
- for(Index i = 0; i < maxi; ++i)
- dst.coeffRef(i, j) = 0;
- }
- }
- dst.diagonal().setOnes();
- }
-};
-
-} // end namespace internal
-
// FIXME should we keep that possibility
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
inline TriangularView<MatrixType, Mode>&
-TriangularView<MatrixType, Mode>::operator=(const MatrixBase<OtherDerived>& other)
+TriangularViewImpl<MatrixType, Mode, Dense>::operator=(const MatrixBase<OtherDerived>& other)
{
- if(OtherDerived::Flags & EvalBeforeAssigningBit)
- {
- typename internal::plain_matrix_type<OtherDerived>::type other_evaluated(other.rows(), other.cols());
- other_evaluated.template triangularView<Mode>().lazyAssign(other.derived());
- lazyAssign(other_evaluated);
- }
- else
- lazyAssign(other.derived());
- return *this;
+ internal::call_assignment_no_alias(derived(), other.derived(), internal::assign_op<Scalar>());
+ return derived();
}
// FIXME should we keep that possibility
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
-void TriangularView<MatrixType, Mode>::lazyAssign(const MatrixBase<OtherDerived>& other)
+void TriangularViewImpl<MatrixType, Mode, Dense>::lazyAssign(const MatrixBase<OtherDerived>& other)
{
- enum {
- unroll = MatrixType::SizeAtCompileTime != Dynamic
- && internal::traits<OtherDerived>::CoeffReadCost != Dynamic
- && MatrixType::SizeAtCompileTime*internal::traits<OtherDerived>::CoeffReadCost/2 <= EIGEN_UNROLLING_LIMIT
- };
- eigen_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());
-
- internal::triangular_assignment_selector
- <MatrixType, OtherDerived, int(Mode),
- unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic,
- false // do not change the opposite triangular part
- >::run(m_matrix.const_cast_derived(), other.derived());
+ internal::call_assignment(derived().noalias(), other.template triangularView<Mode>());
}
@@ -669,37 +496,19 @@ void TriangularView<MatrixType, Mode>::lazyAssign(const MatrixBase<OtherDerived>
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
inline TriangularView<MatrixType, Mode>&
-TriangularView<MatrixType, Mode>::operator=(const TriangularBase<OtherDerived>& other)
+TriangularViewImpl<MatrixType, Mode, Dense>::operator=(const TriangularBase<OtherDerived>& other)
{
eigen_assert(Mode == int(OtherDerived::Mode));
- if(internal::traits<OtherDerived>::Flags & EvalBeforeAssigningBit)
- {
- typename OtherDerived::DenseMatrixType other_evaluated(other.rows(), other.cols());
- other_evaluated.template triangularView<Mode>().lazyAssign(other.derived().nestedExpression());
- lazyAssign(other_evaluated);
- }
- else
- lazyAssign(other.derived().nestedExpression());
- return *this;
+ internal::call_assignment(derived(), other.derived());
+ return derived();
}
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
-void TriangularView<MatrixType, Mode>::lazyAssign(const TriangularBase<OtherDerived>& other)
+void TriangularViewImpl<MatrixType, Mode, Dense>::lazyAssign(const TriangularBase<OtherDerived>& other)
{
- enum {
- unroll = MatrixType::SizeAtCompileTime != Dynamic
- && internal::traits<OtherDerived>::CoeffReadCost != Dynamic
- && MatrixType::SizeAtCompileTime * internal::traits<OtherDerived>::CoeffReadCost / 2
- <= EIGEN_UNROLLING_LIMIT
- };
- eigen_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());
-
- internal::triangular_assignment_selector
- <MatrixType, OtherDerived, int(Mode),
- unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic,
- false // preserve the opposite triangular part
- >::run(m_matrix.const_cast_derived(), other.derived().nestedExpression());
+ eigen_assert(Mode == int(OtherDerived::Mode));
+ internal::call_assignment(derived().noalias(), other.derived());
}
/***************************************************************************
@@ -722,27 +531,6 @@ void TriangularBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
evalToLazy(other.derived());
}
-/** Assigns a triangular or selfadjoint matrix to a dense matrix.
- * If the matrix is triangular, the opposite part is set to zero. */
-template<typename Derived>
-template<typename DenseDerived>
-void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const
-{
- enum {
- unroll = DenseDerived::SizeAtCompileTime != Dynamic
- && internal::traits<Derived>::CoeffReadCost != Dynamic
- && DenseDerived::SizeAtCompileTime * internal::traits<Derived>::CoeffReadCost / 2
- <= EIGEN_UNROLLING_LIMIT
- };
- other.derived().resize(this->rows(), this->cols());
-
- internal::triangular_assignment_selector
- <DenseDerived, typename internal::traits<Derived>::MatrixTypeNestedCleaned, Derived::Mode,
- unroll ? int(DenseDerived::SizeAtCompileTime) : Dynamic,
- true // clear the opposite triangular part
- >::run(other.derived(), derived().nestedExpression());
-}
-
/***************************************************************************
* Implementation of TriangularView methods
***************************************************************************/
@@ -831,6 +619,293 @@ bool MatrixBase<Derived>::isLowerTriangular(const RealScalar& prec) const
return true;
}
+
+/***************************************************************************
+****************************************************************************
+* Evaluators and Assignment of triangular expressions
+***************************************************************************
+***************************************************************************/
+
+namespace internal {
+
+
+// TODO currently a triangular expression has the form TriangularView<.,.>
+// in the future triangular-ness should be defined by the expression traits
+// such that Transpose<TriangularView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
+template<typename MatrixType, unsigned int Mode>
+struct evaluator_traits<TriangularView<MatrixType,Mode> >
+{
+ typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
+ typedef typename glue_shapes<typename evaluator_traits<MatrixType>::Shape, TriangularShape>::type Shape;
+
+ // 1 if assignment A = B assumes aliasing when B is of type T and thus B needs to be evaluated into a
+ // temporary; 0 if not.
+ static const int AssumeAliasing = 0;
+};
+
+template<typename MatrixType, unsigned int Mode>
+struct unary_evaluator<TriangularView<MatrixType,Mode>, IndexBased>
+ : evaluator<typename internal::remove_all<MatrixType>::type>
+{
+ typedef TriangularView<MatrixType,Mode> XprType;
+ typedef evaluator<typename internal::remove_all<MatrixType>::type> Base;
+ typedef evaluator<XprType> type;
+ unary_evaluator(const XprType &xpr) : Base(xpr.nestedExpression()) {}
+};
+
+// Additional assignment kinds:
+struct Triangular2Triangular {};
+struct Triangular2Dense {};
+struct Dense2Triangular {};
+
+
+template<typename Kernel, unsigned int Mode, int UnrollCount, bool ClearOpposite> struct triangular_assignment_loop;
+
+
+/** \internal Specialization of the dense assignment kernel for triangular matrices.
+ * The main difference is that the triangular, diagonal, and opposite parts are processed through three different functions.
+ * \tparam UpLo must be either Lower or Upper
+ * \tparam Mode must be either 0, UnitDiag, ZeroDiag, or SelfAdjoint
+ */
+template<int UpLo, int Mode, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version = Specialized>
+class triangular_dense_assignment_kernel : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version>
+{
+protected:
+ typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> Base;
+ typedef typename Base::DstXprType DstXprType;
+ typedef typename Base::SrcXprType SrcXprType;
+ using Base::m_dst;
+ using Base::m_src;
+ using Base::m_functor;
+public:
+
+ typedef typename Base::DstEvaluatorType DstEvaluatorType;
+ typedef typename Base::SrcEvaluatorType SrcEvaluatorType;
+ typedef typename Base::Scalar Scalar;
+ typedef typename Base::Index Index;
+ typedef typename Base::AssignmentTraits AssignmentTraits;
+
+
+ triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
+ : Base(dst, src, func, dstExpr)
+ {}
+
+#ifdef EIGEN_INTERNAL_DEBUGGING
+ void assignCoeff(Index row, Index col)
+ {
+ eigen_internal_assert(row!=col);
+ Base::assignCoeff(row,col);
+ }
+#else
+ using Base::assignCoeff;
+#endif
+
+ void assignDiagonalCoeff(Index id)
+ {
+ if(Mode==UnitDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(1));
+ else if(Mode==ZeroDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(0));
+ else if(Mode==0) Base::assignCoeff(id,id);
+ }
+
+ void assignOppositeCoeff(Index row, Index col)
+ {
+ eigen_internal_assert(row!=col);
+ if(SetOpposite)
+ m_functor.assignCoeff(m_dst.coeffRef(row,col), Scalar(0));
+ }
+};
+
+template<int Mode, bool SetOpposite, typename DstXprType, typename SrcXprType, typename Functor>
+void call_triangular_assignment_loop(const DstXprType& dst, const SrcXprType& src, const Functor &func)
+{
+ eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
+
+ typedef typename evaluator<DstXprType>::type DstEvaluatorType;
+ typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
+
+ DstEvaluatorType dstEvaluator(dst);
+ SrcEvaluatorType srcEvaluator(src);
+
+ typedef triangular_dense_assignment_kernel< Mode&(Lower|Upper),Mode&(UnitDiag|ZeroDiag|SelfAdjoint),SetOpposite,
+ DstEvaluatorType,SrcEvaluatorType,Functor> Kernel;
+ Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());
+
+ enum {
+ unroll = DstXprType::SizeAtCompileTime != Dynamic
+ && SrcEvaluatorType::CoeffReadCost != Dynamic
+ && DstXprType::SizeAtCompileTime * SrcEvaluatorType::CoeffReadCost / 2 <= EIGEN_UNROLLING_LIMIT
+ };
+
+ triangular_assignment_loop<Kernel, Mode, unroll ? int(DstXprType::SizeAtCompileTime) : Dynamic, SetOpposite>::run(kernel);
+}
+
+template<int Mode, bool SetOpposite, typename DstXprType, typename SrcXprType>
+void call_triangular_assignment_loop(const DstXprType& dst, const SrcXprType& src)
+{
+ call_triangular_assignment_loop<Mode,SetOpposite>(dst, src, internal::assign_op<typename DstXprType::Scalar>());
+}
+
+template<> struct AssignmentKind<TriangularShape,TriangularShape> { typedef Triangular2Triangular Kind; };
+template<> struct AssignmentKind<DenseShape,TriangularShape> { typedef Triangular2Dense Kind; };
+template<> struct AssignmentKind<TriangularShape,DenseShape> { typedef Dense2Triangular Kind; };
+
+
+template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
+struct Assignment<DstXprType, SrcXprType, Functor, Triangular2Triangular, Scalar>
+{
+ static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
+ {
+ eigen_assert(int(DstXprType::Mode) == int(SrcXprType::Mode));
+
+ call_triangular_assignment_loop<DstXprType::Mode, false>(dst, src, func);
+ }
+};
+
+template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
+struct Assignment<DstXprType, SrcXprType, Functor, Triangular2Dense, Scalar>
+{
+ static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
+ {
+ call_triangular_assignment_loop<SrcXprType::Mode, (SrcXprType::Mode&SelfAdjoint)==0>(dst, src, func);
+ }
+};
+
+template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
+struct Assignment<DstXprType, SrcXprType, Functor, Dense2Triangular, Scalar>
+{
+ static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
+ {
+ call_triangular_assignment_loop<DstXprType::Mode, false>(dst, src, func);
+ }
+};
+
+
+template<typename Kernel, unsigned int Mode, int UnrollCount, bool SetOpposite>
+struct triangular_assignment_loop
+{
+ // FIXME: this is not very clean, perhaps this information should be provided by the kernel?
+ typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
+ typedef typename DstEvaluatorType::XprType DstXprType;
+
+ enum {
+ col = (UnrollCount-1) / DstXprType::RowsAtCompileTime,
+ row = (UnrollCount-1) % DstXprType::RowsAtCompileTime
+ };
+
+ typedef typename Kernel::Scalar Scalar;
+
+ EIGEN_DEVICE_FUNC
+ static inline void run(Kernel &kernel)
+ {
+ triangular_assignment_loop<Kernel, Mode, UnrollCount-1, SetOpposite>::run(kernel);
+
+ if(row==col)
+ kernel.assignDiagonalCoeff(row);
+ else if( ((Mode&Lower) && row>col) || ((Mode&Upper) && row<col) )
+ kernel.assignCoeff(row,col);
+ else if(SetOpposite)
+ kernel.assignOppositeCoeff(row,col);
+ }
+};
+
+// prevent buggy user code from causing an infinite recursion
+template<typename Kernel, unsigned int Mode, bool SetOpposite>
+struct triangular_assignment_loop<Kernel, Mode, 0, SetOpposite>
+{
+ EIGEN_DEVICE_FUNC
+ static inline void run(Kernel &) {}
+};
+
+
+
+// TODO: experiment with a recursive assignment procedure splitting the current
+// triangular part into one rectangular and two triangular parts.
+
+
+template<typename Kernel, unsigned int Mode, bool SetOpposite>
+struct triangular_assignment_loop<Kernel, Mode, Dynamic, SetOpposite>
+{
+ typedef typename Kernel::Index Index;
+ typedef typename Kernel::Scalar Scalar;
+ EIGEN_DEVICE_FUNC
+ static inline void run(Kernel &kernel)
+ {
+ for(Index j = 0; j < kernel.cols(); ++j)
+ {
+ Index maxi = (std::min)(j, kernel.rows());
+ Index i = 0;
+ if (((Mode&Lower) && SetOpposite) || (Mode&Upper))
+ {
+ for(; i < maxi; ++i)
+ if(Mode&Upper) kernel.assignCoeff(i, j);
+ else kernel.assignOppositeCoeff(i, j);
+ }
+ else
+ i = maxi;
+
+ if(i<kernel.rows()) // then i==j
+ kernel.assignDiagonalCoeff(i++);
+
+ if (((Mode&Upper) && SetOpposite) || (Mode&Lower))
+ {
+ for(; i < kernel.rows(); ++i)
+ if(Mode&Lower) kernel.assignCoeff(i, j);
+ else kernel.assignOppositeCoeff(i, j);
+ }
+ }
+ }
+};
+
+} // end namespace internal
+
+/** Assigns a triangular or selfadjoint matrix to a dense matrix.
+ * If the matrix is triangular, the opposite part is set to zero. */
+template<typename Derived>
+template<typename DenseDerived>
+void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const
+{
+ other.derived().resize(this->rows(), this->cols());
+ internal::call_triangular_assignment_loop<Derived::Mode,(Derived::Mode&SelfAdjoint)==0 /* SetOpposite */>(other.derived(), derived().nestedExpression());
+}
+
+namespace internal {
+
+// Triangular = Product
+template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
+struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::assign_op<Scalar>, Dense2Triangular, Scalar>
+{
+ typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
+ {
+ dst.setZero();
+ dst._assignProduct(src, 1);
+ }
+};
+
+// Triangular += Product
+template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
+struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::add_assign_op<Scalar>, Dense2Triangular, Scalar>
+{
+ typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar> &)
+ {
+ dst._assignProduct(src, 1);
+ }
+};
+
+// Triangular -= Product
+template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
+struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::sub_assign_op<Scalar>, Dense2Triangular, Scalar>
+{
+ typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar> &)
+ {
+ dst._assignProduct(src, -1);
+ }
+};
+
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_TRIANGULARMATRIX_H
diff --git a/Eigen/src/Core/VectorwiseOp.h b/Eigen/src/Core/VectorwiseOp.h
index 52eb4f604..a8130e902 100644
--- a/Eigen/src/Core/VectorwiseOp.h
+++ b/Eigen/src/Core/VectorwiseOp.h
@@ -48,19 +48,9 @@ struct traits<PartialReduxExpr<MatrixType, MemberOp, Direction> >
ColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::MaxColsAtCompileTime,
- Flags0 = (unsigned int)_MatrixTypeNested::Flags & HereditaryBits,
- Flags = (Flags0 & ~RowMajorBit) | (RowsAtCompileTime == 1 ? RowMajorBit : 0),
+ Flags = RowsAtCompileTime == 1 ? RowMajorBit : 0,
TraversalSize = Direction==Vertical ? MatrixType::RowsAtCompileTime : MatrixType::ColsAtCompileTime
};
- #if EIGEN_GNUC_AT_LEAST(3,4)
- typedef typename MemberOp::template Cost<InputScalar,int(TraversalSize)> CostOpType;
- #else
- typedef typename MemberOp::template Cost<InputScalar,TraversalSize> CostOpType;
- #endif
- enum {
- CoeffReadCost = TraversalSize==Dynamic ? Dynamic
- : TraversalSize * traits<_MatrixTypeNested>::CoeffReadCost + int(CostOpType::value)
- };
};
}
diff --git a/Eigen/src/Core/Visitor.h b/Eigen/src/Core/Visitor.h
index 6f4b9ec35..810ec28e7 100644
--- a/Eigen/src/Core/Visitor.h
+++ b/Eigen/src/Core/Visitor.h
@@ -53,6 +53,33 @@ struct visitor_impl<Visitor, Derived, Dynamic>
}
};
+// evaluator adaptor
+template<typename XprType>
+class visitor_evaluator
+{
+public:
+ visitor_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) {}
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+
+ enum {
+ RowsAtCompileTime = XprType::RowsAtCompileTime,
+ CoeffReadCost = internal::evaluator<XprType>::CoeffReadCost
+ };
+
+ Index rows() const { return m_xpr.rows(); }
+ Index cols() const { return m_xpr.cols(); }
+ Index size() const { return m_xpr.size(); }
+
+ CoeffReturnType coeff(Index row, Index col) const
+ { return m_evaluator.coeff(row, col); }
+
+protected:
+ typename internal::evaluator<XprType>::nestedType m_evaluator;
+ const XprType &m_xpr;
+};
} // end namespace internal
/** Applies the visitor \a visitor to the whole coefficients of the matrix or vector.
@@ -76,14 +103,17 @@ template<typename Derived>
template<typename Visitor>
void DenseBase<Derived>::visit(Visitor& visitor) const
{
- enum { unroll = SizeAtCompileTime != Dynamic
- && CoeffReadCost != Dynamic
- && (SizeAtCompileTime == 1 || internal::functor_traits<Visitor>::Cost != Dynamic)
- && SizeAtCompileTime * CoeffReadCost + (SizeAtCompileTime-1) * internal::functor_traits<Visitor>::Cost
- <= EIGEN_UNROLLING_LIMIT };
- return internal::visitor_impl<Visitor, Derived,
+ typedef typename internal::visitor_evaluator<Derived> ThisEvaluator;
+ ThisEvaluator thisEval(derived());
+
+ enum { unroll = SizeAtCompileTime != Dynamic
+ && ThisEvaluator::CoeffReadCost != Dynamic
+ && (SizeAtCompileTime == 1 || internal::functor_traits<Visitor>::Cost != Dynamic)
+ && SizeAtCompileTime * ThisEvaluator::CoeffReadCost + (SizeAtCompileTime-1) * internal::functor_traits<Visitor>::Cost
+ <= EIGEN_UNROLLING_LIMIT };
+ return internal::visitor_impl<Visitor, ThisEvaluator,
unroll ? int(SizeAtCompileTime) : Dynamic
- >::run(derived(), visitor);
+ >::run(thisEval, visitor);
}
namespace internal {
diff --git a/Eigen/src/Core/arch/AVX/PacketMath.h b/Eigen/src/Core/arch/AVX/PacketMath.h
index 66b97bd69..01730c5ee 100644
--- a/Eigen/src/Core/arch/AVX/PacketMath.h
+++ b/Eigen/src/Core/arch/AVX/PacketMath.h
@@ -141,7 +141,7 @@ template<> EIGEN_STRONG_INLINE Packet8f pmadd(const Packet8f& a, const Packet8f&
// so let's enforce it to generate a vfmadd231ps instruction since the most common use case is to accumulate
// the result of the product.
Packet8f res = c;
- asm("vfmadd231ps %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
+ __asm__("vfmadd231ps %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
return res;
#else
return _mm256_fmadd_ps(a,b,c);
@@ -151,7 +151,7 @@ template<> EIGEN_STRONG_INLINE Packet4d pmadd(const Packet4d& a, const Packet4d&
#if defined(__clang__) || defined(__GNUC__)
// see above
Packet4d res = c;
- asm("vfmadd231pd %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
+ __asm__("vfmadd231pd %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
return res;
#else
return _mm256_fmadd_pd(a,b,c);
diff --git a/Eigen/src/Core/arch/NEON/PacketMath.h b/Eigen/src/Core/arch/NEON/PacketMath.h
index 380b76ae9..0504c095c 100644
--- a/Eigen/src/Core/arch/NEON/PacketMath.h
+++ b/Eigen/src/Core/arch/NEON/PacketMath.h
@@ -52,12 +52,12 @@ typedef uint32x4_t Packet4ui;
// arm64 does have the pld instruction. If available, let's trust the __builtin_prefetch built-in function
// which available on LLVM and GCC (at least)
-#if (defined(__has_builtin) && __has_builtin(__builtin_prefetch)) || defined(__GNUC__)
+#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || defined(__GNUC__)
#define EIGEN_ARM_PREFETCH(ADDR) __builtin_prefetch(ADDR);
#elif defined __pld
#define EIGEN_ARM_PREFETCH(ADDR) __pld(ADDR)
#elif !defined(__aarch64__)
- #define EIGEN_ARM_PREFETCH(ADDR) asm volatile ( " pld [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" );
+ #define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__ ( " pld [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" );
#else
// by default no explicit prefetching
#define EIGEN_ARM_PREFETCH(ADDR)
diff --git a/Eigen/src/Core/functors/AssignmentFunctors.h b/Eigen/src/Core/functors/AssignmentFunctors.h
index ae264aa64..d4d85a1ca 100644
--- a/Eigen/src/Core/functors/AssignmentFunctors.h
+++ b/Eigen/src/Core/functors/AssignmentFunctors.h
@@ -31,7 +31,7 @@ template<typename Scalar>
struct functor_traits<assign_op<Scalar> > {
enum {
Cost = NumTraits<Scalar>::ReadCost,
- PacketAccess = packet_traits<Scalar>::IsVectorized
+ PacketAccess = packet_traits<Scalar>::Vectorizable
};
};
@@ -73,7 +73,7 @@ template<typename Scalar>
struct functor_traits<sub_assign_op<Scalar> > {
enum {
Cost = NumTraits<Scalar>::ReadCost + NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasAdd
+ PacketAccess = packet_traits<Scalar>::HasSub
};
};
@@ -81,22 +81,24 @@ struct functor_traits<sub_assign_op<Scalar> > {
* \brief Template functor for scalar/packet assignment with multiplication
*
*/
-template<typename Scalar> struct mul_assign_op {
+template<typename DstScalar, typename SrcScalar=DstScalar>
+struct mul_assign_op {
EIGEN_EMPTY_STRUCT_CTOR(mul_assign_op)
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Scalar& a, const Scalar& b) const { a *= b; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a *= b; }
template<int Alignment, typename Packet>
- EIGEN_STRONG_INLINE void assignPacket(Scalar* a, const Packet& b) const
- { internal::pstoret<Scalar,Packet,Alignment>(a,internal::pmul(internal::ploadt<Packet,Alignment>(a),b)); }
+ EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
+ { internal::pstoret<DstScalar,Packet,Alignment>(a,internal::pmul(internal::ploadt<Packet,Alignment>(a),b)); }
};
-template<typename Scalar>
-struct functor_traits<mul_assign_op<Scalar> > {
+template<typename DstScalar, typename SrcScalar>
+struct functor_traits<mul_assign_op<DstScalar,SrcScalar> > {
enum {
- Cost = NumTraits<Scalar>::ReadCost + NumTraits<Scalar>::MulCost,
- PacketAccess = packet_traits<Scalar>::HasMul
+ Cost = NumTraits<DstScalar>::ReadCost + NumTraits<DstScalar>::MulCost,
+ PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::HasMul
};
};
+template<typename DstScalar,typename SrcScalar> struct functor_is_product_like<mul_assign_op<DstScalar,SrcScalar> > { enum { ret = 1 }; };
/** \internal
* \brief Template functor for scalar/packet assignment with diviving
@@ -115,7 +117,7 @@ template<typename Scalar>
struct functor_traits<div_assign_op<Scalar> > {
enum {
Cost = NumTraits<Scalar>::ReadCost + NumTraits<Scalar>::MulCost,
- PacketAccess = packet_traits<Scalar>::HasMul
+ PacketAccess = packet_traits<Scalar>::HasDiv
};
};
@@ -156,7 +158,7 @@ template<typename Scalar>
struct functor_traits<swap_assign_op<Scalar> > {
enum {
Cost = 3 * NumTraits<Scalar>::ReadCost,
- PacketAccess = packet_traits<Scalar>::IsVectorized
+ PacketAccess = packet_traits<Scalar>::Vectorizable
};
};
diff --git a/Eigen/src/Core/functors/BinaryFunctors.h b/Eigen/src/Core/functors/BinaryFunctors.h
index ba094f5d1..157d075a7 100644
--- a/Eigen/src/Core/functors/BinaryFunctors.h
+++ b/Eigen/src/Core/functors/BinaryFunctors.h
@@ -167,9 +167,17 @@ template<typename Scalar> struct scalar_hypot_op {
EIGEN_USING_STD_MATH(max);
EIGEN_USING_STD_MATH(min);
using std::sqrt;
- Scalar p = (max)(_x, _y);
- Scalar q = (min)(_x, _y);
- Scalar qp = q/p;
+ Scalar p, qp;
+ if(_x>_y)
+ {
+ p = _x;
+ qp = _y / p;
+ }
+ else
+ {
+ p = _y;
+ qp = _x / p;
+ }
return p * sqrt(Scalar(1) + qp*qp);
}
};
diff --git a/Eigen/src/Core/products/CoeffBasedProduct.h b/Eigen/src/Core/products/CoeffBasedProduct.h
deleted file mode 100644
index 637513132..000000000
--- a/Eigen/src/Core/products/CoeffBasedProduct.h
+++ /dev/null
@@ -1,452 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COEFFBASED_PRODUCT_H
-#define EIGEN_COEFFBASED_PRODUCT_H
-
-namespace Eigen {
-
-namespace internal {
-
-/*********************************************************************************
-* Coefficient based product implementation.
-* It is designed for the following use cases:
-* - small fixed sizes
-* - lazy products
-*********************************************************************************/
-
-/* Since the all the dimensions of the product are small, here we can rely
- * on the generic Assign mechanism to evaluate the product per coeff (or packet).
- *
- * Note that here the inner-loops should always be unrolled.
- */
-
-template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl;
-
-template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl;
-
-template<typename LhsNested, typename RhsNested, int NestingFlags>
-struct traits<CoeffBasedProduct<LhsNested,RhsNested,NestingFlags> >
-{
- typedef MatrixXpr XprKind;
- typedef typename remove_all<LhsNested>::type _LhsNested;
- typedef typename remove_all<RhsNested>::type _RhsNested;
- typedef typename scalar_product_traits<typename _LhsNested::Scalar, typename _RhsNested::Scalar>::ReturnType Scalar;
- typedef typename promote_storage_type<typename traits<_LhsNested>::StorageKind,
- typename traits<_RhsNested>::StorageKind>::ret StorageKind;
- typedef typename promote_index_type<typename traits<_LhsNested>::Index,
- typename traits<_RhsNested>::Index>::type Index;
-
- enum {
- LhsCoeffReadCost = _LhsNested::CoeffReadCost,
- RhsCoeffReadCost = _RhsNested::CoeffReadCost,
- LhsFlags = _LhsNested::Flags,
- RhsFlags = _RhsNested::Flags,
-
- RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
- ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
- InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
-
- MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
-
- LhsRowMajor = LhsFlags & RowMajorBit,
- RhsRowMajor = RhsFlags & RowMajorBit,
-
- SameType = is_same<typename _LhsNested::Scalar,typename _RhsNested::Scalar>::value,
-
- CanVectorizeRhs = RhsRowMajor && (RhsFlags & PacketAccessBit)
- && (ColsAtCompileTime == Dynamic
- || ( (ColsAtCompileTime % packet_traits<Scalar>::size) == 0
- && (RhsFlags&AlignedBit)
- )
- ),
-
- CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit)
- && (RowsAtCompileTime == Dynamic
- || ( (RowsAtCompileTime % packet_traits<Scalar>::size) == 0
- && (LhsFlags&AlignedBit)
- )
- ),
-
- EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
- : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
- : (RhsRowMajor && !CanVectorizeLhs),
-
- Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit)
- | (EvalToRowMajor ? RowMajorBit : 0)
- | NestingFlags
- | (CanVectorizeLhs ? (LhsFlags & AlignedBit) : 0)
- | (CanVectorizeRhs ? (RhsFlags & AlignedBit) : 0)
- // TODO enable vectorization for mixed types
- | (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0),
-
- CoeffReadCost = InnerSize == Dynamic ? Dynamic
- : InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
- + (InnerSize - 1) * NumTraits<Scalar>::AddCost,
-
- /* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
- * of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
- * loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
- * the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
- */
- CanVectorizeInner = SameType
- && LhsRowMajor
- && (!RhsRowMajor)
- && (LhsFlags & RhsFlags & ActualPacketAccessBit)
- && (LhsFlags & RhsFlags & AlignedBit)
- && (InnerSize % packet_traits<Scalar>::size == 0)
- };
-};
-
-} // end namespace internal
-
-template<typename LhsNested, typename RhsNested, int NestingFlags>
-class CoeffBasedProduct
- : internal::no_assignment_operator,
- public MatrixBase<CoeffBasedProduct<LhsNested, RhsNested, NestingFlags> >
-{
- public:
-
- typedef MatrixBase<CoeffBasedProduct> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(CoeffBasedProduct)
- typedef typename Base::PlainObject PlainObject;
-
- private:
-
- typedef typename internal::traits<CoeffBasedProduct>::_LhsNested _LhsNested;
- typedef typename internal::traits<CoeffBasedProduct>::_RhsNested _RhsNested;
-
- enum {
- PacketSize = internal::packet_traits<Scalar>::size,
- InnerSize = internal::traits<CoeffBasedProduct>::InnerSize,
- Unroll = CoeffReadCost != Dynamic && CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
- CanVectorizeInner = internal::traits<CoeffBasedProduct>::CanVectorizeInner
- };
-
- typedef internal::product_coeff_impl<CanVectorizeInner ? InnerVectorizedTraversal : DefaultTraversal,
- Unroll ? InnerSize-1 : Dynamic,
- _LhsNested, _RhsNested, Scalar> ScalarCoeffImpl;
-
- typedef CoeffBasedProduct<LhsNested,RhsNested,NestByRefBit> LazyCoeffBasedProductType;
-
- public:
-
- EIGEN_DEVICE_FUNC
- inline CoeffBasedProduct(const CoeffBasedProduct& other)
- : Base(), m_lhs(other.m_lhs), m_rhs(other.m_rhs)
- {}
-
- template<typename Lhs, typename Rhs>
- EIGEN_DEVICE_FUNC
- inline CoeffBasedProduct(const Lhs& lhs, const Rhs& rhs)
- : m_lhs(lhs), m_rhs(rhs)
- {
- // we don't allow taking products of matrices of different real types, as that wouldn't be vectorizable.
- // We still allow to mix T and complex<T>.
- EIGEN_STATIC_ASSERT((internal::scalar_product_traits<typename Lhs::RealScalar, typename Rhs::RealScalar>::Defined),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- eigen_assert(lhs.cols() == rhs.rows()
- && "invalid matrix product"
- && "if you wanted a coeff-wise or a dot product use the respective explicit functions");
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
- {
- Scalar res;
- ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
- return res;
- }
-
- /* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
- * which is why we don't set the LinearAccessBit.
- */
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
- {
- Scalar res;
- const Index row = RowsAtCompileTime == 1 ? 0 : index;
- const Index col = RowsAtCompileTime == 1 ? index : 0;
- ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
- return res;
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE const PacketScalar packet(Index row, Index col) const
- {
- PacketScalar res;
- internal::product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
- Unroll ? InnerSize-1 : Dynamic,
- _LhsNested, _RhsNested, PacketScalar, LoadMode>
- ::run(row, col, m_lhs, m_rhs, res);
- return res;
- }
-
- // Implicit conversion to the nested type (trigger the evaluation of the product)
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE operator const PlainObject& () const
- {
- m_result.lazyAssign(*this);
- return m_result;
- }
-
- EIGEN_DEVICE_FUNC const _LhsNested& lhs() const { return m_lhs; }
- EIGEN_DEVICE_FUNC const _RhsNested& rhs() const { return m_rhs; }
-
- EIGEN_DEVICE_FUNC
- const Diagonal<const LazyCoeffBasedProductType,0> diagonal() const
- { return reinterpret_cast<const LazyCoeffBasedProductType&>(*this); }
-
- template<int DiagonalIndex>
- EIGEN_DEVICE_FUNC
- const Diagonal<const LazyCoeffBasedProductType,DiagonalIndex> diagonal() const
- { return reinterpret_cast<const LazyCoeffBasedProductType&>(*this); }
-
- EIGEN_DEVICE_FUNC
- const Diagonal<const LazyCoeffBasedProductType,Dynamic> diagonal(Index index) const
- { return reinterpret_cast<const LazyCoeffBasedProductType&>(*this).diagonal(index); }
-
- protected:
- typename internal::add_const_on_value_type<LhsNested>::type m_lhs;
- typename internal::add_const_on_value_type<RhsNested>::type m_rhs;
-
- mutable PlainObject m_result;
-};
-
-namespace internal {
-
-// here we need to overload the nested rule for products
-// such that the nested type is a const reference to a plain matrix
-template<typename Lhs, typename Rhs, int N, typename PlainObject>
-struct nested<CoeffBasedProduct<Lhs,Rhs,EvalBeforeNestingBit|EvalBeforeAssigningBit>, N, PlainObject>
-{
- typedef PlainObject const& type;
-};
-
-/***************************************************************************
-* Normal product .coeff() implementation (with meta-unrolling)
-***************************************************************************/
-
-/**************************************
-*** Scalar path - no vectorization ***
-**************************************/
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl<DefaultTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
-{
- typedef typename Lhs::Index Index;
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
- {
- product_coeff_impl<DefaultTraversal, UnrollingIndex-1, Lhs, Rhs, RetScalar>::run(row, col, lhs, rhs, res);
- res += lhs.coeff(row, UnrollingIndex) * rhs.coeff(UnrollingIndex, col);
- }
-};
-
-template<typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl<DefaultTraversal, 0, Lhs, Rhs, RetScalar>
-{
- typedef typename Lhs::Index Index;
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
- {
- res = lhs.coeff(row, 0) * rhs.coeff(0, col);
- }
-};
-
-template<typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl<DefaultTraversal, Dynamic, Lhs, Rhs, RetScalar>
-{
- typedef typename Lhs::Index Index;
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar& res)
- {
- eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
- res = lhs.coeff(row, 0) * rhs.coeff(0, col);
- for(Index i = 1; i < lhs.cols(); ++i)
- res += lhs.coeff(row, i) * rhs.coeff(i, col);
- }
-};
-
-/*******************************************
-*** Scalar path with inner vectorization ***
-*******************************************/
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet>
-struct product_coeff_vectorized_unroller
-{
- typedef typename Lhs::Index Index;
- enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
- {
- product_coeff_vectorized_unroller<UnrollingIndex-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
- pres = padd(pres, pmul( lhs.template packet<Aligned>(row, UnrollingIndex) , rhs.template packet<Aligned>(UnrollingIndex, col) ));
- }
-};
-
-template<typename Lhs, typename Rhs, typename Packet>
-struct product_coeff_vectorized_unroller<0, Lhs, Rhs, Packet>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
- {
- pres = pmul(lhs.template packet<Aligned>(row, 0) , rhs.template packet<Aligned>(0, col));
- }
-};
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl<InnerVectorizedTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
-{
- typedef typename Lhs::PacketScalar Packet;
- typedef typename Lhs::Index Index;
- enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
- {
- Packet pres;
- product_coeff_vectorized_unroller<UnrollingIndex+1-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
- res = predux(pres);
- }
-};
-
-template<typename Lhs, typename Rhs, int LhsRows = Lhs::RowsAtCompileTime, int RhsCols = Rhs::ColsAtCompileTime>
-struct product_coeff_vectorized_dyn_selector
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
- {
- res = lhs.row(row).transpose().cwiseProduct(rhs.col(col)).sum();
- }
-};
-
-// NOTE the 3 following specializations are because taking .col(0) on a vector is a bit slower
-// NOTE maybe they are now useless since we have a specialization for Block<Matrix>
-template<typename Lhs, typename Rhs, int RhsCols>
-struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,RhsCols>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index /*row*/, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
- {
- res = lhs.transpose().cwiseProduct(rhs.col(col)).sum();
- }
-};
-
-template<typename Lhs, typename Rhs, int LhsRows>
-struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,LhsRows,1>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
- {
- res = lhs.row(row).transpose().cwiseProduct(rhs).sum();
- }
-};
-
-template<typename Lhs, typename Rhs>
-struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,1>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
- {
- res = lhs.transpose().cwiseProduct(rhs).sum();
- }
-};
-
-template<typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl<InnerVectorizedTraversal, Dynamic, Lhs, Rhs, RetScalar>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
- {
- product_coeff_vectorized_dyn_selector<Lhs,Rhs>::run(row, col, lhs, rhs, res);
- }
-};
-
-/*******************
-*** Packet path ***
-*******************/
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
- {
- product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
- res = pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex)), rhs.template packet<LoadMode>(UnrollingIndex, col), res);
- }
-};
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
- {
- product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
- res = pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex), pset1<Packet>(rhs.coeff(UnrollingIndex, col)), res);
- }
-};
-
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
- {
- res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
- }
-};
-
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
- {
- res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
- }
-};
-
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
- {
- eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
- res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
- for(Index i = 1; i < lhs.cols(); ++i)
- res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
- }
-};
-
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
- {
- eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
- res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
- for(Index i = 1; i < lhs.cols(); ++i)
- res = pmadd(lhs.template packet<LoadMode>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_COEFFBASED_PRODUCT_H
diff --git a/Eigen/src/Core/products/GeneralMatrixMatrix.h b/Eigen/src/Core/products/GeneralMatrixMatrix.h
index 6ad07eccb..b7e1867f0 100644
--- a/Eigen/src/Core/products/GeneralMatrixMatrix.h
+++ b/Eigen/src/Core/products/GeneralMatrixMatrix.h
@@ -216,8 +216,8 @@ struct gemm_functor
cols = m_rhs.cols();
Gemm::run(rows, cols, m_lhs.cols(),
- /*(const Scalar*)*/&m_lhs.coeffRef(row,0), m_lhs.outerStride(),
- /*(const Scalar*)*/&m_rhs.coeffRef(0,col), m_rhs.outerStride(),
+ &m_lhs.coeffRef(row,0), m_lhs.outerStride(),
+ &m_rhs.coeffRef(0,col), m_rhs.outerStride(),
(Scalar*)&(m_dest.coeffRef(row,col)), m_dest.outerStride(),
m_actualAlpha, m_blocking, info);
}
@@ -367,84 +367,93 @@ class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, M
} // end namespace internal
+namespace internal {
+
template<typename Lhs, typename Rhs>
-class GeneralProduct<Lhs, Rhs, GemmProduct>
- : public ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs>
+struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct>
+ : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct> >
{
- enum {
- MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime)
- };
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
-
- typedef typename Lhs::Scalar LhsScalar;
- typedef typename Rhs::Scalar RhsScalar;
- typedef Scalar ResScalar;
-
- GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
- {
- typedef internal::scalar_product_op<LhsScalar,RhsScalar> BinOp;
- EIGEN_CHECK_BINARY_COMPATIBILIY(BinOp,LhsScalar,RhsScalar);
- }
-
- template<typename Dest>
- inline void evalTo(Dest& dst) const
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+ typedef typename Product<Lhs,Rhs>::Index Index;
+ typedef typename Lhs::Scalar LhsScalar;
+ typedef typename Rhs::Scalar RhsScalar;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef typename internal::remove_all<ActualLhsType>::type ActualLhsTypeCleaned;
+
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+ typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
+
+ enum {
+ MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime)
+ };
+
+ typedef generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> lazyproduct;
+
+ template<typename Dst>
+ static void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
+ lazyproduct::evalTo(dst, lhs, rhs);
+ else
{
- if((m_rhs.rows()+dst.rows()+dst.cols())<20 && m_rhs.rows()>0)
- dst.noalias() = m_lhs .lazyProduct( m_rhs );
- else
- {
- dst.setZero();
- scaleAndAddTo(dst,Scalar(1));
- }
+ dst.setZero();
+ scaleAndAddTo(dst, lhs, rhs, Scalar(1));
}
+ }
- template<typename Dest>
- inline void addTo(Dest& dst) const
- {
- if((m_rhs.rows()+dst.rows()+dst.cols())<20 && m_rhs.rows()>0)
- dst.noalias() += m_lhs .lazyProduct( m_rhs );
- else
- scaleAndAddTo(dst,Scalar(1));
- }
+ template<typename Dst>
+ static void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
+ lazyproduct::addTo(dst, lhs, rhs);
+ else
+ scaleAndAddTo(dst,lhs, rhs, Scalar(1));
+ }
- template<typename Dest>
- inline void subTo(Dest& dst) const
- {
- if((m_rhs.rows()+dst.rows()+dst.cols())<20 && m_rhs.rows()>0)
- dst.noalias() -= m_lhs .lazyProduct( m_rhs );
- else
- scaleAndAddTo(dst,Scalar(-1));
- }
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
- {
- eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
+ template<typename Dst>
+ static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
+ lazyproduct::subTo(dst, lhs, rhs);
+ else
+ scaleAndAddTo(dst, lhs, rhs, Scalar(-1));
+ }
+
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const Lhs& a_lhs, const Rhs& a_rhs, const Scalar& alpha)
+ {
+ eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols());
- typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
- typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
+ typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
+ typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);
- Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
- * RhsBlasTraits::extractScalarFactor(m_rhs);
+ Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
+ * RhsBlasTraits::extractScalarFactor(a_rhs);
- typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar,
- Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;
+ typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar,
+ Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;
- typedef internal::gemm_functor<
- Scalar, Index,
- internal::general_matrix_matrix_product<
- Index,
- LhsScalar, (_ActualLhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate),
- RhsScalar, (_ActualRhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate),
- (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>,
- _ActualLhsType, _ActualRhsType, Dest, BlockingType> GemmFunctor;
+ typedef internal::gemm_functor<
+ Scalar, Index,
+ internal::general_matrix_matrix_product<
+ Index,
+ LhsScalar, (ActualLhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate),
+ RhsScalar, (ActualRhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate),
+ (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>,
+ ActualLhsTypeCleaned, ActualRhsTypeCleaned, Dest, BlockingType> GemmFunctor;
- BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), true);
+ BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), true);
- internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), this->rows(), this->cols(), Dest::Flags&RowMajorBit);
- }
+ internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>
+ (GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), Dest::Flags&RowMajorBit);
+ }
};
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_GENERAL_MATRIX_MATRIX_H
diff --git a/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h b/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h
index 225b994d1..7db3e3d38 100644
--- a/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h
+++ b/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h
@@ -20,7 +20,7 @@ namespace internal {
/**********************************************************************
* This file implements a general A * B product while
* evaluating only one triangular part of the product.
-* This is more general version of self adjoint product (C += A A^T)
+* This is a more general version of self adjoint product (C += A A^T)
* as the level 3 SYRK Blas routine.
**********************************************************************/
@@ -262,14 +262,14 @@ struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,false>
};
template<typename MatrixType, unsigned int UpLo>
-template<typename ProductDerived, typename _Lhs, typename _Rhs>
-TriangularView<MatrixType,UpLo>& TriangularView<MatrixType,UpLo>::assignProduct(const ProductBase<ProductDerived, _Lhs,_Rhs>& prod, const Scalar& alpha)
+template<typename ProductType>
+TriangularView<MatrixType,UpLo>& TriangularViewImpl<MatrixType,UpLo,Dense>::_assignProduct(const ProductType& prod, const Scalar& alpha)
{
- eigen_assert(m_matrix.rows() == prod.rows() && m_matrix.cols() == prod.cols());
-
- general_product_to_triangular_selector<MatrixType, ProductDerived, UpLo, (_Lhs::ColsAtCompileTime==1) || (_Rhs::RowsAtCompileTime==1)>::run(m_matrix.const_cast_derived(), prod.derived(), alpha);
+ eigen_assert(derived().nestedExpression().rows() == prod.rows() && derived().cols() == prod.cols());
+
+ general_product_to_triangular_selector<MatrixType, ProductType, UpLo, internal::traits<ProductType>::InnerSize==1>::run(derived().nestedExpression().const_cast_derived(), prod, alpha);
- return *this;
+ return derived();
}
} // end namespace Eigen
diff --git a/Eigen/src/Core/products/GeneralMatrixMatrix_MKL.h b/Eigen/src/Core/products/GeneralMatrixMatrix_MKL.h
index 060af328e..b6ae729b2 100644
--- a/Eigen/src/Core/products/GeneralMatrixMatrix_MKL.h
+++ b/Eigen/src/Core/products/GeneralMatrixMatrix_MKL.h
@@ -53,6 +53,8 @@ template< \
int RhsStorageOrder, bool ConjugateRhs> \
struct general_matrix_matrix_product<Index,EIGTYPE,LhsStorageOrder,ConjugateLhs,EIGTYPE,RhsStorageOrder,ConjugateRhs,ColMajor> \
{ \
+typedef gebp_traits<EIGTYPE,EIGTYPE> Traits; \
+\
static void run(Index rows, Index cols, Index depth, \
const EIGTYPE* _lhs, Index lhsStride, \
const EIGTYPE* _rhs, Index rhsStride, \
diff --git a/Eigen/src/Core/products/SelfadjointMatrixMatrix.h b/Eigen/src/Core/products/SelfadjointMatrixMatrix.h
index d67164ec3..4e507b6cf 100644
--- a/Eigen/src/Core/products/SelfadjointMatrixMatrix.h
+++ b/Eigen/src/Core/products/SelfadjointMatrixMatrix.h
@@ -460,55 +460,54 @@ EIGEN_DONT_INLINE void product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,f
***************************************************************************/
namespace internal {
+
template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
-struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false> >
- : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs> >
-{};
-}
-
-template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
-struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>
- : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs >
+struct selfadjoint_product_impl<Lhs,LhsMode,false,Rhs,RhsMode,false>
{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
-
- SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+ typedef typename Product<Lhs,Rhs>::Index Index;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+
enum {
LhsIsUpper = (LhsMode&(Upper|Lower))==Upper,
LhsIsSelfAdjoint = (LhsMode&SelfAdjoint)==SelfAdjoint,
RhsIsUpper = (RhsMode&(Upper|Lower))==Upper,
RhsIsSelfAdjoint = (RhsMode&SelfAdjoint)==SelfAdjoint
};
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
+
+ template<typename Dest>
+ static void run(Dest &dst, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha)
{
- eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
+ eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols());
- typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
- typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
+ typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
+ typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);
- Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
- * RhsBlasTraits::extractScalarFactor(m_rhs);
+ Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
+ * RhsBlasTraits::extractScalarFactor(a_rhs);
internal::product_selfadjoint_matrix<Scalar, Index,
- EIGEN_LOGICAL_XOR(LhsIsUpper,
- internal::traits<Lhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, LhsIsSelfAdjoint,
+ EIGEN_LOGICAL_XOR(LhsIsUpper,internal::traits<Lhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, LhsIsSelfAdjoint,
NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsIsUpper,bool(LhsBlasTraits::NeedToConjugate)),
- EIGEN_LOGICAL_XOR(RhsIsUpper,
- internal::traits<Rhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, RhsIsSelfAdjoint,
+ EIGEN_LOGICAL_XOR(RhsIsUpper,internal::traits<Rhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, RhsIsSelfAdjoint,
NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsIsUpper,bool(RhsBlasTraits::NeedToConjugate)),
internal::traits<Dest>::Flags&RowMajorBit ? RowMajor : ColMajor>
::run(
- lhs.rows(), rhs.cols(), // sizes
- &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
- &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info
- &dst.coeffRef(0,0), dst.outerStride(), // result info
- actualAlpha // alpha
+ lhs.rows(), rhs.cols(), // sizes
+ &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
+ &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info
+ &dst.coeffRef(0,0), dst.outerStride(), // result info
+ actualAlpha // alpha
);
}
};
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_H
diff --git a/Eigen/src/Core/products/SelfadjointMatrixVector.h b/Eigen/src/Core/products/SelfadjointMatrixVector.h
index 26e787949..d9c041f0c 100644
--- a/Eigen/src/Core/products/SelfadjointMatrixVector.h
+++ b/Eigen/src/Core/products/SelfadjointMatrixVector.h
@@ -169,45 +169,45 @@ EIGEN_DONT_INLINE void selfadjoint_matrix_vector_product<Scalar,Index,StorageOrd
***************************************************************************/
namespace internal {
-template<typename Lhs, int LhsMode, typename Rhs>
-struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true> >
- : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs> >
-{};
-}
template<typename Lhs, int LhsMode, typename Rhs>
-struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
- : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs >
+struct selfadjoint_product_impl<Lhs,LhsMode,false,Rhs,0,true>
{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
-
- enum {
- LhsUpLo = LhsMode&(Upper|Lower)
- };
-
- SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+ typedef typename Product<Lhs,Rhs>::Index Index;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef typename internal::remove_all<ActualLhsType>::type ActualLhsTypeCleaned;
+
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+ typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
+
+ enum { LhsUpLo = LhsMode&(Upper|Lower) };
+
+ template<typename Dest>
+ static void run(Dest& dest, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha)
{
typedef typename Dest::Scalar ResScalar;
- typedef typename Base::RhsScalar RhsScalar;
+ typedef typename Rhs::Scalar RhsScalar;
typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
- eigen_assert(dest.rows()==m_lhs.rows() && dest.cols()==m_rhs.cols());
+ eigen_assert(dest.rows()==a_lhs.rows() && dest.cols()==a_rhs.cols());
- typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
- typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
+ typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
+ typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);
- Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
- * RhsBlasTraits::extractScalarFactor(m_rhs);
+ Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
+ * RhsBlasTraits::extractScalarFactor(a_rhs);
enum {
EvalToDest = (Dest::InnerStrideAtCompileTime==1),
- UseRhs = (_ActualRhsType::InnerStrideAtCompileTime==1)
+ UseRhs = (ActualRhsTypeCleaned::InnerStrideAtCompileTime==1)
};
internal::gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,!EvalToDest> static_dest;
- internal::gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!UseRhs> static_rhs;
+ internal::gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!UseRhs> static_rhs;
ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
EvalToDest ? dest.data() : static_dest.data());
@@ -218,7 +218,7 @@ struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
if(!EvalToDest)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- Index size = dest.size();
+ int size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
MappedDest(actualDestPtr, dest.size()) = dest;
@@ -227,14 +227,15 @@ struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
if(!UseRhs)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- Index size = rhs.size();
+ int size = rhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
- Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
+ Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
}
- internal::selfadjoint_matrix_vector_product<Scalar, Index, (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
+ internal::selfadjoint_matrix_vector_product<Scalar, Index, (internal::traits<ActualLhsTypeCleaned>::Flags&RowMajorBit) ? RowMajor : ColMajor,
+ int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
(
lhs.rows(), // size
&lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
@@ -248,34 +249,24 @@ struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
}
};
-namespace internal {
-template<typename Lhs, typename Rhs, int RhsMode>
-struct traits<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false> >
- : traits<ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs> >
-{};
-}
-
template<typename Lhs, typename Rhs, int RhsMode>
-struct SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>
- : public ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs >
+struct selfadjoint_product_impl<Lhs,0,true,Rhs,RhsMode,false>
{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
-
- enum {
- RhsUpLo = RhsMode&(Upper|Lower)
- };
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+ enum { RhsUpLo = RhsMode&(Upper|Lower) };
- SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
+ template<typename Dest>
+ static void run(Dest& dest, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha)
{
// let's simply transpose the product
Transpose<Dest> destT(dest);
- SelfadjointProductMatrix<Transpose<const Rhs>, int(RhsUpLo)==Upper ? Lower : Upper, false,
- Transpose<const Lhs>, 0, true>(m_rhs.transpose(), m_lhs.transpose()).scaleAndAddTo(destT, alpha);
+ selfadjoint_product_impl<Transpose<const Rhs>, int(RhsUpLo)==Upper ? Lower : Upper, false,
+ Transpose<const Lhs>, 0, true>::run(destT, a_rhs.transpose(), a_lhs.transpose(), alpha);
}
};
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H
diff --git a/Eigen/src/Core/products/TriangularMatrixMatrix.h b/Eigen/src/Core/products/TriangularMatrixMatrix.h
index db7b27f8e..c2d0817ea 100644
--- a/Eigen/src/Core/products/TriangularMatrixMatrix.h
+++ b/Eigen/src/Core/products/TriangularMatrixMatrix.h
@@ -369,28 +369,29 @@ EIGEN_DONT_INLINE void product_triangular_matrix_matrix<Scalar,Index,Mode,false,
* Wrapper to product_triangular_matrix_matrix
***************************************************************************/
-template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
-struct traits<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false> >
- : traits<ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>, Lhs, Rhs> >
-{};
-
} // end namespace internal
+namespace internal {
template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
-struct TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>
- : public ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>, Lhs, Rhs >
+struct triangular_product_impl<Mode,LhsIsTriangular,Lhs,false,Rhs,false>
{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(TriangularProduct)
-
- TriangularProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
+ template<typename Dest> static void run(Dest& dst, const Lhs &a_lhs, const Rhs &a_rhs, const typename Dest::Scalar& alpha)
{
- typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
- typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
+ typedef typename Dest::Index Index;
+ typedef typename Dest::Scalar Scalar;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef typename internal::remove_all<ActualLhsType>::type ActualLhsTypeCleaned;
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+ typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
+
+ typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
+ typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);
- Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
- * RhsBlasTraits::extractScalarFactor(m_rhs);
+ Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
+ * RhsBlasTraits::extractScalarFactor(a_rhs);
typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar,
Lhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxColsAtCompileTime,4> BlockingType;
@@ -405,19 +406,21 @@ struct TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>
internal::product_triangular_matrix_matrix<Scalar, Index,
Mode, LhsIsTriangular,
- (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
- (internal::traits<_ActualRhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
+ (internal::traits<ActualLhsTypeCleaned>::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
+ (internal::traits<ActualRhsTypeCleaned>::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
(internal::traits<Dest >::Flags&RowMajorBit) ? RowMajor : ColMajor>
::run(
stripedRows, stripedCols, stripedDepth, // sizes
- &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
- &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info
+ &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
+ &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info
&dst.coeffRef(0,0), dst.outerStride(), // result info
actualAlpha, blocking
);
}
};
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_TRIANGULAR_MATRIX_MATRIX_H
diff --git a/Eigen/src/Core/products/TriangularMatrixMatrix_MKL.h b/Eigen/src/Core/products/TriangularMatrixMatrix_MKL.h
index ba41a1c99..4cc56a42f 100644
--- a/Eigen/src/Core/products/TriangularMatrixMatrix_MKL.h
+++ b/Eigen/src/Core/products/TriangularMatrixMatrix_MKL.h
@@ -109,7 +109,7 @@ struct product_triangular_matrix_matrix_trmm<EIGTYPE,Index,Mode,true, \
/* Non-square case - doesn't fit to MKL ?TRMM. Fall to default triangular product or call MKL ?GEMM*/ \
if (rows != depth) { \
\
- int nthr = mkl_domain_get_max_threads(MKL_BLAS); \
+ int nthr = mkl_domain_get_max_threads(EIGEN_MKL_DOMAIN_BLAS); \
\
if (((nthr==1) && (((std::max)(rows,depth)-diagSize)/(double)diagSize < 0.5))) { \
/* Most likely no benefit to call TRMM or GEMM from MKL*/ \
@@ -223,7 +223,7 @@ struct product_triangular_matrix_matrix_trmm<EIGTYPE,Index,Mode,false, \
/* Non-square case - doesn't fit to MKL ?TRMM. Fall to default triangular product or call MKL ?GEMM*/ \
if (cols != depth) { \
\
- int nthr = mkl_domain_get_max_threads(MKL_BLAS); \
+ int nthr = mkl_domain_get_max_threads(EIGEN_MKL_DOMAIN_BLAS); \
\
if ((nthr==1) && (((std::max)(cols,depth)-diagSize)/(double)diagSize < 0.5)) { \
/* Most likely no benefit to call TRMM or GEMM from MKL*/ \
diff --git a/Eigen/src/Core/products/TriangularMatrixVector.h b/Eigen/src/Core/products/TriangularMatrixVector.h
index 817768481..92d64e384 100644
--- a/Eigen/src/Core/products/TriangularMatrixVector.h
+++ b/Eigen/src/Core/products/TriangularMatrixVector.h
@@ -157,83 +157,67 @@ EIGEN_DONT_INLINE void triangular_matrix_vector_product<Index,Mode,LhsScalar,Con
* Wrapper to product_triangular_vector
***************************************************************************/
-template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
-struct traits<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,true> >
- : traits<ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,true>, Lhs, Rhs> >
-{};
-
-template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
-struct traits<TriangularProduct<Mode,LhsIsTriangular,Lhs,true,Rhs,false> >
- : traits<ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,true,Rhs,false>, Lhs, Rhs> >
-{};
-
-
-template<int StorageOrder>
+template<int Mode,int StorageOrder>
struct trmv_selector;
} // end namespace internal
+namespace internal {
+
template<int Mode, typename Lhs, typename Rhs>
-struct TriangularProduct<Mode,true,Lhs,false,Rhs,true>
- : public ProductBase<TriangularProduct<Mode,true,Lhs,false,Rhs,true>, Lhs, Rhs >
+struct triangular_product_impl<Mode,true,Lhs,false,Rhs,true>
{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(TriangularProduct)
-
- TriangularProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
+ template<typename Dest> static void run(Dest& dst, const Lhs &lhs, const Rhs &rhs, const typename Dest::Scalar& alpha)
{
- eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
+ eigen_assert(dst.rows()==lhs.rows() && dst.cols()==rhs.cols());
- internal::trmv_selector<(int(internal::traits<Lhs>::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(*this, dst, alpha);
+ internal::trmv_selector<Mode,(int(internal::traits<Lhs>::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(lhs, rhs, dst, alpha);
}
};
template<int Mode, typename Lhs, typename Rhs>
-struct TriangularProduct<Mode,false,Lhs,true,Rhs,false>
- : public ProductBase<TriangularProduct<Mode,false,Lhs,true,Rhs,false>, Lhs, Rhs >
+struct triangular_product_impl<Mode,false,Lhs,true,Rhs,false>
{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(TriangularProduct)
-
- TriangularProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
+ template<typename Dest> static void run(Dest& dst, const Lhs &lhs, const Rhs &rhs, const typename Dest::Scalar& alpha)
{
- eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
+ eigen_assert(dst.rows()==lhs.rows() && dst.cols()==rhs.cols());
- typedef TriangularProduct<(Mode & (UnitDiag|ZeroDiag)) | ((Mode & Lower) ? Upper : Lower),true,Transpose<const Rhs>,false,Transpose<const Lhs>,true> TriangularProductTranspose;
Transpose<Dest> dstT(dst);
- internal::trmv_selector<(int(internal::traits<Rhs>::Flags)&RowMajorBit) ? ColMajor : RowMajor>::run(
- TriangularProductTranspose(m_rhs.transpose(),m_lhs.transpose()), dstT, alpha);
+ internal::trmv_selector<(Mode & (UnitDiag|ZeroDiag)) | ((Mode & Lower) ? Upper : Lower),
+ (int(internal::traits<Rhs>::Flags)&RowMajorBit) ? ColMajor : RowMajor>
+ ::run(rhs.transpose(),lhs.transpose(), dstT, alpha);
}
};
+} // end namespace internal
+
namespace internal {
// TODO: find a way to factorize this piece of code with gemv_selector since the logic is exactly the same.
-template<> struct trmv_selector<ColMajor>
+template<int Mode> struct trmv_selector<Mode,ColMajor>
{
- template<int Mode, typename Lhs, typename Rhs, typename Dest>
- static void run(const TriangularProduct<Mode,true,Lhs,false,Rhs,true>& prod, Dest& dest, const typename TriangularProduct<Mode,true,Lhs,false,Rhs,true>::Scalar& alpha)
+ template<typename Lhs, typename Rhs, typename Dest>
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
- typedef TriangularProduct<Mode,true,Lhs,false,Rhs,true> ProductType;
- typedef typename ProductType::Index Index;
- typedef typename ProductType::LhsScalar LhsScalar;
- typedef typename ProductType::RhsScalar RhsScalar;
- typedef typename ProductType::Scalar ResScalar;
- typedef typename ProductType::RealScalar RealScalar;
- typedef typename ProductType::ActualLhsType ActualLhsType;
- typedef typename ProductType::ActualRhsType ActualRhsType;
- typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
- typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
+ typedef typename Dest::Index Index;
+ typedef typename Lhs::Scalar LhsScalar;
+ typedef typename Rhs::Scalar RhsScalar;
+ typedef typename Dest::Scalar ResScalar;
+ typedef typename Dest::RealScalar RealScalar;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+
typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
- typename internal::add_const_on_value_type<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
- typename internal::add_const_on_value_type<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
+ typename internal::add_const_on_value_type<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
+ typename internal::add_const_on_value_type<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);
- ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
- * RhsBlasTraits::extractScalarFactor(prod.rhs());
+ ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
+ * RhsBlasTraits::extractScalarFactor(rhs);
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
@@ -288,33 +272,33 @@ template<> struct trmv_selector<ColMajor>
}
};
-template<> struct trmv_selector<RowMajor>
+template<int Mode> struct trmv_selector<Mode,RowMajor>
{
- template<int Mode, typename Lhs, typename Rhs, typename Dest>
- static void run(const TriangularProduct<Mode,true,Lhs,false,Rhs,true>& prod, Dest& dest, const typename TriangularProduct<Mode,true,Lhs,false,Rhs,true>::Scalar& alpha)
+ template<typename Lhs, typename Rhs, typename Dest>
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
- typedef TriangularProduct<Mode,true,Lhs,false,Rhs,true> ProductType;
- typedef typename ProductType::LhsScalar LhsScalar;
- typedef typename ProductType::RhsScalar RhsScalar;
- typedef typename ProductType::Scalar ResScalar;
- typedef typename ProductType::Index Index;
- typedef typename ProductType::ActualLhsType ActualLhsType;
- typedef typename ProductType::ActualRhsType ActualRhsType;
- typedef typename ProductType::_ActualRhsType _ActualRhsType;
- typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
- typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
-
- typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
- typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
-
- ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
- * RhsBlasTraits::extractScalarFactor(prod.rhs());
+ typedef typename Dest::Index Index;
+ typedef typename Lhs::Scalar LhsScalar;
+ typedef typename Rhs::Scalar RhsScalar;
+ typedef typename Dest::Scalar ResScalar;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+ typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
+
+ typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
+ typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);
+
+ ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
+ * RhsBlasTraits::extractScalarFactor(rhs);
enum {
- DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
+ DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1
};
- gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
+ gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
@@ -325,7 +309,7 @@ template<> struct trmv_selector<RowMajor>
Index size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
- Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
+ Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
}
internal::triangular_matrix_vector_product
diff --git a/Eigen/src/Core/util/Constants.h b/Eigen/src/Core/util/Constants.h
index 31073b990..2c9fb443d 100644
--- a/Eigen/src/Core/util/Constants.h
+++ b/Eigen/src/Core/util/Constants.h
@@ -53,14 +53,13 @@ const int Infinity = -1;
const unsigned int RowMajorBit = 0x1;
/** \ingroup flags
- *
* means the expression should be evaluated by the calling expression */
const unsigned int EvalBeforeNestingBit = 0x2;
/** \ingroup flags
- *
+ * \deprecated
* means the expression should be evaluated before any assignment */
-const unsigned int EvalBeforeAssigningBit = 0x4;
+const unsigned int EvalBeforeAssigningBit = 0x4; // FIXME deprecated
/** \ingroup flags
*
@@ -155,6 +154,16 @@ const unsigned int AlignedBit = 0x80;
const unsigned int NestByRefBit = 0x100;
+/** \ingroup flags
+ *
+ * for an expression, this means that the storage order
+ * can be either row-major or column-major.
+ * The precise choice will be decided at evaluation time or when
+ * combined with other expressions.
+ * \sa \ref RowMajorBit, \ref TopicStorageOrders */
+const unsigned int NoPreferredStorageOrderBit = 0x200;
+
+
// list of flags that are inherited by default
const unsigned int HereditaryBits = RowMajorBit
| EvalBeforeNestingBit
@@ -431,7 +440,7 @@ namespace Architecture
/** \internal \ingroup enums
* Enum used as template parameter in GeneralProduct. */
-enum { CoeffBasedProductMode, LazyCoeffBasedProductMode, OuterProduct, InnerProduct, GemvProduct, GemmProduct };
+enum { DefaultProduct=0, CoeffBasedProductMode, LazyCoeffBasedProductMode, LazyProduct, OuterProduct, InnerProduct, GemvProduct, GemmProduct };
/** \internal \ingroup enums
* Enum used in experimental parallel implementation. */
@@ -440,12 +449,25 @@ enum Action {GetAction, SetAction};
/** The type used to identify a dense storage. */
struct Dense {};
+/** The type used to identify a permutation storage. */
+struct PermutationStorage {};
+
/** The type used to identify a matrix expression */
struct MatrixXpr {};
/** The type used to identify an array expression */
struct ArrayXpr {};
+// An evaluator must define its shape. By default, it can be one of the following:
+struct DenseShape { static std::string debugName() { return "DenseShape"; } };
+struct HomogeneousShape { static std::string debugName() { return "HomogeneousShape"; } };
+struct DiagonalShape { static std::string debugName() { return "DiagonalShape"; } };
+struct BandShape { static std::string debugName() { return "BandShape"; } };
+struct TriangularShape { static std::string debugName() { return "TriangularShape"; } };
+struct SelfAdjointShape { static std::string debugName() { return "SelfAdjointShape"; } };
+struct PermutationShape { static std::string debugName() { return "PermutationShape"; } };
+struct SparseShape { static std::string debugName() { return "SparseShape"; } };
+
} // end namespace Eigen
#endif // EIGEN_CONSTANTS_H
diff --git a/Eigen/src/Core/util/ForwardDeclarations.h b/Eigen/src/Core/util/ForwardDeclarations.h
index 33deb88ec..9ec57468b 100644
--- a/Eigen/src/Core/util/ForwardDeclarations.h
+++ b/Eigen/src/Core/util/ForwardDeclarations.h
@@ -36,6 +36,10 @@ template<typename Derived> struct accessors_level
};
};
+template<typename T> struct evaluator_traits;
+
+template< typename T> struct evaluator;
+
} // end namespace internal
template<typename T> struct NumTraits;
@@ -87,11 +91,19 @@ template<typename NullaryOp, typename MatrixType> class CwiseNullaryOp;
template<typename UnaryOp, typename MatrixType> class CwiseUnaryOp;
template<typename ViewOp, typename MatrixType> class CwiseUnaryView;
template<typename BinaryOp, typename Lhs, typename Rhs> class CwiseBinaryOp;
-template<typename BinOp, typename Lhs, typename Rhs> class SelfCwiseBinaryOp;
-template<typename Derived, typename Lhs, typename Rhs> class ProductBase;
-template<typename Lhs, typename Rhs> class Product;
-template<typename Lhs, typename Rhs, int Mode> class GeneralProduct;
-template<typename Lhs, typename Rhs, int NestingFlags> class CoeffBasedProduct;
+template<typename BinOp, typename Lhs, typename Rhs> class SelfCwiseBinaryOp; // TODO deprecated
+template<typename Derived, typename Lhs, typename Rhs> class ProductBase; // TODO deprecated
+template<typename Decomposition, typename Rhstype> class Solve;
+template<typename XprType> class Inverse;
+
+namespace internal {
+ template<typename Lhs, typename Rhs> struct product_tag;
+}
+
+template<typename Lhs, typename Rhs, int Option = DefaultProduct> class Product;
+
+template<typename Lhs, typename Rhs, int Mode> class GeneralProduct; // TODO deprecated
+template<typename Lhs, typename Rhs, int NestingFlags> class CoeffBasedProduct; // TODO deprecated
template<typename Derived> class DiagonalBase;
template<typename _DiagonalVectorType> class DiagonalWrapper;
@@ -109,7 +121,12 @@ template<typename Derived,
int Level = internal::accessors_level<Derived>::has_write_access ? WriteAccessors : ReadOnlyAccessors
> class MapBase;
template<int InnerStrideAtCompileTime, int OuterStrideAtCompileTime> class Stride;
+template<int Value = Dynamic> class InnerStride;
+template<int Value = Dynamic> class OuterStride;
template<typename MatrixType, int MapOptions=Unaligned, typename StrideType = Stride<0,0> > class Map;
+template<typename Derived> class RefBase;
+template<typename PlainObjectType, int Options = 0,
+ typename StrideType = typename internal::conditional<PlainObjectType::IsVectorAtCompileTime,InnerStride<1>,OuterStride<> >::type > class Ref;
template<typename Derived> class TriangularBase;
template<typename MatrixType, unsigned int Mode> class TriangularView;
@@ -122,8 +139,6 @@ template<typename ExpressionType> class ArrayWrapper;
template<typename ExpressionType> class MatrixWrapper;
namespace internal {
-template<typename DecompositionType, typename Rhs> struct solve_retval_base;
-template<typename DecompositionType, typename Rhs> struct solve_retval;
template<typename DecompositionType> struct kernel_retval_base;
template<typename DecompositionType> struct kernel_retval;
template<typename DecompositionType> struct image_retval_base;
@@ -136,6 +151,18 @@ template<typename _Scalar, int Rows=Dynamic, int Cols=Dynamic, int Supers=Dynami
namespace internal {
template<typename Lhs, typename Rhs> struct product_type;
+/** \internal
+ * \class product_evaluator
+ * Products need their own evaluator with more template arguments allowing for
+ * easier partial template specializations.
+ */
+template< typename T,
+ int ProductTag = internal::product_type<typename T::Lhs,typename T::Rhs>::ret,
+ typename LhsShape = typename evaluator_traits<typename T::Lhs>::Shape,
+ typename RhsShape = typename evaluator_traits<typename T::Rhs>::Shape,
+ typename LhsScalar = typename traits<typename T::Lhs>::Scalar,
+ typename RhsScalar = typename traits<typename T::Rhs>::Scalar
+ > struct product_evaluator;
}
template<typename Lhs, typename Rhs,
diff --git a/Eigen/src/Core/util/MKL_support.h b/Eigen/src/Core/util/MKL_support.h
index 8acca9c8c..1ef3b61db 100644
--- a/Eigen/src/Core/util/MKL_support.h
+++ b/Eigen/src/Core/util/MKL_support.h
@@ -76,6 +76,38 @@
#include <mkl_lapacke.h>
#define EIGEN_MKL_VML_THRESHOLD 128
+/* MKL_DOMAIN_BLAS, etc are defined only in 10.3 update 7 */
+/* MKL_BLAS, etc are not defined in 11.2 */
+#ifdef MKL_DOMAIN_ALL
+#define EIGEN_MKL_DOMAIN_ALL MKL_DOMAIN_ALL
+#else
+#define EIGEN_MKL_DOMAIN_ALL MKL_ALL
+#endif
+
+#ifdef MKL_DOMAIN_BLAS
+#define EIGEN_MKL_DOMAIN_BLAS MKL_DOMAIN_BLAS
+#else
+#define EIGEN_MKL_DOMAIN_BLAS MKL_BLAS
+#endif
+
+#ifdef MKL_DOMAIN_FFT
+#define EIGEN_MKL_DOMAIN_FFT MKL_DOMAIN_FFT
+#else
+#define EIGEN_MKL_DOMAIN_FFT MKL_FFT
+#endif
+
+#ifdef MKL_DOMAIN_VML
+#define EIGEN_MKL_DOMAIN_VML MKL_DOMAIN_VML
+#else
+#define EIGEN_MKL_DOMAIN_VML MKL_VML
+#endif
+
+#ifdef MKL_DOMAIN_PARDISO
+#define EIGEN_MKL_DOMAIN_PARDISO MKL_DOMAIN_PARDISO
+#else
+#define EIGEN_MKL_DOMAIN_PARDISO MKL_PARDISO
+#endif
+
namespace Eigen {
typedef std::complex<double> dcomplex;
diff --git a/Eigen/src/Core/util/Macros.h b/Eigen/src/Core/util/Macros.h
index 5e9b0a112..f9b908e22 100644
--- a/Eigen/src/Core/util/Macros.h
+++ b/Eigen/src/Core/util/Macros.h
@@ -107,6 +107,13 @@
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE std::ptrdiff_t
#endif
+// Cross compiler wrapper around LLVM's __has_builtin
+#ifdef __has_builtin
+# define EIGEN_HAS_BUILTIN(x) __has_builtin(x)
+#else
+# define EIGEN_HAS_BUILTIN(x) 0
+#endif
+
// A Clang feature extension to determine compiler features.
// We use it to determine 'cxx_rvalue_references'
#ifndef __has_feature
@@ -272,7 +279,7 @@ namespace Eigen {
#if !defined(EIGEN_ASM_COMMENT)
#if (defined __GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
- #define EIGEN_ASM_COMMENT(X) asm("#" X)
+ #define EIGEN_ASM_COMMENT(X) __asm__("#" X)
#else
#define EIGEN_ASM_COMMENT(X)
#endif
@@ -367,6 +374,8 @@ namespace Eigen {
* documentation in a single line.
**/
+// TODO The EIGEN_DENSE_PUBLIC_INTERFACE should not exists anymore
+
#define EIGEN_GENERIC_PUBLIC_INTERFACE(Derived) \
typedef typename Eigen::internal::traits<Derived>::Scalar Scalar; /*!< \brief Numeric type, e.g. float, double, int or std::complex<float>. */ \
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; /*!< \brief The underlying numeric type for composed scalar types. \details In cases where Scalar is e.g. std::complex<T>, T were corresponding to RealScalar. */ \
@@ -377,7 +386,6 @@ namespace Eigen {
enum { RowsAtCompileTime = Eigen::internal::traits<Derived>::RowsAtCompileTime, \
ColsAtCompileTime = Eigen::internal::traits<Derived>::ColsAtCompileTime, \
Flags = Eigen::internal::traits<Derived>::Flags, \
- CoeffReadCost = Eigen::internal::traits<Derived>::CoeffReadCost, \
SizeAtCompileTime = Base::SizeAtCompileTime, \
MaxSizeAtCompileTime = Base::MaxSizeAtCompileTime, \
IsVectorAtCompileTime = Base::IsVectorAtCompileTime };
@@ -396,13 +404,11 @@ namespace Eigen {
MaxRowsAtCompileTime = Eigen::internal::traits<Derived>::MaxRowsAtCompileTime, \
MaxColsAtCompileTime = Eigen::internal::traits<Derived>::MaxColsAtCompileTime, \
Flags = Eigen::internal::traits<Derived>::Flags, \
- CoeffReadCost = Eigen::internal::traits<Derived>::CoeffReadCost, \
SizeAtCompileTime = Base::SizeAtCompileTime, \
MaxSizeAtCompileTime = Base::MaxSizeAtCompileTime, \
IsVectorAtCompileTime = Base::IsVectorAtCompileTime }; \
using Base::derived; \
- using Base::const_cast_derived;
-
+ using Base::const_cast_derived;
#define EIGEN_PLAIN_ENUM_MIN(a,b) (((int)a <= (int)b) ? (int)a : (int)b)
#define EIGEN_PLAIN_ENUM_MAX(a,b) (((int)a >= (int)b) ? (int)a : (int)b)
diff --git a/Eigen/src/Core/util/Meta.h b/Eigen/src/Core/util/Meta.h
index b99b8849e..f3bafd5af 100644
--- a/Eigen/src/Core/util/Meta.h
+++ b/Eigen/src/Core/util/Meta.h
@@ -274,18 +274,6 @@ template<typename T> struct scalar_product_traits<std::complex<T>, T>
// typedef typename scalar_product_traits<typename remove_all<ArgType0>::type, typename remove_all<ArgType1>::type>::ReturnType type;
// };
-template<typename T> struct is_diagonal
-{ enum { ret = false }; };
-
-template<typename T> struct is_diagonal<DiagonalBase<T> >
-{ enum { ret = true }; };
-
-template<typename T> struct is_diagonal<DiagonalWrapper<T> >
-{ enum { ret = true }; };
-
-template<typename T, int S> struct is_diagonal<DiagonalMatrix<T,S> >
-{ enum { ret = true }; };
-
} // end namespace internal
namespace numext {
diff --git a/Eigen/src/Core/util/StaticAssert.h b/Eigen/src/Core/util/StaticAssert.h
index 59aa0811c..54a16ebf2 100644
--- a/Eigen/src/Core/util/StaticAssert.h
+++ b/Eigen/src/Core/util/StaticAssert.h
@@ -84,13 +84,15 @@
THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY,
YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT,
THIS_METHOD_IS_ONLY_FOR_1x1_EXPRESSIONS,
+ THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS,
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL,
THIS_METHOD_IS_ONLY_FOR_ARRAYS_NOT_MATRICES,
YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED,
YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED,
THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE,
THE_STORAGE_ORDER_OF_BOTH_SIDES_MUST_MATCH,
- OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG
+ OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG,
+ IMPLICIT_CONVERSION_TO_SCALAR_IS_FOR_INNER_PRODUCT_ONLY
};
};
@@ -157,7 +159,7 @@
#define EIGEN_PREDICATE_SAME_MATRIX_SIZE(TYPE0,TYPE1) \
( \
- (int(TYPE0::SizeAtCompileTime)==0 && int(TYPE1::SizeAtCompileTime)==0) \
+ (int(internal::size_of_xpr_at_compile_time<TYPE0>::ret)==0 && int(internal::size_of_xpr_at_compile_time<TYPE1>::ret)==0) \
|| (\
(int(TYPE0::RowsAtCompileTime)==Eigen::Dynamic \
|| int(TYPE1::RowsAtCompileTime)==Eigen::Dynamic \
diff --git a/Eigen/src/Core/util/XprHelper.h b/Eigen/src/Core/util/XprHelper.h
index 1b3e122e1..f2536714e 100644
--- a/Eigen/src/Core/util/XprHelper.h
+++ b/Eigen/src/Core/util/XprHelper.h
@@ -128,6 +128,17 @@ template<typename _Scalar, int _Rows, int _Cols,
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
class compute_matrix_flags
{
+ enum { row_major_bit = Options&RowMajor ? RowMajorBit : 0 };
+ public:
+ // FIXME currently we still have to handle DirectAccessBit at the expression level to handle DenseCoeffsBase<>
+ // and then propagate this information to the evaluator's flags.
+ // However, I (Gael) think that DirectAccessBit should only matter at the evaluation stage.
+ enum { ret = DirectAccessBit | LvalueBit | NestByRefBit | row_major_bit };
+};
+
+template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
+class compute_matrix_evaluator_flags
+{
enum {
row_major_bit = Options&RowMajor ? RowMajorBit : 0,
is_dynamic_size_storage = MaxRows==Dynamic || MaxCols==Dynamic,
@@ -156,7 +167,7 @@ class compute_matrix_flags
};
public:
- enum { ret = LinearAccessBit | LvalueBit | DirectAccessBit | NestByRefBit | packet_access_bit | row_major_bit | aligned_bit };
+ enum { ret = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit | aligned_bit };
};
template<int _Rows, int _Cols> struct size_at_compile_time
@@ -164,6 +175,11 @@ template<int _Rows, int _Cols> struct size_at_compile_time
enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
};
+template<typename XprType> struct size_of_xpr_at_compile_time
+{
+ enum { ret = size_at_compile_time<traits<XprType>::RowsAtCompileTime,traits<XprType>::ColsAtCompileTime>::ret };
+};
+
/* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type,
* whereas eval is a const reference in the case of a matrix
*/
@@ -174,6 +190,10 @@ template<typename T> struct plain_matrix_type<T,Dense>
{
typedef typename plain_matrix_type_dense<T,typename traits<T>::XprKind>::type type;
};
+template<typename T> struct plain_matrix_type<T,DiagonalShape>
+{
+ typedef typename T::PlainObject type;
+};
template<typename T> struct plain_matrix_type_dense<T,MatrixXpr>
{
@@ -216,6 +236,11 @@ template<typename T> struct eval<T,Dense>
// > type;
};
+template<typename T> struct eval<T,DiagonalShape>
+{
+ typedef typename plain_matrix_type<T>::type type;
+};
+
// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct eval<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
@@ -294,38 +319,42 @@ struct transfer_constness
>::type type;
};
-/** \internal Determines how a given expression should be nested into another one.
+
+// When using evaluators, we never evaluate when assembling the expression!!
+// TODO: get rid of this nested class since it's just an alias for ref_selector.
+template<typename T, int n=1, typename PlainObject = void> struct nested
+{
+ typedef typename ref_selector<T>::type type;
+};
+
+// However, we still need a mechanism to detect whether an expression which is evaluated multiple time
+// has to be evaluated into a temporary.
+// That's the purpose of this new nested_eval helper:
+/** \internal Determines how a given expression should be nested when evaluated multiple times.
* For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
- * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or
+ * evaluated into the bigger product expression. The choice is between nesting the expression b+c as-is, or
* evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
* a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
* many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
*
- * \param T the type of the expression being nested
+ * \param T the type of the expression being nested.
* \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
- *
- * Note that if no evaluation occur, then the constness of T is preserved.
- *
- * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c).
- * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it,
- * the Product expression uses: nested<S, 3>::type, which turns out to be Matrix3d because the internal logic of
- * nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand,
- * since a is of type Matrix3d, the Product expression nests it as nested<Matrix3d, 3>::type, which turns out to be
- * const Matrix3d&, because the internal logic of nested determined that since a was already a matrix, there was no point
- * in copying it into another matrix.
+ * \param PlainObject the type of the temporary if needed.
*/
-template<typename T, int n=1, typename PlainObject = typename eval<T>::type> struct nested
+template<typename T, int n, typename PlainObject = typename eval<T>::type> struct nested_eval
{
enum {
- // for the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values.
+ // For the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values.
// the choice of 10000 makes it larger than any practical fixed value and even most dynamic values.
// in extreme cases where these assumptions would be wrong, we would still at worst suffer performance issues
// (poor choice of temporaries).
- // it's important that this value can still be squared without integer overflowing.
+ // It's important that this value can still be squared without integer overflowing.
DynamicAsInteger = 10000,
ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost,
ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? int(DynamicAsInteger) : int(ScalarReadCost),
- CoeffReadCost = traits<T>::CoeffReadCost,
+ CoeffReadCost = evaluator<T>::CoeffReadCost, // TODO What if an evaluator evaluate itself into a tempory?
+ // Then CoeffReadCost will be small but we still have to evaluate if n>1...
+ // The solution might be to ask the evaluator if it creates a temp. Perhaps we could even ask the number of temps?
CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? int(DynamicAsInteger) : int(CoeffReadCost),
NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n,
CostEvalAsInteger = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger,
@@ -333,11 +362,10 @@ template<typename T, int n=1, typename PlainObject = typename eval<T>::type> str
};
typedef typename conditional<
- ( (int(traits<T>::Flags) & EvalBeforeNestingBit) ||
- int(CostEvalAsInteger) < int(CostNoEvalAsInteger)
- ),
- PlainObject,
- typename ref_selector<T>::type
+ ( (int(evaluator<T>::Flags) & EvalBeforeNestingBit) ||
+ (int(CostEvalAsInteger) < int(CostNoEvalAsInteger)) ),
+ PlainObject,
+ typename ref_selector<T>::type
>::type type;
};
@@ -366,6 +394,15 @@ struct dense_xpr_base<Derived, ArrayXpr>
typedef ArrayBase<Derived> type;
};
+template<typename Derived, typename XprKind = typename traits<Derived>::XprKind, typename StorageKind = typename traits<Derived>::StorageKind>
+struct generic_xpr_base;
+
+template<typename Derived, typename XprKind>
+struct generic_xpr_base<Derived, XprKind, Dense>
+{
+ typedef typename dense_xpr_base<Derived,XprKind>::type type;
+};
+
/** \internal Helper base class to add a scalar multiple operator
* overloads for complex types */
template<typename Derived,typename Scalar,typename OtherScalar,
@@ -383,13 +420,21 @@ struct special_scalar_op_base<Derived,Scalar,OtherScalar,true> : public DenseCo
const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
operator*(const OtherScalar& scalar) const
{
+#ifdef EIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN
+ EIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN
+#endif
return CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
(*static_cast<const Derived*>(this), scalar_multiple2_op<Scalar,OtherScalar>(scalar));
}
inline friend const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
operator*(const OtherScalar& scalar, const Derived& matrix)
- { return static_cast<const special_scalar_op_base&>(matrix).operator*(scalar); }
+ {
+#ifdef EIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN
+ EIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN
+#endif
+ return static_cast<const special_scalar_op_base&>(matrix).operator*(scalar);
+ }
};
template<typename XprType, typename CastType> struct cast_return_type
@@ -401,12 +446,59 @@ template<typename XprType, typename CastType> struct cast_return_type
const XprType&,CastType>::type type;
};
-template <typename A, typename B> struct promote_storage_type;
+/** \internal Specify the "storage kind" of applying a coefficient-wise
+ * binary operations between two expressions of kinds A and B respectively.
+ * The template parameter Functor permits to specialize the resulting storage kind wrt to
+ * the functor.
+ * The default rules are as follows:
+ * \code
+ * A op A -> A
+ * A op dense -> dense
+ * dense op B -> dense
+ * A * dense -> A
+ * dense * B -> B
+ * \endcode
+ */
+template <typename A, typename B, typename Functor> struct cwise_promote_storage_type;
+
+template <typename A, typename Functor> struct cwise_promote_storage_type<A,A,Functor> { typedef A ret; };
+template <typename Functor> struct cwise_promote_storage_type<Dense,Dense,Functor> { typedef Dense ret; };
+template <typename ScalarA, typename ScalarB> struct cwise_promote_storage_type<Dense,Dense,scalar_product_op<ScalarA,ScalarB> > { typedef Dense ret; };
+template <typename A, typename Functor> struct cwise_promote_storage_type<A,Dense,Functor> { typedef Dense ret; };
+template <typename B, typename Functor> struct cwise_promote_storage_type<Dense,B,Functor> { typedef Dense ret; };
+template <typename A, typename ScalarA, typename ScalarB> struct cwise_promote_storage_type<A,Dense,scalar_product_op<ScalarA,ScalarB> > { typedef A ret; };
+template <typename B, typename ScalarA, typename ScalarB> struct cwise_promote_storage_type<Dense,B,scalar_product_op<ScalarA,ScalarB> > { typedef B ret; };
+
+/** \internal Specify the "storage kind" of multiplying an expression of kind A with kind B.
+ * The template parameter ProductTag permits to specialize the resulting storage kind wrt to
+ * some compile-time properties of the product: GemmProduct, GemvProduct, OuterProduct, InnerProduct.
+ * The default rules are as follows:
+ * \code
+ * K * K -> K
+ * dense * K -> dense
+ * K * dense -> dense
+ * diag * K -> K
+ * K * diag -> K
+ * Perm * K -> K
+ * K * Perm -> K
+ * \endcode
+ */
+template <typename A, typename B, int ProductTag> struct product_promote_storage_type;
-template <typename A> struct promote_storage_type<A,A>
-{
- typedef A ret;
-};
+template <typename A, int ProductTag> struct product_promote_storage_type<A, A, ProductTag> { typedef A ret;};
+template <int ProductTag> struct product_promote_storage_type<Dense, Dense, ProductTag> { typedef Dense ret;};
+template <typename A, int ProductTag> struct product_promote_storage_type<A, Dense, ProductTag> { typedef Dense ret; };
+template <typename B, int ProductTag> struct product_promote_storage_type<Dense, B, ProductTag> { typedef Dense ret; };
+
+template <typename A, int ProductTag> struct product_promote_storage_type<A, DiagonalShape, ProductTag> { typedef A ret; };
+template <typename B, int ProductTag> struct product_promote_storage_type<DiagonalShape, B, ProductTag> { typedef B ret; };
+template <int ProductTag> struct product_promote_storage_type<Dense, DiagonalShape, ProductTag> { typedef Dense ret; };
+template <int ProductTag> struct product_promote_storage_type<DiagonalShape, Dense, ProductTag> { typedef Dense ret; };
+
+template <typename A, int ProductTag> struct product_promote_storage_type<A, PermutationStorage, ProductTag> { typedef A ret; };
+template <typename B, int ProductTag> struct product_promote_storage_type<PermutationStorage, B, ProductTag> { typedef B ret; };
+template <int ProductTag> struct product_promote_storage_type<Dense, PermutationStorage, ProductTag> { typedef Dense ret; };
+template <int ProductTag> struct product_promote_storage_type<PermutationStorage, Dense, ProductTag> { typedef Dense ret; };
/** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type.
* \param Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType.
@@ -464,8 +556,36 @@ struct is_lvalue
bool(traits<ExpressionType>::Flags & LvalueBit) };
};
+template<typename T> struct is_diagonal
+{ enum { ret = false }; };
+
+template<typename T> struct is_diagonal<DiagonalBase<T> >
+{ enum { ret = true }; };
+
+template<typename T> struct is_diagonal<DiagonalWrapper<T> >
+{ enum { ret = true }; };
+
+template<typename T, int S> struct is_diagonal<DiagonalMatrix<T,S> >
+{ enum { ret = true }; };
+
+template<typename S1, typename S2> struct glue_shapes;
+template<> struct glue_shapes<DenseShape,TriangularShape> { typedef TriangularShape type; };
+
} // end namespace internal
+// we require Lhs and Rhs to have the same scalar type. Currently there is no example of a binary functor
+// that would take two operands of different types. If there were such an example, then this check should be
+// moved to the BinaryOp functors, on a per-case basis. This would however require a change in the BinaryOp functors, as
+// currently they take only one typename Scalar template parameter.
+// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths.
+// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to
+// add together a float matrix and a double matrix.
+#define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \
+ EIGEN_STATIC_ASSERT((internal::functor_is_product_like<BINOP>::ret \
+ ? int(internal::scalar_product_traits<LHS, RHS>::Defined) \
+ : int(internal::is_same<LHS, RHS>::value)), \
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+
} // end namespace Eigen
#endif // EIGEN_XPRHELPER_H
diff --git a/Eigen/src/Eigenvalues/Tridiagonalization.h b/Eigen/src/Eigenvalues/Tridiagonalization.h
index 192278d68..e3a27f275 100644
--- a/Eigen/src/Eigenvalues/Tridiagonalization.h
+++ b/Eigen/src/Eigenvalues/Tridiagonalization.h
@@ -18,8 +18,10 @@ namespace internal {
template<typename MatrixType> struct TridiagonalizationMatrixTReturnType;
template<typename MatrixType>
struct traits<TridiagonalizationMatrixTReturnType<MatrixType> >
+ : public traits<typename MatrixType::PlainObject>
{
- typedef typename MatrixType::PlainObject ReturnType;
+ typedef typename MatrixType::PlainObject ReturnType; // FIXME shall it be a BandMatrix?
+ enum { Flags = 0 };
};
template<typename MatrixType, typename CoeffVectorType>
diff --git a/Eigen/src/Geometry/AlignedBox.h b/Eigen/src/Geometry/AlignedBox.h
index b6a2f0e24..d6c5c1293 100644
--- a/Eigen/src/Geometry/AlignedBox.h
+++ b/Eigen/src/Geometry/AlignedBox.h
@@ -71,7 +71,7 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
template<typename Derived>
inline explicit AlignedBox(const MatrixBase<Derived>& a_p)
{
- typename internal::nested<Derived,2>::type p(a_p.derived());
+ typename internal::nested_eval<Derived,2>::type p(a_p.derived());
m_min = p;
m_max = p;
}
diff --git a/Eigen/src/Geometry/Homogeneous.h b/Eigen/src/Geometry/Homogeneous.h
index 00e71d190..d1881d84d 100644
--- a/Eigen/src/Geometry/Homogeneous.h
+++ b/Eigen/src/Geometry/Homogeneous.h
@@ -48,8 +48,7 @@ struct traits<Homogeneous<MatrixType,Direction> >
TmpFlags = _MatrixTypeNested::Flags & HereditaryBits,
Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit)
: RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit)
- : TmpFlags,
- CoeffReadCost = _MatrixTypeNested::CoeffReadCost
+ : TmpFlags
};
};
@@ -63,6 +62,7 @@ template<typename MatrixType,int _Direction> class Homogeneous
{
public:
+ typedef MatrixType NestedExpression;
enum { Direction = _Direction };
typedef MatrixBase<Homogeneous> Base;
@@ -74,37 +74,38 @@ template<typename MatrixType,int _Direction> class Homogeneous
inline Index rows() const { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); }
inline Index cols() const { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); }
-
- inline Scalar coeff(Index row, Index col) const
- {
- if( (int(Direction)==Vertical && row==m_matrix.rows())
- || (int(Direction)==Horizontal && col==m_matrix.cols()))
- return 1;
- return m_matrix.coeff(row, col);
- }
+
+ const NestedExpression& nestedExpression() const { return m_matrix; }
template<typename Rhs>
- inline const internal::homogeneous_right_product_impl<Homogeneous,Rhs>
+ inline const Product<Homogeneous,Rhs>
operator* (const MatrixBase<Rhs>& rhs) const
{
eigen_assert(int(Direction)==Horizontal);
- return internal::homogeneous_right_product_impl<Homogeneous,Rhs>(m_matrix,rhs.derived());
+ return Product<Homogeneous,Rhs>(*this,rhs.derived());
}
template<typename Lhs> friend
- inline const internal::homogeneous_left_product_impl<Homogeneous,Lhs>
+ inline const Product<Lhs,Homogeneous>
operator* (const MatrixBase<Lhs>& lhs, const Homogeneous& rhs)
{
eigen_assert(int(Direction)==Vertical);
- return internal::homogeneous_left_product_impl<Homogeneous,Lhs>(lhs.derived(),rhs.m_matrix);
+ return Product<Lhs,Homogeneous>(lhs.derived(),rhs);
}
template<typename Scalar, int Dim, int Mode, int Options> friend
- inline const internal::homogeneous_left_product_impl<Homogeneous,Transform<Scalar,Dim,Mode,Options> >
+ inline const Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous >
operator* (const Transform<Scalar,Dim,Mode,Options>& lhs, const Homogeneous& rhs)
{
eigen_assert(int(Direction)==Vertical);
- return internal::homogeneous_left_product_impl<Homogeneous,Transform<Scalar,Dim,Mode,Options> >(lhs,rhs.m_matrix);
+ return Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous>(lhs,rhs);
+ }
+
+ template<typename Func>
+ EIGEN_STRONG_INLINE typename internal::result_of<Func(Scalar)>::type
+ redux(const Func& func) const
+ {
+ return func(m_matrix.redux(func), Scalar(1));
}
protected:
@@ -120,7 +121,7 @@ template<typename MatrixType,int _Direction> class Homogeneous
* Example: \include MatrixBase_homogeneous.cpp
* Output: \verbinclude MatrixBase_homogeneous.out
*
- * \sa class Homogeneous
+ * \sa VectorwiseOp::homogeneous(), class Homogeneous
*/
template<typename Derived>
inline typename MatrixBase<Derived>::HomogeneousReturnType
@@ -137,7 +138,7 @@ MatrixBase<Derived>::homogeneous() const
* Example: \include VectorwiseOp_homogeneous.cpp
* Output: \verbinclude VectorwiseOp_homogeneous.out
*
- * \sa MatrixBase::homogeneous() */
+ * \sa MatrixBase::homogeneous(), class Homogeneous */
template<typename ExpressionType, int Direction>
inline Homogeneous<ExpressionType,Direction>
VectorwiseOp<ExpressionType,Direction>::homogeneous() const
@@ -300,6 +301,93 @@ struct homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs>
typename Rhs::Nested m_rhs;
};
+template<typename ArgType,int Direction>
+struct evaluator_traits<Homogeneous<ArgType,Direction> >
+{
+ typedef typename storage_kind_to_evaluator_kind<typename ArgType::StorageKind>::Kind Kind;
+ typedef HomogeneousShape Shape;
+ static const int AssumeAliasing = 0;
+};
+
+template<> struct AssignmentKind<DenseShape,HomogeneousShape> { typedef Dense2Dense Kind; };
+
+
+template<typename ArgType,int Direction>
+struct unary_evaluator<Homogeneous<ArgType,Direction>, IndexBased>
+ : evaluator<typename Homogeneous<ArgType,Direction>::PlainObject >::type
+{
+ typedef Homogeneous<ArgType,Direction> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
+
+ typedef evaluator<XprType> type;
+ typedef evaluator<XprType> nestedType;
+
+ unary_evaluator(const XprType& op)
+ : Base(), m_temp(op)
+ {
+ ::new (static_cast<Base*>(this)) Base(m_temp);
+ }
+
+protected:
+ PlainObject m_temp;
+};
+
+// dense = homogeneous
+template< typename DstXprType, typename ArgType, typename Scalar>
+struct Assignment<DstXprType, Homogeneous<ArgType,Vertical>, internal::assign_op<Scalar>, Dense2Dense, Scalar>
+{
+ typedef Homogeneous<ArgType,Vertical> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
+ {
+ dst.template topRows<ArgType::RowsAtCompileTime>(src.nestedExpression().rows()) = src.nestedExpression();
+ dst.row(dst.rows()-1).setOnes();
+ }
+};
+
+// dense = homogeneous
+template< typename DstXprType, typename ArgType, typename Scalar>
+struct Assignment<DstXprType, Homogeneous<ArgType,Horizontal>, internal::assign_op<Scalar>, Dense2Dense, Scalar>
+{
+ typedef Homogeneous<ArgType,Horizontal> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
+ {
+ dst.template leftCols<ArgType::ColsAtCompileTime>(src.nestedExpression().cols()) = src.nestedExpression();
+ dst.col(dst.cols()-1).setOnes();
+ }
+};
+
+template<typename LhsArg, typename Rhs, int ProductTag>
+struct generic_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs, HomogeneousShape, DenseShape, ProductTag>
+{
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Homogeneous<LhsArg,Horizontal>& lhs, const Rhs& rhs)
+ {
+ homogeneous_right_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst);
+ }
+};
+
+template<typename Lhs, typename RhsArg, int ProductTag>
+struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
+{
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
+ {
+ homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst);
+ }
+};
+
+template<typename Scalar, int Dim, int Mode,int Options, typename RhsArg, int ProductTag>
+struct generic_product_impl<Transform<Scalar,Dim,Mode,Options>, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
+{
+ typedef Transform<Scalar,Dim,Mode,Options> TransformType;
+ template<typename Dest>
+ static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
+ {
+ homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, TransformType>(lhs, rhs.nestedExpression()).evalTo(dst);
+ }
+};
+
} // end namespace internal
} // end namespace Eigen
diff --git a/Eigen/src/Geometry/OrthoMethods.h b/Eigen/src/Geometry/OrthoMethods.h
index 26be3ee5b..a245c79d3 100644
--- a/Eigen/src/Geometry/OrthoMethods.h
+++ b/Eigen/src/Geometry/OrthoMethods.h
@@ -30,8 +30,8 @@ MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const
// Note that there is no need for an expression here since the compiler
// optimize such a small temporary very well (even within a complex expression)
- typename internal::nested<Derived,2>::type lhs(derived());
- typename internal::nested<OtherDerived,2>::type rhs(other.derived());
+ typename internal::nested_eval<Derived,2>::type lhs(derived());
+ typename internal::nested_eval<OtherDerived,2>::type rhs(other.derived());
return typename cross_product_return_type<OtherDerived>::type(
numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
@@ -76,8 +76,8 @@ MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4)
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4)
- typedef typename internal::nested<Derived,2>::type DerivedNested;
- typedef typename internal::nested<OtherDerived,2>::type OtherDerivedNested;
+ typedef typename internal::nested_eval<Derived,2>::type DerivedNested;
+ typedef typename internal::nested_eval<OtherDerived,2>::type OtherDerivedNested;
DerivedNested lhs(derived());
OtherDerivedNested rhs(other.derived());
@@ -103,21 +103,24 @@ VectorwiseOp<ExpressionType,Direction>::cross(const MatrixBase<OtherDerived>& ot
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+
+ typename internal::nested_eval<ExpressionType,2>::type mat(_expression());
+ typename internal::nested_eval<OtherDerived,2>::type vec(other.derived());
CrossReturnType res(_expression().rows(),_expression().cols());
if(Direction==Vertical)
{
eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows");
- res.row(0) = (_expression().row(1) * other.coeff(2) - _expression().row(2) * other.coeff(1)).conjugate();
- res.row(1) = (_expression().row(2) * other.coeff(0) - _expression().row(0) * other.coeff(2)).conjugate();
- res.row(2) = (_expression().row(0) * other.coeff(1) - _expression().row(1) * other.coeff(0)).conjugate();
+ res.row(0) = (mat.row(1) * vec.coeff(2) - mat.row(2) * vec.coeff(1)).conjugate();
+ res.row(1) = (mat.row(2) * vec.coeff(0) - mat.row(0) * vec.coeff(2)).conjugate();
+ res.row(2) = (mat.row(0) * vec.coeff(1) - mat.row(1) * vec.coeff(0)).conjugate();
}
else
{
eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns");
- res.col(0) = (_expression().col(1) * other.coeff(2) - _expression().col(2) * other.coeff(1)).conjugate();
- res.col(1) = (_expression().col(2) * other.coeff(0) - _expression().col(0) * other.coeff(2)).conjugate();
- res.col(2) = (_expression().col(0) * other.coeff(1) - _expression().col(1) * other.coeff(0)).conjugate();
+ res.col(0) = (mat.col(1) * vec.coeff(2) - mat.col(2) * vec.coeff(1)).conjugate();
+ res.col(1) = (mat.col(2) * vec.coeff(0) - mat.col(0) * vec.coeff(2)).conjugate();
+ res.col(2) = (mat.col(0) * vec.coeff(1) - mat.col(1) * vec.coeff(0)).conjugate();
}
return res;
}
diff --git a/Eigen/src/Geometry/Quaternion.h b/Eigen/src/Geometry/Quaternion.h
index 11e5398d4..3f0067286 100644
--- a/Eigen/src/Geometry/Quaternion.h
+++ b/Eigen/src/Geometry/Quaternion.h
@@ -217,7 +217,7 @@ struct traits<Quaternion<_Scalar,_Options> >
typedef _Scalar Scalar;
typedef Matrix<_Scalar,4,1,_Options> Coefficients;
enum{
- IsAligned = internal::traits<Coefficients>::Flags & AlignedBit,
+ IsAligned = (internal::traits<Coefficients>::EvaluatorFlags & AlignedBit) != 0,
Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit
};
};
diff --git a/Eigen/src/Geometry/Transform.h b/Eigen/src/Geometry/Transform.h
index cb93acf6b..89e9cc1a4 100644
--- a/Eigen/src/Geometry/Transform.h
+++ b/Eigen/src/Geometry/Transform.h
@@ -62,6 +62,22 @@ struct transform_construct_from_matrix;
template<typename TransformType> struct transform_take_affine_part;
+template<typename _Scalar, int _Dim, int _Mode, int _Options>
+struct traits<Transform<_Scalar,_Dim,_Mode,_Options> >
+{
+ typedef _Scalar Scalar;
+ typedef DenseIndex Index;
+ typedef Dense StorageKind;
+ enum {
+ Dim1 = _Dim==Dynamic ? _Dim : _Dim + 1,
+ RowsAtCompileTime = _Mode==Projective ? Dim1 : _Dim,
+ ColsAtCompileTime = Dim1,
+ MaxRowsAtCompileTime = RowsAtCompileTime,
+ MaxColsAtCompileTime = ColsAtCompileTime,
+ Flags = 0
+ };
+};
+
} // end namespace internal
/** \geometry_module \ingroup Geometry_Module
@@ -355,6 +371,9 @@ public:
inline Transform& operator=(const QTransform& other);
inline QTransform toQTransform(void) const;
#endif
+
+ Index rows() const { return int(Mode)==int(Projective) ? m_matrix.cols() : (m_matrix.cols()-1); }
+ Index cols() const { return m_matrix.cols(); }
/** shortcut for m_matrix(row,col);
* \sa MatrixBase::operator(Index,Index) const */
diff --git a/Eigen/src/Householder/BlockHouseholder.h b/Eigen/src/Householder/BlockHouseholder.h
index 60dbea5f5..35dbf80a1 100644
--- a/Eigen/src/Householder/BlockHouseholder.h
+++ b/Eigen/src/Householder/BlockHouseholder.h
@@ -16,48 +16,85 @@
namespace Eigen {
namespace internal {
+
+/** \internal */
+// template<typename TriangularFactorType,typename VectorsType,typename CoeffsType>
+// void make_block_householder_triangular_factor(TriangularFactorType& triFactor, const VectorsType& vectors, const CoeffsType& hCoeffs)
+// {
+// typedef typename TriangularFactorType::Index Index;
+// typedef typename VectorsType::Scalar Scalar;
+// const Index nbVecs = vectors.cols();
+// eigen_assert(triFactor.rows() == nbVecs && triFactor.cols() == nbVecs && vectors.rows()>=nbVecs);
+//
+// for(Index i = 0; i < nbVecs; i++)
+// {
+// Index rs = vectors.rows() - i;
+// // Warning, note that hCoeffs may alias with vectors.
+// // It is then necessary to copy it before modifying vectors(i,i).
+// typename CoeffsType::Scalar h = hCoeffs(i);
+// // This hack permits to pass trough nested Block<> and Transpose<> expressions.
+// Scalar *Vii_ptr = const_cast<Scalar*>(vectors.data() + vectors.outerStride()*i + vectors.innerStride()*i);
+// Scalar Vii = *Vii_ptr;
+// *Vii_ptr = Scalar(1);
+// triFactor.col(i).head(i).noalias() = -h * vectors.block(i, 0, rs, i).adjoint()
+// * vectors.col(i).tail(rs);
+// *Vii_ptr = Vii;
+// // FIXME add .noalias() once the triangular product can work inplace
+// triFactor.col(i).head(i) = triFactor.block(0,0,i,i).template triangularView<Upper>()
+// * triFactor.col(i).head(i);
+// triFactor(i,i) = hCoeffs(i);
+// }
+// }
/** \internal */
+// This variant avoid modifications in vectors
template<typename TriangularFactorType,typename VectorsType,typename CoeffsType>
void make_block_householder_triangular_factor(TriangularFactorType& triFactor, const VectorsType& vectors, const CoeffsType& hCoeffs)
{
typedef typename TriangularFactorType::Index Index;
- typedef typename VectorsType::Scalar Scalar;
const Index nbVecs = vectors.cols();
eigen_assert(triFactor.rows() == nbVecs && triFactor.cols() == nbVecs && vectors.rows()>=nbVecs);
- for(Index i = 0; i < nbVecs; i++)
+ for(Index i = nbVecs-1; i >=0 ; --i)
{
- Index rs = vectors.rows() - i;
- Scalar Vii = vectors(i,i);
- vectors.const_cast_derived().coeffRef(i,i) = Scalar(1);
- triFactor.col(i).head(i).noalias() = -hCoeffs(i) * vectors.block(i, 0, rs, i).adjoint()
- * vectors.col(i).tail(rs);
- vectors.const_cast_derived().coeffRef(i, i) = Vii;
- // FIXME add .noalias() once the triangular product can work inplace
- triFactor.col(i).head(i) = triFactor.block(0,0,i,i).template triangularView<Upper>()
- * triFactor.col(i).head(i);
+ Index rs = vectors.rows() - i - 1;
+ Index rt = nbVecs-i-1;
+
+ if(rt>0)
+ {
+ triFactor.row(i).tail(rt).noalias() = -hCoeffs(i) * vectors.col(i).tail(rs).adjoint()
+ * vectors.bottomRightCorner(rs, rt).template triangularView<UnitLower>();
+
+ // FIXME add .noalias() once the triangular product can work inplace
+ triFactor.row(i).tail(rt) = triFactor.row(i).tail(rt) * triFactor.bottomRightCorner(rt,rt).template triangularView<Upper>();
+
+ }
triFactor(i,i) = hCoeffs(i);
}
}
-/** \internal */
+/** \internal
+ * if forward then perform mat = H0 * H1 * H2 * mat
+ * otherwise perform mat = H2 * H1 * H0 * mat
+ */
template<typename MatrixType,typename VectorsType,typename CoeffsType>
-void apply_block_householder_on_the_left(MatrixType& mat, const VectorsType& vectors, const CoeffsType& hCoeffs)
+void apply_block_householder_on_the_left(MatrixType& mat, const VectorsType& vectors, const CoeffsType& hCoeffs, bool forward)
{
typedef typename MatrixType::Index Index;
enum { TFactorSize = MatrixType::ColsAtCompileTime };
Index nbVecs = vectors.cols();
- Matrix<typename MatrixType::Scalar, TFactorSize, TFactorSize, ColMajor> T(nbVecs,nbVecs);
- make_block_householder_triangular_factor(T, vectors, hCoeffs);
-
- const TriangularView<const VectorsType, UnitLower>& V(vectors);
+ Matrix<typename MatrixType::Scalar, TFactorSize, TFactorSize, RowMajor> T(nbVecs,nbVecs);
+
+ if(forward) make_block_householder_triangular_factor(T, vectors, hCoeffs);
+ else make_block_householder_triangular_factor(T, vectors, hCoeffs.conjugate());
+ const TriangularView<const VectorsType, UnitLower> V(vectors);
// A -= V T V^* A
Matrix<typename MatrixType::Scalar,VectorsType::ColsAtCompileTime,MatrixType::ColsAtCompileTime,0,
VectorsType::MaxColsAtCompileTime,MatrixType::MaxColsAtCompileTime> tmp = V.adjoint() * mat;
// FIXME add .noalias() once the triangular product can work inplace
- tmp = T.template triangularView<Upper>().adjoint() * tmp;
+ if(forward) tmp = T.template triangularView<Upper>() * tmp;
+ else tmp = T.template triangularView<Upper>().adjoint() * tmp;
mat.noalias() -= V * tmp;
}
diff --git a/Eigen/src/Householder/HouseholderSequence.h b/Eigen/src/Householder/HouseholderSequence.h
index d800ca1fa..4ded2995f 100644
--- a/Eigen/src/Householder/HouseholderSequence.h
+++ b/Eigen/src/Householder/HouseholderSequence.h
@@ -73,6 +73,15 @@ struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> >
};
};
+struct HouseholderSequenceShape {};
+
+template<typename VectorsType, typename CoeffsType, int Side>
+struct evaluator_traits<HouseholderSequence<VectorsType,CoeffsType,Side> >
+ : public evaluator_traits_base<HouseholderSequence<VectorsType,CoeffsType,Side> >
+{
+ typedef HouseholderSequenceShape Shape;
+};
+
template<typename VectorsType, typename CoeffsType, int Side>
struct hseq_side_dependent_impl
{
@@ -307,12 +316,36 @@ template<typename VectorsType, typename CoeffsType, int Side> class HouseholderS
template<typename Dest, typename Workspace>
inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace) const
{
- workspace.resize(dst.cols());
- for(Index k = 0; k < m_length; ++k)
+ const Index BlockSize = 48;
+ // if the entries are large enough, then apply the reflectors by block
+ if(m_length>=BlockSize && dst.cols()>1)
{
- Index actual_k = m_trans ? k : m_length-k-1;
- dst.bottomRows(rows()-m_shift-actual_k)
- .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
+ for(Index i = 0; i < m_length; i+=BlockSize)
+ {
+ Index end = m_trans ? (std::min)(m_length,i+BlockSize) : m_length-i;
+ Index k = m_trans ? i : (std::max)(Index(0),end-BlockSize);
+ Index bs = end-k;
+ Index start = k + m_shift;
+
+ typedef Block<typename internal::remove_all<VectorsType>::type,Dynamic,Dynamic> SubVectorsType;
+ SubVectorsType sub_vecs1(m_vectors.const_cast_derived(), Side==OnTheRight ? k : start,
+ Side==OnTheRight ? start : k,
+ Side==OnTheRight ? bs : m_vectors.rows()-start,
+ Side==OnTheRight ? m_vectors.cols()-start : bs);
+ typename internal::conditional<Side==OnTheRight, Transpose<SubVectorsType>, SubVectorsType&>::type sub_vecs(sub_vecs1);
+ Block<Dest,Dynamic,Dynamic> sub_dst(dst,dst.rows()-rows()+m_shift+k,0, rows()-m_shift-k,dst.cols());
+ apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_trans);
+ }
+ }
+ else
+ {
+ workspace.resize(dst.cols());
+ for(Index k = 0; k < m_length; ++k)
+ {
+ Index actual_k = m_trans ? k : m_length-k-1;
+ dst.bottomRows(rows()-m_shift-actual_k)
+ .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
+ }
}
}
diff --git a/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h b/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
index 1f3c060d0..98b169868 100644
--- a/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
+++ b/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -80,19 +80,20 @@ class DiagonalPreconditioner
return factorize(mat);
}
+ /** \internal */
template<typename Rhs, typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const Rhs& b, Dest& x) const
{
x = m_invdiag.array() * b.array() ;
}
- template<typename Rhs> inline const internal::solve_retval<DiagonalPreconditioner, Rhs>
+ template<typename Rhs> inline const Solve<DiagonalPreconditioner, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
eigen_assert(m_invdiag.size()==b.rows()
&& "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<DiagonalPreconditioner, Rhs>(*this, b.derived());
+ return Solve<DiagonalPreconditioner, Rhs>(*this, b.derived());
}
protected:
@@ -100,22 +101,6 @@ class DiagonalPreconditioner
bool m_isInitialized;
};
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<DiagonalPreconditioner<_MatrixType>, Rhs>
- : solve_retval_base<DiagonalPreconditioner<_MatrixType>, Rhs>
-{
- typedef DiagonalPreconditioner<_MatrixType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-}
/** \ingroup IterativeLinearSolvers_Module
* \brief A naive preconditioner which approximates any matrix as the identity matrix
diff --git a/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h b/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
index 27824b9d5..051940dc7 100644
--- a/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
+++ b/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
@@ -181,26 +181,10 @@ public:
BiCGSTAB(const MatrixType& A) : Base(A) {}
~BiCGSTAB() {}
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
- * \a x0 as an initial solution.
- *
- * \sa compute()
- */
- template<typename Rhs,typename Guess>
- inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
- solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
- {
- eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
- eigen_assert(Base::rows()==b.rows()
- && "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval_with_guess
- <BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
- }
-
+
/** \internal */
template<typename Rhs,typename Dest>
- void _solveWithGuess(const Rhs& b, Dest& x) const
+ void _solve_with_guess_impl(const Rhs& b, Dest& x) const
{
bool failed = false;
for(int j=0; j<b.cols(); ++j)
@@ -219,36 +203,19 @@ public:
}
/** \internal */
+ using Base::_solve_impl;
template<typename Rhs,typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
{
-// x.setZero();
- x = b;
- _solveWithGuess(b,x);
+ // x.setZero();
+ x = b;
+ _solve_with_guess_impl(b,x);
}
protected:
};
-
-namespace internal {
-
- template<typename _MatrixType, typename _Preconditioner, typename Rhs>
-struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
- : solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
-{
- typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_BICGSTAB_H
diff --git a/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h b/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h
index 3ce517940..f72cf86a5 100644
--- a/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h
+++ b/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -192,26 +192,10 @@ public:
ConjugateGradient(const MatrixType& A) : Base(A) {}
~ConjugateGradient() {}
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
- * \a x0 as an initial solution.
- *
- * \sa compute()
- */
- template<typename Rhs,typename Guess>
- inline const internal::solve_retval_with_guess<ConjugateGradient, Rhs, Guess>
- solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
- {
- eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
- eigen_assert(Base::rows()==b.rows()
- && "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval_with_guess
- <ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0);
- }
/** \internal */
template<typename Rhs,typename Dest>
- void _solveWithGuess(const Rhs& b, Dest& x) const
+ void _solve_with_guess_impl(const Rhs& b, Dest& x) const
{
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
@@ -231,35 +215,18 @@ public:
}
/** \internal */
+ using Base::_solve_impl;
template<typename Rhs,typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const
{
x.setOnes();
- _solveWithGuess(b,x);
+ _solve_with_guess_impl(b.derived(),x);
}
protected:
};
-
-namespace internal {
-
-template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
-struct solve_retval<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
- : solve_retval_base<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
-{
- typedef ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_CONJUGATE_GRADIENT_H
diff --git a/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h b/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
index b55afc136..7adbbc489 100644
--- a/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
+++ b/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
@@ -2,6 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -93,8 +94,12 @@ Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
* http://comments.gmane.org/gmane.comp.lib.eigen/3302
*/
template <typename _Scalar>
-class IncompleteLUT : internal::noncopyable
+class IncompleteLUT : public SparseSolverBase<IncompleteLUT<_Scalar> >
{
+ protected:
+ typedef SparseSolverBase<IncompleteLUT<_Scalar> > Base;
+ using Base::m_isInitialized;
+ public:
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar,Dynamic,1> Vector;
@@ -107,13 +112,13 @@ class IncompleteLUT : internal::noncopyable
IncompleteLUT()
: m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
- m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
+ m_analysisIsOk(false), m_factorizationIsOk(false)
{}
template<typename MatrixType>
IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
: m_droptol(droptol),m_fillfactor(fillfactor),
- m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
+ m_analysisIsOk(false),m_factorizationIsOk(false)
{
eigen_assert(fillfactor != 0);
compute(mat);
@@ -158,7 +163,7 @@ class IncompleteLUT : internal::noncopyable
void setFillfactor(int fillfactor);
template<typename Rhs, typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const Rhs& b, Dest& x) const
{
x = m_Pinv * b;
x = m_lu.template triangularView<UnitLower>().solve(x);
@@ -166,15 +171,6 @@ class IncompleteLUT : internal::noncopyable
x = m_P * x;
}
- template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
- eigen_assert(cols()==b.rows()
- && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
- }
-
protected:
/** keeps off-diagonal entries; drops diagonal entries */
@@ -192,7 +188,6 @@ protected:
int m_fillfactor;
bool m_analysisIsOk;
bool m_factorizationIsOk;
- bool m_isInitialized;
ComputationInfo m_info;
PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation
PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation
@@ -445,23 +440,6 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
m_info = Success;
}
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
- : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
-{
- typedef IncompleteLUT<_MatrixType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_INCOMPLETE_LUT_H
diff --git a/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h b/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h
index 2036922d6..fd9285087 100644
--- a/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h
+++ b/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -18,8 +18,12 @@ namespace Eigen {
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename Derived>
-class IterativeSolverBase : internal::noncopyable
+class IterativeSolverBase : public SparseSolverBase<Derived>
{
+protected:
+ typedef SparseSolverBase<Derived> Base;
+ using Base::m_isInitialized;
+
public:
typedef typename internal::traits<Derived>::MatrixType MatrixType;
typedef typename internal::traits<Derived>::Preconditioner Preconditioner;
@@ -29,8 +33,7 @@ public:
public:
- Derived& derived() { return *static_cast<Derived*>(this); }
- const Derived& derived() const { return *static_cast<const Derived*>(this); }
+ using Base::derived;
/** Default constructor. */
IterativeSolverBase()
@@ -159,31 +162,18 @@ public:
return m_error;
}
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs> inline const internal::solve_retval<Derived, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
- eigen_assert(rows()==b.rows()
- && "IterativeSolverBase::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<Derived, Rhs>(derived(), b.derived());
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
+ /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
+ * and \a x0 as an initial solution.
*
- * \sa compute()
+ * \sa solve(), compute()
*/
- template<typename Rhs>
- inline const internal::sparse_solve_retval<IterativeSolverBase, Rhs>
- solve(const SparseMatrixBase<Rhs>& b) const
+ template<typename Rhs,typename Guess>
+ inline const SolveWithGuess<Derived, Rhs, Guess>
+ solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
{
- eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
- eigen_assert(rows()==b.rows()
- && "IterativeSolverBase::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<IterativeSolverBase, Rhs>(*this, b.derived());
+ eigen_assert(m_isInitialized && "Solver is not initialized.");
+ eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b");
+ return SolveWithGuess<Derived, Rhs, Guess>(derived(), b.derived(), x0);
}
/** \returns Success if the iterations converged, and NoConvergence otherwise. */
@@ -195,7 +185,7 @@ public:
/** \internal */
template<typename Rhs, typename DestScalar, int DestOptions, typename DestIndex>
- void _solve_sparse(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
+ void _solve_impl(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
{
eigen_assert(rows()==b.rows());
@@ -229,26 +219,9 @@ protected:
mutable RealScalar m_error;
mutable int m_iterations;
mutable ComputationInfo m_info;
- mutable bool m_isInitialized, m_analysisIsOk, m_factorizationIsOk;
-};
-
-namespace internal {
-
-template<typename Derived, typename Rhs>
-struct sparse_solve_retval<IterativeSolverBase<Derived>, Rhs>
- : sparse_solve_retval_base<IterativeSolverBase<Derived>, Rhs>
-{
- typedef IterativeSolverBase<Derived> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec().derived()._solve_sparse(rhs(),dst);
- }
+ mutable bool m_analysisIsOk, m_factorizationIsOk;
};
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_ITERATIVE_SOLVER_BASE_H
diff --git a/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h b/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h
new file mode 100644
index 000000000..46dd5babe
--- /dev/null
+++ b/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h
@@ -0,0 +1,114 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SOLVEWITHGUESS_H
+#define EIGEN_SOLVEWITHGUESS_H
+
+namespace Eigen {
+
+template<typename Decomposition, typename RhsType, typename GuessType> class SolveWithGuess;
+
+/** \class SolveWithGuess
+ * \ingroup IterativeLinearSolvers_Module
+ *
+ * \brief Pseudo expression representing a solving operation
+ *
+ * \tparam Decomposition the type of the matrix or decomposion object
+ * \tparam Rhstype the type of the right-hand side
+ *
+ * This class represents an expression of A.solve(B)
+ * and most of the time this is the only way it is used.
+ *
+ */
+namespace internal {
+
+
+template<typename Decomposition, typename RhsType, typename GuessType>
+struct traits<SolveWithGuess<Decomposition, RhsType, GuessType> >
+ : traits<Solve<Decomposition,RhsType> >
+{};
+
+}
+
+
+template<typename Decomposition, typename RhsType, typename GuessType>
+class SolveWithGuess : public internal::generic_xpr_base<SolveWithGuess<Decomposition,RhsType,GuessType>, MatrixXpr, typename internal::traits<RhsType>::StorageKind>::type
+{
+public:
+ typedef typename RhsType::Index Index;
+ typedef typename internal::traits<SolveWithGuess>::PlainObject PlainObject;
+ typedef typename internal::generic_xpr_base<SolveWithGuess<Decomposition,RhsType,GuessType>, MatrixXpr, typename internal::traits<RhsType>::StorageKind>::type Base;
+
+ SolveWithGuess(const Decomposition &dec, const RhsType &rhs, const GuessType &guess)
+ : m_dec(dec), m_rhs(rhs), m_guess(guess)
+ {}
+
+ EIGEN_DEVICE_FUNC Index rows() const { return m_dec.cols(); }
+ EIGEN_DEVICE_FUNC Index cols() const { return m_rhs.cols(); }
+
+ EIGEN_DEVICE_FUNC const Decomposition& dec() const { return m_dec; }
+ EIGEN_DEVICE_FUNC const RhsType& rhs() const { return m_rhs; }
+ EIGEN_DEVICE_FUNC const GuessType& guess() const { return m_guess; }
+
+protected:
+ const Decomposition &m_dec;
+ const RhsType &m_rhs;
+ const GuessType &m_guess;
+
+ typedef typename internal::traits<SolveWithGuess>::Scalar Scalar;
+
+private:
+ Scalar coeff(Index row, Index col) const;
+ Scalar coeff(Index i) const;
+};
+
+namespace internal {
+
+// Evaluator of SolveWithGuess -> eval into a temporary
+template<typename Decomposition, typename RhsType, typename GuessType>
+struct evaluator<SolveWithGuess<Decomposition,RhsType, GuessType> >
+ : public evaluator<typename SolveWithGuess<Decomposition,RhsType,GuessType>::PlainObject>::type
+{
+ typedef SolveWithGuess<Decomposition,RhsType,GuessType> SolveType;
+ typedef typename SolveType::PlainObject PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
+
+ typedef evaluator type;
+ typedef evaluator nestedType;
+
+ evaluator(const SolveType& solve)
+ : m_result(solve.rows(), solve.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ solve.dec()._solve_with_guess_impl(solve.rhs(), m_result, solve().guess());
+ }
+
+protected:
+ PlainObject m_result;
+};
+
+// Specialization for "dst = dec.solve(rhs)"
+// NOTE we need to specialize it for Dense2Dense to avoid ambiguous specialization error and a Sparse2Sparse specialization must exist somewhere
+template<typename DstXprType, typename DecType, typename RhsType, typename GuessType, typename Scalar>
+struct Assignment<DstXprType, SolveWithGuess<DecType,RhsType,GuessType>, internal::assign_op<Scalar>, Dense2Dense, Scalar>
+{
+ typedef Solve<DecType,RhsType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
+ {
+ // FIXME shall we resize dst here?
+ dst = src.guess();
+ src.dec()._solve_with_guess_impl(src.rhs(), dst/*, src.guess()*/);
+ }
+};
+
+} // end namepsace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SOLVEWITHGUESS_H
diff --git a/Eigen/src/LU/Determinant.h b/Eigen/src/LU/Determinant.h
index bb8e78a8a..d6a3c1e5a 100644
--- a/Eigen/src/LU/Determinant.h
+++ b/Eigen/src/LU/Determinant.h
@@ -92,7 +92,7 @@ template<typename Derived>
inline typename internal::traits<Derived>::Scalar MatrixBase<Derived>::determinant() const
{
eigen_assert(rows() == cols());
- typedef typename internal::nested<Derived,Base::RowsAtCompileTime>::type Nested;
+ typedef typename internal::nested_eval<Derived,Base::RowsAtCompileTime>::type Nested;
return internal::determinant_impl<typename internal::remove_all<Nested>::type>::run(derived());
}
diff --git a/Eigen/src/LU/FullPivLU.h b/Eigen/src/LU/FullPivLU.h
index 971b9da1d..fdf2e0642 100644
--- a/Eigen/src/LU/FullPivLU.h
+++ b/Eigen/src/LU/FullPivLU.h
@@ -12,6 +12,15 @@
namespace Eigen {
+namespace internal {
+template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
+ : traits<_MatrixType>
+{
+ enum { Flags = 0 };
+};
+
+} // end namespace internal
+
/** \ingroup LU_Module
*
* \class FullPivLU
@@ -62,6 +71,7 @@ template<typename _MatrixType> class FullPivLU
typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
+ typedef typename MatrixType::PlainObject PlainObject;
/**
* \brief Default Constructor.
@@ -211,11 +221,11 @@ template<typename _MatrixType> class FullPivLU
* \sa TriangularView::solve(), kernel(), inverse()
*/
template<typename Rhs>
- inline const internal::solve_retval<FullPivLU, Rhs>
+ inline const Solve<FullPivLU, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
- return internal::solve_retval<FullPivLU, Rhs>(*this, b.derived());
+ return Solve<FullPivLU, Rhs>(*this, b.derived());
}
/** \returns the determinant of the matrix of which
@@ -360,18 +370,23 @@ template<typename _MatrixType> class FullPivLU
*
* \sa MatrixBase::inverse()
*/
- inline const internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType> inverse() const
+ inline const Inverse<FullPivLU> inverse() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
- return internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType>
- (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
+ return Inverse<FullPivLU>(*this);
}
MatrixType reconstructedMatrix() const;
inline Index rows() const { return m_lu.rows(); }
inline Index cols() const { return m_lu.cols(); }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename RhsType, typename DstType>
+ EIGEN_DEVICE_FUNC
+ void _solve_impl(const RhsType &rhs, DstType &dst) const;
+ #endif
protected:
MatrixType m_lu;
@@ -663,64 +678,72 @@ struct image_retval<FullPivLU<_MatrixType> >
/***** Implementation of solve() *****************************************************/
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<FullPivLU<_MatrixType>, Rhs>
- : solve_retval_base<FullPivLU<_MatrixType>, Rhs>
-{
- EIGEN_MAKE_SOLVE_HELPERS(FullPivLU<_MatrixType>,Rhs)
+} // end namespace internal
- template<typename Dest> void evalTo(Dest& dst) const
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename _MatrixType>
+template<typename RhsType, typename DstType>
+void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
+{
+ /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
+ * So we proceed as follows:
+ * Step 1: compute c = P * rhs.
+ * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
+ * Step 3: replace c by the solution x to Ux = c. May or may not exist.
+ * Step 4: result = Q * c;
+ */
+
+ const Index rows = this->rows(),
+ cols = this->cols(),
+ nonzero_pivots = this->nonzeroPivots();
+ eigen_assert(rhs.rows() == rows);
+ const Index smalldim = (std::min)(rows, cols);
+
+ if(nonzero_pivots == 0)
{
- /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
- * So we proceed as follows:
- * Step 1: compute c = P * rhs.
- * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
- * Step 3: replace c by the solution x to Ux = c. May or may not exist.
- * Step 4: result = Q * c;
- */
-
- const Index rows = dec().rows(), cols = dec().cols(),
- nonzero_pivots = dec().nonzeroPivots();
- eigen_assert(rhs().rows() == rows);
- const Index smalldim = (std::min)(rows, cols);
-
- if(nonzero_pivots == 0)
- {
- dst.setZero();
- return;
- }
+ dst.setZero();
+ return;
+ }
- typename Rhs::PlainObject c(rhs().rows(), rhs().cols());
+ typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
- // Step 1
- c = dec().permutationP() * rhs();
+ // Step 1
+ c = permutationP() * rhs;
- // Step 2
- dec().matrixLU()
- .topLeftCorner(smalldim,smalldim)
- .template triangularView<UnitLower>()
- .solveInPlace(c.topRows(smalldim));
- if(rows>cols)
- {
- c.bottomRows(rows-cols)
- -= dec().matrixLU().bottomRows(rows-cols)
- * c.topRows(cols);
- }
+ // Step 2
+ m_lu.topLeftCorner(smalldim,smalldim)
+ .template triangularView<UnitLower>()
+ .solveInPlace(c.topRows(smalldim));
+ if(rows>cols)
+ c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols);
+
+ // Step 3
+ m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
+ .template triangularView<Upper>()
+ .solveInPlace(c.topRows(nonzero_pivots));
+
+ // Step 4
+ for(Index i = 0; i < nonzero_pivots; ++i)
+ dst.row(permutationQ().indices().coeff(i)) = c.row(i);
+ for(Index i = nonzero_pivots; i < m_lu.cols(); ++i)
+ dst.row(permutationQ().indices().coeff(i)).setZero();
+}
+#endif
+
+namespace internal {
- // Step 3
- dec().matrixLU()
- .topLeftCorner(nonzero_pivots, nonzero_pivots)
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(nonzero_pivots));
-
- // Step 4
- for(Index i = 0; i < nonzero_pivots; ++i)
- dst.row(dec().permutationQ().indices().coeff(i)) = c.row(i);
- for(Index i = nonzero_pivots; i < dec().matrixLU().cols(); ++i)
- dst.row(dec().permutationQ().indices().coeff(i)).setZero();
+
+/***** Implementation of inverse() *****************************************************/
+template<typename DstXprType, typename MatrixType, typename Scalar>
+struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<Scalar>, Dense2Dense, Scalar>
+{
+ typedef FullPivLU<MatrixType> LuType;
+ typedef Inverse<LuType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
+ {
+ dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
}
};
-
} // end namespace internal
/******* MatrixBase methods *****************************************************************/
diff --git a/Eigen/src/LU/Inverse.h b/Eigen/src/LU/InverseImpl.h
index 8d1364e0a..e5f270d19 100644
--- a/Eigen/src/LU/Inverse.h
+++ b/Eigen/src/LU/InverseImpl.h
@@ -2,13 +2,14 @@
// for linear algebra.
//
// Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-#ifndef EIGEN_INVERSE_H
-#define EIGEN_INVERSE_H
+#ifndef EIGEN_INVERSE_IMPL_H
+#define EIGEN_INVERSE_IMPL_H
namespace Eigen {
@@ -42,7 +43,8 @@ struct compute_inverse<MatrixType, ResultType, 1>
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename MatrixType::Scalar Scalar;
- result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0);
+ typename internal::evaluator<MatrixType>::type matrixEval(matrix);
+ result.coeffRef(0,0) = Scalar(1) / matrixEval.coeff(0,0);
}
};
@@ -75,10 +77,10 @@ inline void compute_inverse_size2_helper(
const MatrixType& matrix, const typename ResultType::Scalar& invdet,
ResultType& result)
{
- result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
+ result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
- result.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
+ result.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
}
template<typename MatrixType, typename ResultType>
@@ -279,41 +281,33 @@ struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
*** MatrixBase methods ***
*************************/
-template<typename MatrixType>
-struct traits<inverse_impl<MatrixType> >
-{
- typedef typename MatrixType::PlainObject ReturnType;
-};
-
-template<typename MatrixType>
-struct inverse_impl : public ReturnByValue<inverse_impl<MatrixType> >
-{
- typedef typename MatrixType::Index Index;
- typedef typename internal::eval<MatrixType>::type MatrixTypeNested;
- typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
- MatrixTypeNested m_matrix;
-
- EIGEN_DEVICE_FUNC
- inverse_impl(const MatrixType& matrix)
- : m_matrix(matrix)
- {}
+} // end namespace internal
- EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows(); }
- EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols(); }
+namespace internal {
- template<typename Dest>
- EIGEN_DEVICE_FUNC
- inline void evalTo(Dest& dst) const
+// Specialization for "dense = dense_xpr.inverse()"
+template<typename DstXprType, typename XprType, typename Scalar>
+struct Assignment<DstXprType, Inverse<XprType>, internal::assign_op<Scalar>, Dense2Dense, Scalar>
+{
+ typedef Inverse<XprType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
{
- const int Size = EIGEN_PLAIN_ENUM_MIN(MatrixType::ColsAtCompileTime,Dest::ColsAtCompileTime);
+ // FIXME shall we resize dst here?
+ const int Size = EIGEN_PLAIN_ENUM_MIN(XprType::ColsAtCompileTime,DstXprType::ColsAtCompileTime);
EIGEN_ONLY_USED_FOR_DEBUG(Size);
- eigen_assert(( (Size<=1) || (Size>4) || (extract_data(m_matrix)!=extract_data(dst)))
+ eigen_assert(( (Size<=1) || (Size>4) || (extract_data(src.nestedExpression())!=extract_data(dst)))
&& "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
- compute_inverse<MatrixTypeNestedCleaned, Dest>::run(m_matrix, dst);
+ typedef typename internal::nested_eval<XprType,XprType::ColsAtCompileTime>::type ActualXprType;
+ typedef typename internal::remove_all<ActualXprType>::type ActualXprTypeCleanded;
+
+ ActualXprType actual_xpr(src.nestedExpression());
+
+ compute_inverse<ActualXprTypeCleanded, DstXprType>::run(actual_xpr, dst);
}
};
+
} // end namespace internal
/** \lu_module
@@ -334,11 +328,11 @@ struct inverse_impl : public ReturnByValue<inverse_impl<MatrixType> >
* \sa computeInverseAndDetWithCheck()
*/
template<typename Derived>
-inline const internal::inverse_impl<Derived> MatrixBase<Derived>::inverse() const
+inline const Inverse<Derived> MatrixBase<Derived>::inverse() const
{
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
eigen_assert(rows() == cols());
- return internal::inverse_impl<Derived>(derived());
+ return Inverse<Derived>(derived());
}
/** \lu_module
@@ -374,7 +368,7 @@ inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(
// for larger sizes, evaluating has negligible cost and limits code size.
typedef typename internal::conditional<
RowsAtCompileTime == 2,
- typename internal::remove_all<typename internal::nested<Derived, 2>::type>::type,
+ typename internal::remove_all<typename internal::nested_eval<Derived, 2>::type>::type,
PlainObject
>::type MatrixType;
internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run
@@ -414,4 +408,4 @@ inline void MatrixBase<Derived>::computeInverseWithCheck(
} // end namespace Eigen
-#endif // EIGEN_INVERSE_H
+#endif // EIGEN_INVERSE_IMPL_H
diff --git a/Eigen/src/LU/PartialPivLU.h b/Eigen/src/LU/PartialPivLU.h
index 2f65c3a49..a4d22ce5f 100644
--- a/Eigen/src/LU/PartialPivLU.h
+++ b/Eigen/src/LU/PartialPivLU.h
@@ -13,6 +13,19 @@
namespace Eigen {
+namespace internal {
+template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> >
+ : traits<_MatrixType>
+{
+ typedef traits<_MatrixType> BaseTraits;
+ enum {
+ Flags = BaseTraits::Flags & RowMajorBit,
+ CoeffReadCost = Dynamic
+ };
+};
+
+} // end namespace internal
+
/** \ingroup LU_Module
*
* \class PartialPivLU
@@ -62,6 +75,7 @@ template<typename _MatrixType> class PartialPivLU
typedef typename MatrixType::Index Index;
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
+ typedef typename MatrixType::PlainObject PlainObject;
/**
@@ -129,11 +143,11 @@ template<typename _MatrixType> class PartialPivLU
* \sa TriangularView::solve(), inverse(), computeInverse()
*/
template<typename Rhs>
- inline const internal::solve_retval<PartialPivLU, Rhs>
+ inline const Solve<PartialPivLU, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return internal::solve_retval<PartialPivLU, Rhs>(*this, b.derived());
+ return Solve<PartialPivLU, Rhs>(*this, b.derived());
}
/** \returns the inverse of the matrix of which *this is the LU decomposition.
@@ -143,11 +157,10 @@ template<typename _MatrixType> class PartialPivLU
*
* \sa MatrixBase::inverse(), LU::inverse()
*/
- inline const internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const
+ inline const Inverse<PartialPivLU> inverse() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType>
- (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
+ return Inverse<PartialPivLU>(*this);
}
/** \returns the determinant of the matrix of which
@@ -169,6 +182,30 @@ template<typename _MatrixType> class PartialPivLU
inline Index rows() const { return m_lu.rows(); }
inline Index cols() const { return m_lu.cols(); }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename RhsType, typename DstType>
+ EIGEN_DEVICE_FUNC
+ void _solve_impl(const RhsType &rhs, DstType &dst) const {
+ /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
+ * So we proceed as follows:
+ * Step 1: compute c = Pb.
+ * Step 2: replace c by the solution x to Lx = c.
+ * Step 3: replace c by the solution x to Ux = c.
+ */
+
+ eigen_assert(rhs.rows() == m_lu.rows());
+
+ // Step 1
+ dst = permutationP() * rhs;
+
+ // Step 2
+ m_lu.template triangularView<UnitLower>().solveInPlace(dst);
+
+ // Step 3
+ m_lu.template triangularView<Upper>().solveInPlace(dst);
+ }
+ #endif
protected:
MatrixType m_lu;
@@ -434,34 +471,17 @@ MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
namespace internal {
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<PartialPivLU<_MatrixType>, Rhs>
- : solve_retval_base<PartialPivLU<_MatrixType>, Rhs>
+/***** Implementation of inverse() *****************************************************/
+template<typename DstXprType, typename MatrixType, typename Scalar>
+struct Assignment<DstXprType, Inverse<PartialPivLU<MatrixType> >, internal::assign_op<Scalar>, Dense2Dense, Scalar>
{
- EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
- * So we proceed as follows:
- * Step 1: compute c = Pb.
- * Step 2: replace c by the solution x to Lx = c.
- * Step 3: replace c by the solution x to Ux = c.
- */
-
- eigen_assert(rhs().rows() == dec().matrixLU().rows());
-
- // Step 1
- dst = dec().permutationP() * rhs();
-
- // Step 2
- dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst);
-
- // Step 3
- dec().matrixLU().template triangularView<Upper>().solveInPlace(dst);
+ typedef PartialPivLU<MatrixType> LuType;
+ typedef Inverse<LuType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
+ {
+ dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
}
};
-
} // end namespace internal
/******** MatrixBase methods *******/
diff --git a/Eigen/src/LU/arch/Inverse_SSE.h b/Eigen/src/LU/arch/Inverse_SSE.h
index 60b7a2376..1f62ef14e 100644
--- a/Eigen/src/LU/arch/Inverse_SSE.h
+++ b/Eigen/src/LU/arch/Inverse_SSE.h
@@ -39,9 +39,11 @@ struct compute_inverse_size4<Architecture::SSE, float, MatrixType, ResultType>
ResultAlignment = bool(ResultType::Flags&AlignedBit),
StorageOrdersMatch = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit)
};
+ typedef typename conditional<(MatrixType::Flags&LinearAccessBit),MatrixType const &,typename MatrixType::PlainObject>::type ActualMatrixType;
- static void run(const MatrixType& matrix, ResultType& result)
+ static void run(const MatrixType& mat, ResultType& result)
{
+ ActualMatrixType matrix(mat);
EIGEN_ALIGN16 const unsigned int _Sign_PNNP[4] = { 0x00000000, 0x80000000, 0x80000000, 0x00000000 };
// Load the full matrix into registers
@@ -167,14 +169,17 @@ struct compute_inverse_size4<Architecture::SSE, double, MatrixType, ResultType>
ResultAlignment = bool(ResultType::Flags&AlignedBit),
StorageOrdersMatch = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit)
};
- static void run(const MatrixType& matrix, ResultType& result)
+ typedef typename conditional<(MatrixType::Flags&LinearAccessBit),MatrixType const &,typename MatrixType::PlainObject>::type ActualMatrixType;
+
+ static void run(const MatrixType& mat, ResultType& result)
{
+ ActualMatrixType matrix(mat);
const __m128d _Sign_NP = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0));
const __m128d _Sign_PN = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
// The inverse is calculated using "Divide and Conquer" technique. The
// original matrix is divide into four 2x2 sub-matrices. Since each
- // register of the matrix holds two element, the smaller matrices are
+ // register of the matrix holds two elements, the smaller matrices are
// consisted of two registers. Hence we get a better locality of the
// calculations.
diff --git a/Eigen/src/PaStiXSupport/PaStiXSupport.h b/Eigen/src/PaStiXSupport/PaStiXSupport.h
index 8a546dc2f..bb8e0d1a8 100644
--- a/Eigen/src/PaStiXSupport/PaStiXSupport.h
+++ b/Eigen/src/PaStiXSupport/PaStiXSupport.h
@@ -125,9 +125,15 @@ namespace internal
// This is the base class to interface with PaStiX functions.
// Users should not used this class directly.
template <class Derived>
-class PastixBase : internal::noncopyable
+class PastixBase : public SparseSolverBase<Derived>
{
+ protected:
+ typedef SparseSolverBase<Derived> Base;
+ using Base::derived;
+ using Base::m_isInitialized;
public:
+ using Base::_solve_impl;
+
typedef typename internal::pastix_traits<Derived>::MatrixType _MatrixType;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
@@ -138,7 +144,7 @@ class PastixBase : internal::noncopyable
public:
- PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false), m_pastixdata(0), m_size(0)
+ PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_pastixdata(0), m_size(0)
{
init();
}
@@ -147,33 +153,10 @@ class PastixBase : internal::noncopyable
{
clean();
}
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<PastixBase, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "Pastix solver is not initialized.");
- eigen_assert(rows()==b.rows()
- && "PastixBase::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<PastixBase, Rhs>(*this, b.derived());
- }
template<typename Rhs,typename Dest>
- bool _solve (const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const;
+ bool _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const;
- Derived& derived()
- {
- return *static_cast<Derived*>(this);
- }
- const Derived& derived() const
- {
- return *static_cast<const Derived*>(this);
- }
-
/** Returns a reference to the integer vector IPARM of PaStiX parameters
* to modify the default parameters.
* The statistics related to the different phases of factorization and solve are saved here as well
@@ -228,20 +211,6 @@ class PastixBase : internal::noncopyable
return m_info;
}
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<PastixBase, Rhs>
- solve(const SparseMatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "Pastix LU, LLT or LDLT is not initialized.");
- eigen_assert(rows()==b.rows()
- && "PastixBase::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<PastixBase, Rhs>(*this, b.derived());
- }
-
protected:
// Initialize the Pastix data structure, check the matrix
@@ -268,7 +237,6 @@ class PastixBase : internal::noncopyable
int m_initisOk;
int m_analysisIsOk;
int m_factorizationIsOk;
- bool m_isInitialized;
mutable ComputationInfo m_info;
mutable pastix_data_t *m_pastixdata; // Data structure for pastix
mutable int m_comm; // The MPI communicator identifier
@@ -328,7 +296,6 @@ void PastixBase<Derived>::compute(ColSpMatrix& mat)
factorize(mat);
m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO;
- m_isInitialized = m_factorizationIsOk;
}
@@ -393,7 +360,7 @@ void PastixBase<Derived>::factorize(ColSpMatrix& mat)
/* Solve the system */
template<typename Base>
template<typename Rhs,typename Dest>
-bool PastixBase<Base>::_solve (const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const
+bool PastixBase<Base>::_solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const
{
eigen_assert(m_isInitialized && "The matrix should be factorized first");
EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
@@ -694,36 +661,6 @@ class PastixLDLT : public PastixBase< PastixLDLT<_MatrixType, _UpLo> >
}
};
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<PastixBase<_MatrixType>, Rhs>
- : solve_retval_base<PastixBase<_MatrixType>, Rhs>
-{
- typedef PastixBase<_MatrixType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-template<typename _MatrixType, typename Rhs>
-struct sparse_solve_retval<PastixBase<_MatrixType>, Rhs>
- : sparse_solve_retval_base<PastixBase<_MatrixType>, Rhs>
-{
- typedef PastixBase<_MatrixType> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- this->defaultEvalTo(dst);
- }
-};
-
-} // end namespace internal
-
} // end namespace Eigen
#endif
diff --git a/Eigen/src/PardisoSupport/PardisoSupport.h b/Eigen/src/PardisoSupport/PardisoSupport.h
index b6571069e..e1b0e1818 100644
--- a/Eigen/src/PardisoSupport/PardisoSupport.h
+++ b/Eigen/src/PardisoSupport/PardisoSupport.h
@@ -96,10 +96,17 @@ namespace internal
}
template<class Derived>
-class PardisoImpl : internal::noncopyable
+class PardisoImpl : public SparseSolveBase<PardisoImpl<Derived>
{
+ protected:
+ typedef SparseSolveBase<PardisoImpl<Derived> Base;
+ using Base::derived;
+ using Base::m_isInitialized;
+
typedef internal::pardiso_traits<Derived> Traits;
public:
+ using base::_solve_impl;
+
typedef typename Traits::MatrixType MatrixType;
typedef typename Traits::Scalar Scalar;
typedef typename Traits::RealScalar RealScalar;
@@ -118,7 +125,7 @@ class PardisoImpl : internal::noncopyable
eigen_assert((sizeof(Index) >= sizeof(_INTEGER_t) && sizeof(Index) <= 8) && "Non-supported index type");
m_iparm.setZero();
m_msglvl = 0; // No output
- m_initialized = false;
+ m_isInitialized = false;
}
~PardisoImpl()
@@ -136,7 +143,7 @@ class PardisoImpl : internal::noncopyable
*/
ComputationInfo info() const
{
- eigen_assert(m_initialized && "Decomposition is not initialized.");
+ eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
@@ -165,51 +172,14 @@ class PardisoImpl : internal::noncopyable
Derived& factorize(const MatrixType& matrix);
Derived& compute(const MatrixType& matrix);
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<PardisoImpl, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_initialized && "Pardiso solver is not initialized.");
- eigen_assert(rows()==b.rows()
- && "PardisoImpl::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<PardisoImpl, Rhs>(*this, b.derived());
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<PardisoImpl, Rhs>
- solve(const SparseMatrixBase<Rhs>& b) const
- {
- eigen_assert(m_initialized && "Pardiso solver is not initialized.");
- eigen_assert(rows()==b.rows()
- && "PardisoImpl::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<PardisoImpl, Rhs>(*this, b.derived());
- }
-
- Derived& derived()
- {
- return *static_cast<Derived*>(this);
- }
- const Derived& derived() const
- {
- return *static_cast<const Derived*>(this);
- }
template<typename BDerived, typename XDerived>
- bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>& x) const;
+ bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived>& x) const;
protected:
void pardisoRelease()
{
- if(m_initialized) // Factorization ran at least once
+ if(m_isInitialized) // Factorization ran at least once
{
internal::pardiso_run_selector<Index>::run(m_pt, 1, 1, m_type, -1, m_size, 0, 0, 0, m_perm.data(), 0,
m_iparm.data(), m_msglvl, 0, 0);
@@ -270,7 +240,7 @@ class PardisoImpl : internal::noncopyable
mutable SparseMatrixType m_matrix;
ComputationInfo m_info;
- bool m_initialized, m_analysisIsOk, m_factorizationIsOk;
+ bool m_analysisIsOk, m_factorizationIsOk;
Index m_type, m_msglvl;
mutable void *m_pt[64];
mutable ParameterType m_iparm;
@@ -298,7 +268,7 @@ Derived& PardisoImpl<Derived>::compute(const MatrixType& a)
manageErrorCode(error);
m_analysisIsOk = true;
m_factorizationIsOk = true;
- m_initialized = true;
+ m_isInitialized = true;
return derived();
}
@@ -321,7 +291,7 @@ Derived& PardisoImpl<Derived>::analyzePattern(const MatrixType& a)
manageErrorCode(error);
m_analysisIsOk = true;
m_factorizationIsOk = false;
- m_initialized = true;
+ m_isInitialized = true;
return derived();
}
@@ -345,7 +315,7 @@ Derived& PardisoImpl<Derived>::factorize(const MatrixType& a)
template<class Base>
template<typename BDerived,typename XDerived>
-bool PardisoImpl<Base>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>& x) const
+bool PardisoImpl<Base>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived>& x) const
{
if(m_iparm[0] == 0) // Factorization was not computed
return false;
@@ -546,36 +516,6 @@ class PardisoLDLT : public PardisoImpl< PardisoLDLT<MatrixType,Options> >
}
};
-namespace internal {
-
-template<typename _Derived, typename Rhs>
-struct solve_retval<PardisoImpl<_Derived>, Rhs>
- : solve_retval_base<PardisoImpl<_Derived>, Rhs>
-{
- typedef PardisoImpl<_Derived> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-template<typename Derived, typename Rhs>
-struct sparse_solve_retval<PardisoImpl<Derived>, Rhs>
- : sparse_solve_retval_base<PardisoImpl<Derived>, Rhs>
-{
- typedef PardisoImpl<Derived> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- this->defaultEvalTo(dst);
- }
-};
-
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_PARDISOSUPPORT_H
diff --git a/Eigen/src/QR/ColPivHouseholderQR.h b/Eigen/src/QR/ColPivHouseholderQR.h
index 4824880f5..adf737276 100644
--- a/Eigen/src/QR/ColPivHouseholderQR.h
+++ b/Eigen/src/QR/ColPivHouseholderQR.h
@@ -13,6 +13,15 @@
namespace Eigen {
+namespace internal {
+template<typename _MatrixType> struct traits<ColPivHouseholderQR<_MatrixType> >
+ : traits<_MatrixType>
+{
+ enum { Flags = 0 };
+};
+
+} // end namespace internal
+
/** \ingroup QR_Module
*
* \class ColPivHouseholderQR
@@ -56,6 +65,7 @@ template<typename _MatrixType> class ColPivHouseholderQR
typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType;
typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
+ typedef typename MatrixType::PlainObject PlainObject;
private:
@@ -138,15 +148,15 @@ template<typename _MatrixType> class ColPivHouseholderQR
* Output: \verbinclude ColPivHouseholderQR_solve.out
*/
template<typename Rhs>
- inline const internal::solve_retval<ColPivHouseholderQR, Rhs>
+ inline const Solve<ColPivHouseholderQR, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return internal::solve_retval<ColPivHouseholderQR, Rhs>(*this, b.derived());
+ return Solve<ColPivHouseholderQR, Rhs>(*this, b.derived());
}
- HouseholderSequenceType householderQ(void) const;
- HouseholderSequenceType matrixQ(void) const
+ HouseholderSequenceType householderQ() const;
+ HouseholderSequenceType matrixQ() const
{
return householderQ();
}
@@ -284,13 +294,10 @@ template<typename _MatrixType> class ColPivHouseholderQR
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
* Use isInvertible() to first determine whether this matrix is invertible.
*/
- inline const
- internal::solve_retval<ColPivHouseholderQR, typename MatrixType::IdentityReturnType>
- inverse() const
+ inline const Inverse<ColPivHouseholderQR> inverse() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return internal::solve_retval<ColPivHouseholderQR,typename MatrixType::IdentityReturnType>
- (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
+ return Inverse<ColPivHouseholderQR>(*this);
}
inline Index rows() const { return m_qr.rows(); }
@@ -382,6 +389,12 @@ template<typename _MatrixType> class ColPivHouseholderQR
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return Success;
}
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename RhsType, typename DstType>
+ EIGEN_DEVICE_FUNC
+ void _solve_impl(const RhsType &rhs, DstType &dst) const;
+ #endif
protected:
MatrixType m_qr;
@@ -514,42 +527,48 @@ ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const
return *this;
}
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<ColPivHouseholderQR<_MatrixType>, Rhs>
- : solve_retval_base<ColPivHouseholderQR<_MatrixType>, Rhs>
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename _MatrixType>
+template<typename RhsType, typename DstType>
+void ColPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
- EIGEN_MAKE_SOLVE_HELPERS(ColPivHouseholderQR<_MatrixType>,Rhs)
+ eigen_assert(rhs.rows() == rows());
+
+ const Index nonzero_pivots = nonzeroPivots();
- template<typename Dest> void evalTo(Dest& dst) const
+ if(nonzero_pivots == 0)
{
- eigen_assert(rhs().rows() == dec().rows());
+ dst.setZero();
+ return;
+ }
- const Index cols = dec().cols(),
- nonzero_pivots = dec().nonzeroPivots();
+ typename RhsType::PlainObject c(rhs);
- if(nonzero_pivots == 0)
- {
- dst.setZero();
- return;
- }
+ // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
+ c.applyOnTheLeft(householderSequence(m_qr, m_hCoeffs)
+ .setLength(nonzero_pivots)
+ .transpose()
+ );
- typename Rhs::PlainObject c(rhs());
+ m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots)
+ .template triangularView<Upper>()
+ .solveInPlace(c.topRows(nonzero_pivots));
- // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
- c.applyOnTheLeft(householderSequence(dec().matrixQR(), dec().hCoeffs())
- .setLength(dec().nonzeroPivots())
- .transpose()
- );
+ for(Index i = 0; i < nonzero_pivots; ++i) dst.row(m_colsPermutation.indices().coeff(i)) = c.row(i);
+ for(Index i = nonzero_pivots; i < cols(); ++i) dst.row(m_colsPermutation.indices().coeff(i)).setZero();
+}
+#endif
- dec().matrixR()
- .topLeftCorner(nonzero_pivots, nonzero_pivots)
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(nonzero_pivots));
+namespace internal {
- for(Index i = 0; i < nonzero_pivots; ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
- for(Index i = nonzero_pivots; i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
+template<typename DstXprType, typename MatrixType, typename Scalar>
+struct Assignment<DstXprType, Inverse<ColPivHouseholderQR<MatrixType> >, internal::assign_op<Scalar>, Dense2Dense, Scalar>
+{
+ typedef ColPivHouseholderQR<MatrixType> QrType;
+ typedef Inverse<QrType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
+ {
+ dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
}
};
diff --git a/Eigen/src/QR/FullPivHouseholderQR.h b/Eigen/src/QR/FullPivHouseholderQR.h
index a7b0fc16f..710c64a45 100644
--- a/Eigen/src/QR/FullPivHouseholderQR.h
+++ b/Eigen/src/QR/FullPivHouseholderQR.h
@@ -15,6 +15,12 @@ namespace Eigen {
namespace internal {
+template<typename _MatrixType> struct traits<FullPivHouseholderQR<_MatrixType> >
+ : traits<_MatrixType>
+{
+ enum { Flags = 0 };
+};
+
template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType;
template<typename MatrixType>
@@ -23,7 +29,7 @@ struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
typedef typename MatrixType::PlainObject ReturnType;
};
-}
+} // end namespace internal
/** \ingroup QR_Module
*
@@ -69,6 +75,7 @@ template<typename _MatrixType> class FullPivHouseholderQR
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;
+ typedef typename MatrixType::PlainObject PlainObject;
/** \brief Default Constructor.
*
@@ -145,11 +152,11 @@ template<typename _MatrixType> class FullPivHouseholderQR
* Output: \verbinclude FullPivHouseholderQR_solve.out
*/
template<typename Rhs>
- inline const internal::solve_retval<FullPivHouseholderQR, Rhs>
+ inline const Solve<FullPivHouseholderQR, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return internal::solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived());
+ return Solve<FullPivHouseholderQR, Rhs>(*this, b.derived());
}
/** \returns Expression object representing the matrix Q
@@ -280,13 +287,11 @@ template<typename _MatrixType> class FullPivHouseholderQR
*
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
* Use isInvertible() to first determine whether this matrix is invertible.
- */ inline const
- internal::solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType>
- inverse() const
+ */
+ inline const Inverse<FullPivHouseholderQR> inverse() const
{
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return internal::solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType>
- (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
+ return Inverse<FullPivHouseholderQR>(*this);
}
inline Index rows() const { return m_qr.rows(); }
@@ -366,6 +371,12 @@ template<typename _MatrixType> class FullPivHouseholderQR
* diagonal coefficient of U.
*/
RealScalar maxPivot() const { return m_maxpivot; }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename RhsType, typename DstType>
+ EIGEN_DEVICE_FUNC
+ void _solve_impl(const RhsType &rhs, DstType &dst) const;
+ #endif
protected:
MatrixType m_qr;
@@ -485,46 +496,53 @@ FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(cons
return *this;
}
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs>
- : solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs>
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename _MatrixType>
+template<typename RhsType, typename DstType>
+void FullPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
- EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs)
+ eigen_assert(rhs.rows() == rows());
+ const Index l_rank = rank();
- template<typename Dest> void evalTo(Dest& dst) const
+ // FIXME introduce nonzeroPivots() and use it here. and more generally,
+ // make the same improvements in this dec as in FullPivLU.
+ if(l_rank==0)
{
- const Index rows = dec().rows(), cols = dec().cols();
- eigen_assert(rhs().rows() == rows);
+ dst.setZero();
+ return;
+ }
- // FIXME introduce nonzeroPivots() and use it here. and more generally,
- // make the same improvements in this dec as in FullPivLU.
- if(dec().rank()==0)
- {
- dst.setZero();
- return;
- }
+ typename RhsType::PlainObject c(rhs);
- typename Rhs::PlainObject c(rhs());
+ Matrix<Scalar,1,RhsType::ColsAtCompileTime> temp(rhs.cols());
+ for (Index k = 0; k < l_rank; ++k)
+ {
+ Index remainingSize = rows()-k;
+ c.row(k).swap(c.row(m_rows_transpositions.coeff(k)));
+ c.bottomRightCorner(remainingSize, rhs.cols())
+ .applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingSize-1),
+ m_hCoeffs.coeff(k), &temp.coeffRef(0));
+ }
- Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols());
- for (Index k = 0; k < dec().rank(); ++k)
- {
- Index remainingSize = rows-k;
- c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k)));
- c.bottomRightCorner(remainingSize, rhs().cols())
- .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1),
- dec().hCoeffs().coeff(k), &temp.coeffRef(0));
- }
+ m_qr.topLeftCorner(l_rank, l_rank)
+ .template triangularView<Upper>()
+ .solveInPlace(c.topRows(l_rank));
- dec().matrixQR()
- .topLeftCorner(dec().rank(), dec().rank())
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(dec().rank()));
+ for(Index i = 0; i < l_rank; ++i) dst.row(m_cols_permutation.indices().coeff(i)) = c.row(i);
+ for(Index i = l_rank; i < cols(); ++i) dst.row(m_cols_permutation.indices().coeff(i)).setZero();
+}
+#endif
- for(Index i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
- for(Index i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
+namespace internal {
+
+template<typename DstXprType, typename MatrixType, typename Scalar>
+struct Assignment<DstXprType, Inverse<FullPivHouseholderQR<MatrixType> >, internal::assign_op<Scalar>, Dense2Dense, Scalar>
+{
+ typedef FullPivHouseholderQR<MatrixType> QrType;
+ typedef Inverse<QrType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
+ {
+ dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
}
};
@@ -550,7 +568,7 @@ public:
: m_qr(qr),
m_hCoeffs(hCoeffs),
m_rowsTranspositions(rowsTranspositions)
- {}
+ {}
template <typename ResultType>
void evalTo(ResultType& result) const
@@ -580,8 +598,8 @@ public:
}
}
- Index rows() const { return m_qr.rows(); }
- Index cols() const { return m_qr.rows(); }
+ Index rows() const { return m_qr.rows(); }
+ Index cols() const { return m_qr.rows(); }
protected:
typename MatrixType::Nested m_qr;
@@ -589,6 +607,11 @@ protected:
typename IntDiagSizeVectorType::Nested m_rowsTranspositions;
};
+// template<typename MatrixType>
+// struct evaluator<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
+// : public evaluator<ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> > >
+// {};
+
} // end namespace internal
template<typename MatrixType>
diff --git a/Eigen/src/QR/HouseholderQR.h b/Eigen/src/QR/HouseholderQR.h
index 352dbf3f0..0b0c9d1bd 100644
--- a/Eigen/src/QR/HouseholderQR.h
+++ b/Eigen/src/QR/HouseholderQR.h
@@ -118,11 +118,11 @@ template<typename _MatrixType> class HouseholderQR
* Output: \verbinclude HouseholderQR_solve.out
*/
template<typename Rhs>
- inline const internal::solve_retval<HouseholderQR, Rhs>
+ inline const Solve<HouseholderQR, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- return internal::solve_retval<HouseholderQR, Rhs>(*this, b.derived());
+ return Solve<HouseholderQR, Rhs>(*this, b.derived());
}
/** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.
@@ -187,6 +187,12 @@ template<typename _MatrixType> class HouseholderQR
* For advanced uses only.
*/
const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename RhsType, typename DstType>
+ EIGEN_DEVICE_FUNC
+ void _solve_impl(const RhsType &rhs, DstType &dst) const;
+ #endif
protected:
MatrixType m_qr;
@@ -283,8 +289,8 @@ struct householder_qr_inplace_blocked
for (k = 0; k < size; k += blockSize)
{
Index bs = (std::min)(size-k,blockSize); // actual size of the block
- Index tcols = cols - k - bs; // trailing columns
- Index brows = rows-k; // rows of the block
+ Index tcols = cols - k - bs; // trailing columns
+ Index brows = rows-k; // rows of the block
// partition the matrix:
// A00 | A01 | A02
@@ -302,43 +308,38 @@ struct householder_qr_inplace_blocked
if(tcols)
{
BlockType A21_22 = mat.block(k,k+bs,brows,tcols);
- apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment.adjoint());
+ apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment, false); // false == backward
}
}
}
};
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<HouseholderQR<_MatrixType>, Rhs>
- : solve_retval_base<HouseholderQR<_MatrixType>, Rhs>
-{
- EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- const Index rows = dec().rows(), cols = dec().cols();
- const Index rank = (std::min)(rows, cols);
- eigen_assert(rhs().rows() == rows);
+} // end namespace internal
- typename Rhs::PlainObject c(rhs());
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename _MatrixType>
+template<typename RhsType, typename DstType>
+void HouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
+{
+ const Index rank = (std::min)(rows(), cols());
+ eigen_assert(rhs.rows() == rows());
- // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
- c.applyOnTheLeft(householderSequence(
- dec().matrixQR().leftCols(rank),
- dec().hCoeffs().head(rank)).transpose()
- );
+ typename RhsType::PlainObject c(rhs);
- dec().matrixQR()
- .topLeftCorner(rank, rank)
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(rank));
+ // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
+ c.applyOnTheLeft(householderSequence(
+ m_qr.leftCols(rank),
+ m_hCoeffs.head(rank)).transpose()
+ );
- dst.topRows(rank) = c.topRows(rank);
- dst.bottomRows(cols-rank).setZero();
- }
-};
+ m_qr.topLeftCorner(rank, rank)
+ .template triangularView<Upper>()
+ .solveInPlace(c.topRows(rank));
-} // end namespace internal
+ dst.topRows(rank) = c.topRows(rank);
+ dst.bottomRows(cols()-rank).setZero();
+}
+#endif
/** Performs the QR factorization of the given matrix \a matrix. The result of
* the factorization is stored into \c *this, and a reference to \c *this
diff --git a/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h b/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h
index a2cc2a9e2..bcdc981d7 100644
--- a/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h
+++ b/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h
@@ -2,6 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -54,8 +55,11 @@ namespace Eigen {
*
*/
template<typename _MatrixType>
-class SPQR
+class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
{
+ protected:
+ typedef SparseSolverBase<SPQR<_MatrixType> > Base;
+ using Base::m_isInitialized;
public:
typedef typename _MatrixType::Scalar Scalar;
typedef typename _MatrixType::RealScalar RealScalar;
@@ -64,19 +68,13 @@ class SPQR
typedef PermutationMatrix<Dynamic, Dynamic> PermutationType;
public:
SPQR()
- : m_isInitialized(false),
- m_ordering(SPQR_ORDERING_DEFAULT),
- m_allow_tol(SPQR_DEFAULT_TOL),
- m_tolerance (NumTraits<Scalar>::epsilon())
+ : m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon())
{
cholmod_l_start(&m_cc);
}
SPQR(const _MatrixType& matrix)
- : m_isInitialized(false),
- m_ordering(SPQR_ORDERING_DEFAULT),
- m_allow_tol(SPQR_DEFAULT_TOL),
- m_tolerance (NumTraits<Scalar>::epsilon())
+ : m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon())
{
cholmod_l_start(&m_cc);
compute(matrix);
@@ -126,22 +124,9 @@ class SPQR
* Get the number of columns of the input matrix.
*/
inline Index cols() const { return m_cR->ncol; }
-
- /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<SPQR, Rhs> solve(const MatrixBase<Rhs>& B) const
- {
- eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
- eigen_assert(this->rows()==B.rows()
- && "SPQR::solve(): invalid number of rows of the right hand side matrix B");
- return internal::solve_retval<SPQR, Rhs>(*this, B.derived());
- }
template<typename Rhs, typename Dest>
- void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
+ void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
{
eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
eigen_assert(b.cols()==1 && "This method is for vectors only");
@@ -214,7 +199,6 @@ class SPQR
return m_info;
}
protected:
- bool m_isInitialized;
bool m_analysisIsOk;
bool m_factorizationIsOk;
mutable bool m_isRUpToDate;
@@ -293,22 +277,5 @@ struct SPQRMatrixQTransposeReturnType{
const SPQRType& m_spqr;
};
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<SPQR<_MatrixType>, Rhs>
- : solve_retval_base<SPQR<_MatrixType>, Rhs>
-{
- typedef SPQR<_MatrixType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
}// End namespace Eigen
#endif
diff --git a/Eigen/src/SVD/JacobiSVD.h b/Eigen/src/SVD/JacobiSVD.h
index 412daa746..f2a72faa3 100644
--- a/Eigen/src/SVD/JacobiSVD.h
+++ b/Eigen/src/SVD/JacobiSVD.h
@@ -2,6 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
+// Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -424,24 +425,31 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
JacobiRotation<RealScalar> rot1;
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
- if(t == RealScalar(0))
+
+ if(d == RealScalar(0))
{
- rot1.c() = RealScalar(0);
- rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
+ rot1.s() = RealScalar(0);
+ rot1.c() = RealScalar(1);
}
else
{
- RealScalar t2d2 = numext::hypot(t,d);
- rot1.c() = abs(t)/t2d2;
- rot1.s() = d/t2d2;
- if(t<RealScalar(0))
- rot1.s() = -rot1.s();
+ // If d!=0, then t/d cannot overflow because the magnitude of the
+ // entries forming d are not too small compared to the ones forming t.
+ RealScalar u = t / d;
+ rot1.s() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u));
+ rot1.c() = rot1.s() * u;
}
m.applyOnTheLeft(0,1,rot1);
j_right->makeJacobi(m,0,1);
*j_left = rot1 * j_right->transpose();
}
+template<typename _MatrixType, int QRPreconditioner>
+struct traits<JacobiSVD<_MatrixType,QRPreconditioner> >
+{
+ typedef _MatrixType MatrixType;
+};
+
} // end namespace internal
/** \ingroup SVD_Module
@@ -498,7 +506,9 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
* \sa MatrixBase::jacobiSvd()
*/
template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
+ : public SVDBase<JacobiSVD<_MatrixType,QRPreconditioner> >
{
+ typedef SVDBase<JacobiSVD> Base;
public:
typedef _MatrixType MatrixType;
@@ -515,13 +525,10 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
MatrixOptions = MatrixType::Options
};
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
- MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
- MatrixUType;
- typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
- MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
- MatrixVType;
- typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
+ typedef typename Base::MatrixUType MatrixUType;
+ typedef typename Base::MatrixVType MatrixVType;
+ typedef typename Base::SingularValuesType SingularValuesType;
+
typedef typename internal::plain_row_type<MatrixType>::type RowType;
typedef typename internal::plain_col_type<MatrixType>::type ColType;
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
@@ -534,11 +541,6 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
* perform decompositions via JacobiSVD::compute(const MatrixType&).
*/
JacobiSVD()
- : m_isInitialized(false),
- m_isAllocated(false),
- m_usePrescribedThreshold(false),
- m_computationOptions(0),
- m_rows(-1), m_cols(-1), m_diagSize(0)
{}
@@ -549,11 +551,6 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
* \sa JacobiSVD()
*/
JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
- : m_isInitialized(false),
- m_isAllocated(false),
- m_usePrescribedThreshold(false),
- m_computationOptions(0),
- m_rows(-1), m_cols(-1)
{
allocate(rows, cols, computationOptions);
}
@@ -569,11 +566,6 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
* available with the (non-default) FullPivHouseholderQR preconditioner.
*/
JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
- : m_isInitialized(false),
- m_isAllocated(false),
- m_usePrescribedThreshold(false),
- m_computationOptions(0),
- m_rows(-1), m_cols(-1)
{
compute(matrix, computationOptions);
}
@@ -601,159 +593,33 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
return compute(matrix, m_computationOptions);
}
- /** \returns the \a U matrix.
- *
- * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
- * the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
- *
- * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
- *
- * This method asserts that you asked for \a U to be computed.
- */
- const MatrixUType& matrixU() const
- {
- eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
- eigen_assert(computeU() && "This JacobiSVD decomposition didn't compute U. Did you ask for it?");
- return m_matrixU;
- }
-
- /** \returns the \a V matrix.
- *
- * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
- * the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV.
- *
- * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
- *
- * This method asserts that you asked for \a V to be computed.
- */
- const MatrixVType& matrixV() const
- {
- eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
- eigen_assert(computeV() && "This JacobiSVD decomposition didn't compute V. Did you ask for it?");
- return m_matrixV;
- }
-
- /** \returns the vector of singular values.
- *
- * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
- * returned vector has size \a m. Singular values are always sorted in decreasing order.
- */
- const SingularValuesType& singularValues() const
- {
- eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
- return m_singularValues;
- }
-
- /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
- inline bool computeU() const { return m_computeFullU || m_computeThinU; }
- /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
- inline bool computeV() const { return m_computeFullV || m_computeThinV; }
-
- /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
- *
- * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
- * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
- */
- template<typename Rhs>
- inline const internal::solve_retval<JacobiSVD, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
- eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
- return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
- }
-
- /** \returns the number of singular values that are not exactly 0 */
- Index nonzeroSingularValues() const
- {
- eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
- return m_nonzeroSingularValues;
- }
-
- /** \returns the rank of the matrix of which \c *this is the SVD.
- *
- * \note This method has to determine which singular values should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index rank() const
- {
- using std::abs;
- eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
- if(m_singularValues.size()==0) return 0;
- RealScalar premultiplied_threshold = m_singularValues.coeff(0) * threshold();
- Index i = m_nonzeroSingularValues-1;
- while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
- return i+1;
- }
-
- /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
- * which need to determine when singular values are to be considered nonzero.
- * This is not used for the SVD decomposition itself.
- *
- * When it needs to get the threshold value, Eigen calls threshold().
- * The default is \c NumTraits<Scalar>::epsilon()
- *
- * \param threshold The new value to use as the threshold.
- *
- * A singular value will be considered nonzero if its value is strictly greater than
- * \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
- *
- * If you want to come back to the default behavior, call setThreshold(Default_t)
- */
- JacobiSVD& setThreshold(const RealScalar& threshold)
- {
- m_usePrescribedThreshold = true;
- m_prescribedThreshold = threshold;
- return *this;
- }
-
- /** Allows to come back to the default behavior, letting Eigen use its default formula for
- * determining the threshold.
- *
- * You should pass the special object Eigen::Default as parameter here.
- * \code svd.setThreshold(Eigen::Default); \endcode
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- JacobiSVD& setThreshold(Default_t)
- {
- m_usePrescribedThreshold = false;
- return *this;
- }
-
- /** Returns the threshold that will be used by certain methods such as rank().
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- RealScalar threshold() const
- {
- eigen_assert(m_isInitialized || m_usePrescribedThreshold);
- return m_usePrescribedThreshold ? m_prescribedThreshold
- : (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon();
- }
-
- inline Index rows() const { return m_rows; }
- inline Index cols() const { return m_cols; }
+ using Base::computeU;
+ using Base::computeV;
+ using Base::rows;
+ using Base::cols;
+ using Base::rank;
private:
void allocate(Index rows, Index cols, unsigned int computationOptions);
protected:
- MatrixUType m_matrixU;
- MatrixVType m_matrixV;
- SingularValuesType m_singularValues;
+ using Base::m_matrixU;
+ using Base::m_matrixV;
+ using Base::m_singularValues;
+ using Base::m_isInitialized;
+ using Base::m_isAllocated;
+ using Base::m_usePrescribedThreshold;
+ using Base::m_computeFullU;
+ using Base::m_computeThinU;
+ using Base::m_computeFullV;
+ using Base::m_computeThinV;
+ using Base::m_computationOptions;
+ using Base::m_nonzeroSingularValues;
+ using Base::m_rows;
+ using Base::m_cols;
+ using Base::m_diagSize;
+ using Base::m_prescribedThreshold;
WorkMatrixType m_workMatrix;
- bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
- bool m_computeFullU, m_computeThinU;
- bool m_computeFullV, m_computeThinV;
- unsigned int m_computationOptions;
- Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
- RealScalar m_prescribedThreshold;
template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
friend struct internal::svd_precondition_2x2_block_to_be_real;
@@ -861,7 +727,8 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
EIGEN_USING_STD_MATH(max);
RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
abs(m_workMatrix.coeff(q,q))));
- if((max)(abs(m_workMatrix.coeff(p,q)),abs(m_workMatrix.coeff(q,p))) > threshold)
+ // We compare both values to threshold instead of calling max to be robust to NaN (See bug 791)
+ if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold)
{
finished = false;
@@ -917,31 +784,6 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
return *this;
}
-namespace internal {
-template<typename _MatrixType, int QRPreconditioner, typename Rhs>
-struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
- : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
-{
- typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
- EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- eigen_assert(rhs().rows() == dec().rows());
-
- // A = U S V^*
- // So A^{-1} = V S^{-1} U^*
-
- Matrix<Scalar, Dynamic, Rhs::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime> tmp;
- Index rank = dec().rank();
-
- tmp.noalias() = dec().matrixU().leftCols(rank).adjoint() * rhs();
- tmp = dec().singularValues().head(rank).asDiagonal().inverse() * tmp;
- dst = dec().matrixV().leftCols(rank) * tmp;
- }
-};
-} // end namespace internal
-
#ifndef __CUDACC__
/** \svd_module
*
diff --git a/unsupported/Eigen/src/SVD/SVDBase.h b/Eigen/src/SVD/SVDBase.h
index fd8af3b8c..27b732b80 100644
--- a/unsupported/Eigen/src/SVD/SVDBase.h
+++ b/Eigen/src/SVD/SVDBase.h
@@ -2,6 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
@@ -12,8 +13,8 @@
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-#ifndef EIGEN_SVD_H
-#define EIGEN_SVD_H
+#ifndef EIGEN_SVDBASE_H
+#define EIGEN_SVDBASE_H
namespace Eigen {
/** \ingroup SVD_Module
@@ -21,9 +22,10 @@ namespace Eigen {
*
* \class SVDBase
*
- * \brief Mother class of SVD classes algorithms
+ * \brief Base class of SVD algorithms
+ *
+ * \tparam Derived the type of the actual SVD decomposition
*
- * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
* \f[ A = U S V^* \f]
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
@@ -42,12 +44,12 @@ namespace Eigen {
* terminate in finite (and reasonable) time.
* \sa MatrixBase::genericSvd()
*/
-template<typename _MatrixType>
+template<typename Derived>
class SVDBase
{
public:
- typedef _MatrixType MatrixType;
+ typedef typename internal::traits<Derived>::MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
@@ -61,46 +63,16 @@ public:
MatrixOptions = MatrixType::Options
};
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
- MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
- MatrixUType;
- typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
- MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
- MatrixVType;
+ typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType;
+ typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType;
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
- typedef typename internal::plain_row_type<MatrixType>::type RowType;
- typedef typename internal::plain_col_type<MatrixType>::type ColType;
- typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
- MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
- WorkMatrixType;
-
-
-
-
- /** \brief Method performing the decomposition of given matrix using custom options.
- *
- * \param matrix the matrix to decompose
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
- * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
- * #ComputeFullV, #ComputeThinV.
- *
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
- * available with the (non-default) FullPivHouseholderQR preconditioner.
- */
- SVDBase& compute(const MatrixType& matrix, unsigned int computationOptions);
-
- /** \brief Method performing the decomposition of given matrix using current options.
- *
- * \param matrix the matrix to decompose
- *
- * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
- */
- //virtual SVDBase& compute(const MatrixType& matrix) = 0;
- SVDBase& compute(const MatrixType& matrix);
+
+ Derived& derived() { return *static_cast<Derived*>(this); }
+ const Derived& derived() const { return *static_cast<const Derived*>(this); }
/** \returns the \a U matrix.
*
- * For the SVDBase decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
+ * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
* the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
*
* The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
@@ -141,25 +113,107 @@ public:
return m_singularValues;
}
-
-
/** \returns the number of singular values that are not exactly 0 */
Index nonzeroSingularValues() const
{
eigen_assert(m_isInitialized && "SVD is not initialized.");
return m_nonzeroSingularValues;
}
+
+ /** \returns the rank of the matrix of which \c *this is the SVD.
+ *
+ * \note This method has to determine which singular values should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline Index rank() const
+ {
+ using std::abs;
+ eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
+ if(m_singularValues.size()==0) return 0;
+ RealScalar premultiplied_threshold = m_singularValues.coeff(0) * threshold();
+ Index i = m_nonzeroSingularValues-1;
+ while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
+ return i+1;
+ }
+
+ /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
+ * which need to determine when singular values are to be considered nonzero.
+ * This is not used for the SVD decomposition itself.
+ *
+ * When it needs to get the threshold value, Eigen calls threshold().
+ * The default is \c NumTraits<Scalar>::epsilon()
+ *
+ * \param threshold The new value to use as the threshold.
+ *
+ * A singular value will be considered nonzero if its value is strictly greater than
+ * \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
+ *
+ * If you want to come back to the default behavior, call setThreshold(Default_t)
+ */
+ Derived& setThreshold(const RealScalar& threshold)
+ {
+ m_usePrescribedThreshold = true;
+ m_prescribedThreshold = threshold;
+ return derived();
+ }
+
+ /** Allows to come back to the default behavior, letting Eigen use its default formula for
+ * determining the threshold.
+ *
+ * You should pass the special object Eigen::Default as parameter here.
+ * \code svd.setThreshold(Eigen::Default); \endcode
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ Derived& setThreshold(Default_t)
+ {
+ m_usePrescribedThreshold = false;
+ return derived();
+ }
+ /** Returns the threshold that will be used by certain methods such as rank().
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ RealScalar threshold() const
+ {
+ eigen_assert(m_isInitialized || m_usePrescribedThreshold);
+ return m_usePrescribedThreshold ? m_prescribedThreshold
+ : (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon();
+ }
/** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
inline bool computeU() const { return m_computeFullU || m_computeThinU; }
/** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
inline bool computeV() const { return m_computeFullV || m_computeThinV; }
-
inline Index rows() const { return m_rows; }
inline Index cols() const { return m_cols; }
-
+
+ /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
+ *
+ * \param b the right-hand-side of the equation to solve.
+ *
+ * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
+ *
+ * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
+ * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
+ */
+ template<typename Rhs>
+ inline const Solve<Derived, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ eigen_assert(m_isInitialized && "SVD is not initialized.");
+ eigen_assert(computeU() && computeV() && "SVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
+ return Solve<Derived, Rhs>(derived(), b.derived());
+ }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ template<typename RhsType, typename DstType>
+ EIGEN_DEVICE_FUNC
+ void _solve_impl(const RhsType &rhs, DstType &dst) const;
+ #endif
protected:
// return true if already allocated
@@ -168,12 +222,12 @@ protected:
MatrixUType m_matrixU;
MatrixVType m_matrixV;
SingularValuesType m_singularValues;
- bool m_isInitialized, m_isAllocated;
+ bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
bool m_computeFullU, m_computeThinU;
bool m_computeFullV, m_computeThinV;
unsigned int m_computationOptions;
Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
-
+ RealScalar m_prescribedThreshold;
/** \brief Default Constructor.
*
@@ -182,13 +236,31 @@ protected:
SVDBase()
: m_isInitialized(false),
m_isAllocated(false),
+ m_usePrescribedThreshold(false),
m_computationOptions(0),
- m_rows(-1), m_cols(-1)
+ m_rows(-1), m_cols(-1), m_diagSize(0)
{}
};
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+template<typename Derived>
+template<typename RhsType, typename DstType>
+void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const
+{
+ eigen_assert(rhs.rows() == rows());
+
+ // A = U S V^*
+ // So A^{-1} = V S^{-1} U^*
+
+ Matrix<Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
+ Index l_rank = rank();
+ tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs;
+ tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
+ dst = m_matrixV.leftCols(l_rank) * tmp;
+}
+#endif
template<typename MatrixType>
bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
@@ -220,17 +292,13 @@ bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computat
m_diagSize = (std::min)(m_rows, m_cols);
m_singularValues.resize(m_diagSize);
if(RowsAtCompileTime==Dynamic)
- m_matrixU.resize(m_rows, m_computeFullU ? m_rows
- : m_computeThinU ? m_diagSize
- : 0);
+ m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0);
if(ColsAtCompileTime==Dynamic)
- m_matrixV.resize(m_cols, m_computeFullV ? m_cols
- : m_computeThinV ? m_diagSize
- : 0);
+ m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0);
return false;
}
}// end namespace
-#endif // EIGEN_SVD_H
+#endif // EIGEN_SVDBASE_H
diff --git a/Eigen/src/SVD/UpperBidiagonalization.h b/Eigen/src/SVD/UpperBidiagonalization.h
index 40067682c..40b1237a0 100644
--- a/Eigen/src/SVD/UpperBidiagonalization.h
+++ b/Eigen/src/SVD/UpperBidiagonalization.h
@@ -2,6 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
+// Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -153,14 +154,19 @@ void upperbidiagonalization_blocked_helper(MatrixType& A,
typename MatrixType::RealScalar *diagonal,
typename MatrixType::RealScalar *upper_diagonal,
typename MatrixType::Index bs,
- Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic> > X,
- Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic> > Y)
+ Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic,
+ traits<MatrixType>::Flags & RowMajorBit> > X,
+ Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic,
+ traits<MatrixType>::Flags & RowMajorBit> > Y)
{
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
- typedef Ref<Matrix<Scalar, Dynamic, 1> > SubColumnType;
- typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, InnerStride<> > SubRowType;
- typedef Ref<Matrix<Scalar, Dynamic, Dynamic> > SubMatType;
+ enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
+ typedef InnerStride<int(StorageOrder) == int(ColMajor) ? 1 : Dynamic> ColInnerStride;
+ typedef InnerStride<int(StorageOrder) == int(ColMajor) ? Dynamic : 1> RowInnerStride;
+ typedef Ref<Matrix<Scalar, Dynamic, 1>, 0, ColInnerStride> SubColumnType;
+ typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, RowInnerStride> SubRowType;
+ typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder > > SubMatType;
Index brows = A.rows();
Index bcols = A.cols();
@@ -214,10 +220,10 @@ void upperbidiagonalization_blocked_helper(MatrixType& A,
if(k) u_k -= U_k1.adjoint() * X.row(k).head(k).adjoint();
}
- // 5 - construct right Householder transform in-placecols
+ // 5 - construct right Householder transform in-place
u_k.makeHouseholderInPlace(tau_u, upper_diagonal[k]);
- // this eases the application of Householder transforAions
+ // this eases the application of Householder transformations
// A(k,k+1) will store tau_u later
A(k,k+1) = Scalar(1);
@@ -287,8 +293,18 @@ void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagona
Index cols = A.cols();
Index size = (std::min)(rows, cols);
- Matrix<Scalar,MatrixType::RowsAtCompileTime,Dynamic,ColMajor,MatrixType::MaxRowsAtCompileTime> X(rows,maxBlockSize);
- Matrix<Scalar,MatrixType::ColsAtCompileTime,Dynamic,ColMajor,MatrixType::MaxColsAtCompileTime> Y(cols,maxBlockSize);
+ // X and Y are work space
+ enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
+ Matrix<Scalar,
+ MatrixType::RowsAtCompileTime,
+ Dynamic,
+ StorageOrder,
+ MatrixType::MaxRowsAtCompileTime> X(rows,maxBlockSize);
+ Matrix<Scalar,
+ MatrixType::ColsAtCompileTime,
+ Dynamic,
+ StorageOrder,
+ MatrixType::MaxColsAtCompileTime> Y(cols,maxBlockSize);
Index blockSize = (std::min)(maxBlockSize,size);
Index k = 0;
diff --git a/Eigen/src/SparseCholesky/SimplicialCholesky.h b/Eigen/src/SparseCholesky/SimplicialCholesky.h
index e1f96ba5a..3c8cef5db 100644
--- a/Eigen/src/SparseCholesky/SimplicialCholesky.h
+++ b/Eigen/src/SparseCholesky/SimplicialCholesky.h
@@ -33,8 +33,11 @@ enum SimplicialCholeskyMode {
*
*/
template<typename Derived>
-class SimplicialCholeskyBase : internal::noncopyable
+class SimplicialCholeskyBase : public SparseSolverBase<Derived>
{
+ typedef SparseSolverBase<Derived> Base;
+ using Base::m_isInitialized;
+
public:
typedef typename internal::traits<Derived>::MatrixType MatrixType;
typedef typename internal::traits<Derived>::OrderingType OrderingType;
@@ -46,14 +49,16 @@ class SimplicialCholeskyBase : internal::noncopyable
typedef Matrix<Scalar,Dynamic,1> VectorType;
public:
+
+ using Base::derived;
/** Default constructor */
SimplicialCholeskyBase()
- : m_info(Success), m_isInitialized(false), m_shiftOffset(0), m_shiftScale(1)
+ : m_info(Success), m_shiftOffset(0), m_shiftScale(1)
{}
SimplicialCholeskyBase(const MatrixType& matrix)
- : m_info(Success), m_isInitialized(false), m_shiftOffset(0), m_shiftScale(1)
+ : m_info(Success), m_shiftOffset(0), m_shiftScale(1)
{
derived().compute(matrix);
}
@@ -79,34 +84,6 @@ class SimplicialCholeskyBase : internal::noncopyable
return m_info;
}
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<SimplicialCholeskyBase, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "Simplicial LLT or LDLT is not initialized.");
- eigen_assert(rows()==b.rows()
- && "SimplicialCholeskyBase::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<SimplicialCholeskyBase, Rhs>(*this, b.derived());
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<SimplicialCholeskyBase, Rhs>
- solve(const SparseMatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "Simplicial LLT or LDLT is not initialized.");
- eigen_assert(rows()==b.rows()
- && "SimplicialCholesky::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<SimplicialCholeskyBase, Rhs>(*this, b.derived());
- }
-
/** \returns the permutation P
* \sa permutationPinv() */
const PermutationMatrix<Dynamic,Dynamic,Index>& permutationP() const
@@ -150,7 +127,7 @@ class SimplicialCholeskyBase : internal::noncopyable
/** \internal */
template<typename Rhs,typename Dest>
- void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
+ void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
eigen_assert(m_matrix.rows()==b.rows());
@@ -175,6 +152,12 @@ class SimplicialCholeskyBase : internal::noncopyable
if(m_P.size()>0)
dest = m_Pinv * dest;
}
+
+ template<typename Rhs,typename Dest>
+ void _solve_impl(const SparseMatrixBase<Rhs> &b, SparseMatrixBase<Dest> &dest) const
+ {
+ internal::solve_sparse_through_dense_panels(derived(), b, dest);
+ }
#endif // EIGEN_PARSED_BY_DOXYGEN
@@ -226,7 +209,6 @@ class SimplicialCholeskyBase : internal::noncopyable
};
mutable ComputationInfo m_info;
- bool m_isInitialized;
bool m_factorizationIsOk;
bool m_analysisIsOk;
@@ -255,8 +237,8 @@ template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<Simp
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef SparseMatrix<Scalar, ColMajor, Index> CholMatrixType;
- typedef SparseTriangularView<CholMatrixType, Eigen::Lower> MatrixL;
- typedef SparseTriangularView<typename CholMatrixType::AdjointReturnType, Eigen::Upper> MatrixU;
+ typedef TriangularView<CholMatrixType, Eigen::Lower> MatrixL;
+ typedef TriangularView<typename CholMatrixType::AdjointReturnType, Eigen::Upper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return m; }
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
};
@@ -269,8 +251,8 @@ template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<Simpl
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef SparseMatrix<Scalar, ColMajor, Index> CholMatrixType;
- typedef SparseTriangularView<CholMatrixType, Eigen::UnitLower> MatrixL;
- typedef SparseTriangularView<typename CholMatrixType::AdjointReturnType, Eigen::UnitUpper> MatrixU;
+ typedef TriangularView<CholMatrixType, Eigen::UnitLower> MatrixL;
+ typedef TriangularView<typename CholMatrixType::AdjointReturnType, Eigen::UnitUpper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return m; }
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
};
@@ -560,7 +542,7 @@ public:
/** \internal */
template<typename Rhs,typename Dest>
- void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
+ void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
{
eigen_assert(Base::m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
eigen_assert(Base::m_matrix.rows()==b.rows());
@@ -596,6 +578,13 @@ public:
dest = Base::m_Pinv * dest;
}
+ /** \internal */
+ template<typename Rhs,typename Dest>
+ void _solve_impl(const SparseMatrixBase<Rhs> &b, SparseMatrixBase<Dest> &dest) const
+ {
+ internal::solve_sparse_through_dense_panels(*this, b, dest);
+ }
+
Scalar determinant() const
{
if(m_LDLT)
@@ -636,36 +625,6 @@ void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, CholMatrixTy
ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P);
}
-namespace internal {
-
-template<typename Derived, typename Rhs>
-struct solve_retval<SimplicialCholeskyBase<Derived>, Rhs>
- : solve_retval_base<SimplicialCholeskyBase<Derived>, Rhs>
-{
- typedef SimplicialCholeskyBase<Derived> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec().derived()._solve(rhs(),dst);
- }
-};
-
-template<typename Derived, typename Rhs>
-struct sparse_solve_retval<SimplicialCholeskyBase<Derived>, Rhs>
- : sparse_solve_retval_base<SimplicialCholeskyBase<Derived>, Rhs>
-{
- typedef SimplicialCholeskyBase<Derived> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- this->defaultEvalTo(dst);
- }
-};
-
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_SIMPLICIAL_CHOLESKY_H
diff --git a/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h b/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h
index 8067565f9..19d9eaa42 100644
--- a/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h
+++ b/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -28,6 +28,8 @@ static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& r
ei_declare_aligned_stack_constructed_variable(bool, mask, rows, 0);
ei_declare_aligned_stack_constructed_variable(Scalar, values, rows, 0);
ei_declare_aligned_stack_constructed_variable(Index, indices, rows, 0);
+
+ std::memset(mask,0,sizeof(bool)*rows);
// estimate the number of non zero entries
// given a rhs column containing Y non zeros, we assume that the respective Y columns
@@ -36,6 +38,9 @@ static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& r
// per column of the lhs.
// Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
Index estimated_nnz_prod = lhs.nonZeros() + rhs.nonZeros();
+
+ typename evaluator<Lhs>::type lhsEval(lhs);
+ typename evaluator<Rhs>::type rhsEval(rhs);
res.setZero();
res.reserve(Index(estimated_nnz_prod));
@@ -45,11 +50,11 @@ static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& r
res.startVec(j);
Index nnz = 0;
- for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
+ for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt)
{
Scalar y = rhsIt.value();
Index k = rhsIt.index();
- for (typename Lhs::InnerIterator lhsIt(lhs, k); lhsIt; ++lhsIt)
+ for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, k); lhsIt; ++lhsIt)
{
Index i = lhsIt.index();
Scalar x = lhsIt.value();
@@ -86,7 +91,7 @@ static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& r
// otherwise => loop through the entire vector
// In order to avoid to perform an expensive log2 when the
// result is clearly very sparse we use a linear bound up to 200.
- if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
+ if((nnz<200 && nnz<t200) || nnz * numext::log2(int(nnz)) < t)
{
if(nnz>1) std::sort(indices,indices+nnz);
for(Index k=0; k<nnz; ++k)
@@ -136,20 +141,21 @@ struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,C
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrixAux;
typedef typename sparse_eval<ColMajorMatrixAux,ResultType::RowsAtCompileTime,ResultType::ColsAtCompileTime>::type ColMajorMatrix;
- ColMajorMatrix resCol(lhs.rows(),rhs.cols());
// FIXME, the following heuristic is probably not very good.
if(lhs.rows()>=rhs.cols())
{
+ ColMajorMatrix resCol(lhs.rows(),rhs.cols());
// perform sorted insertion
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol, true);
- res.swap(resCol);
+ res = resCol.markAsRValue();
}
else
{
+ ColMajorMatrixAux resCol(lhs.rows(),rhs.cols());
// ressort to transpose to sort the entries
- internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol, false);
+ internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrixAux>(lhs, rhs, resCol, false);
RowMajorMatrix resRow(resCol);
- res = resRow;
+ res = resRow.markAsRValue();
}
}
};
diff --git a/Eigen/src/SparseCore/MappedSparseMatrix.h b/Eigen/src/SparseCore/MappedSparseMatrix.h
index ab1a266a9..d9aabd049 100644
--- a/Eigen/src/SparseCore/MappedSparseMatrix.h
+++ b/Eigen/src/SparseCore/MappedSparseMatrix.h
@@ -176,6 +176,32 @@ class MappedSparseMatrix<Scalar,_Flags,_Index>::ReverseInnerIterator
const Index m_end;
};
+namespace internal {
+
+template<typename _Scalar, int _Options, typename _Index>
+struct evaluator<MappedSparseMatrix<_Scalar,_Options,_Index> >
+ : evaluator_base<MappedSparseMatrix<_Scalar,_Options,_Index> >
+{
+ typedef MappedSparseMatrix<_Scalar,_Options,_Index> MappedSparseMatrixType;
+ typedef typename MappedSparseMatrixType::InnerIterator InnerIterator;
+ typedef typename MappedSparseMatrixType::ReverseInnerIterator ReverseInnerIterator;
+
+ enum {
+ CoeffReadCost = NumTraits<_Scalar>::ReadCost,
+ Flags = MappedSparseMatrixType::Flags
+ };
+
+ evaluator() : m_matrix(0) {}
+ evaluator(const MappedSparseMatrixType &mat) : m_matrix(&mat) {}
+
+ operator MappedSparseMatrixType&() { return m_matrix->const_cast_derived(); }
+ operator const MappedSparseMatrixType&() const { return *m_matrix; }
+
+ const MappedSparseMatrixType *m_matrix;
+};
+
+}
+
} // end namespace Eigen
#endif // EIGEN_MAPPED_SPARSEMATRIX_H
diff --git a/Eigen/src/SparseCore/SparseAssign.h b/Eigen/src/SparseCore/SparseAssign.h
new file mode 100644
index 000000000..97c079d3f
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseAssign.h
@@ -0,0 +1,192 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSEASSIGN_H
+#define EIGEN_SPARSEASSIGN_H
+
+namespace Eigen {
+
+template<typename Derived>
+template<typename OtherDerived>
+Derived& SparseMatrixBase<Derived>::operator=(const EigenBase<OtherDerived> &other)
+{
+ // TODO use the evaluator mechanism
+ other.derived().evalTo(derived());
+ return derived();
+}
+
+template<typename Derived>
+template<typename OtherDerived>
+Derived& SparseMatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
+{
+ // TODO use the evaluator mechanism
+ other.evalTo(derived());
+ return derived();
+}
+
+template<typename Derived>
+template<typename OtherDerived>
+inline Derived& SparseMatrixBase<Derived>::operator=(const SparseMatrixBase<OtherDerived>& other)
+{
+ // FIXME, by default sparse evaluation do not alias, so we should be able to bypass the generic call_assignment
+ internal::call_assignment/*_no_alias*/(derived(), other.derived());
+ return derived();
+}
+
+template<typename Derived>
+inline Derived& SparseMatrixBase<Derived>::operator=(const Derived& other)
+{
+ internal::call_assignment_no_alias(derived(), other.derived());
+ return derived();
+}
+
+namespace internal {
+
+template<>
+struct storage_kind_to_evaluator_kind<Sparse> {
+ typedef IteratorBased Kind;
+};
+
+template<>
+struct storage_kind_to_shape<Sparse> {
+ typedef SparseShape Shape;
+};
+
+struct Sparse2Sparse {};
+struct Sparse2Dense {};
+
+template<> struct AssignmentKind<SparseShape, SparseShape> { typedef Sparse2Sparse Kind; };
+template<> struct AssignmentKind<SparseShape, SparseTriangularShape> { typedef Sparse2Sparse Kind; };
+template<> struct AssignmentKind<DenseShape, SparseShape> { typedef Sparse2Dense Kind; };
+
+
+template<typename DstXprType, typename SrcXprType>
+void assign_sparse_to_sparse(DstXprType &dst, const SrcXprType &src)
+{
+ eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
+
+ typedef typename DstXprType::Index Index;
+ typedef typename DstXprType::Scalar Scalar;
+ typedef typename internal::evaluator<DstXprType>::type DstEvaluatorType;
+ typedef typename internal::evaluator<SrcXprType>::type SrcEvaluatorType;
+
+ SrcEvaluatorType srcEvaluator(src);
+
+ const bool transpose = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit);
+ const Index outerEvaluationSize = (SrcEvaluatorType::Flags&RowMajorBit) ? src.rows() : src.cols();
+ if ((!transpose) && src.isRValue())
+ {
+ // eval without temporary
+ dst.resize(src.rows(), src.cols());
+ dst.setZero();
+ dst.reserve((std::max)(src.rows(),src.cols())*2);
+ for (Index j=0; j<outerEvaluationSize; ++j)
+ {
+ dst.startVec(j);
+ for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it)
+ {
+ Scalar v = it.value();
+ dst.insertBackByOuterInner(j,it.index()) = v;
+ }
+ }
+ dst.finalize();
+ }
+ else
+ {
+ // eval through a temporary
+ eigen_assert(( ((internal::traits<DstXprType>::SupportedAccessPatterns & OuterRandomAccessPattern)==OuterRandomAccessPattern) ||
+ (!((DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit)))) &&
+ "the transpose operation is supposed to be handled in SparseMatrix::operator=");
+
+ enum { Flip = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit) };
+
+
+ DstXprType temp(src.rows(), src.cols());
+
+ temp.reserve((std::max)(src.rows(),src.cols())*2);
+ for (Index j=0; j<outerEvaluationSize; ++j)
+ {
+ temp.startVec(j);
+ for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it)
+ {
+ Scalar v = it.value();
+ temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v;
+ }
+ }
+ temp.finalize();
+
+ dst = temp.markAsRValue();
+ }
+}
+
+// Generic Sparse to Sparse assignment
+template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
+struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Sparse, Scalar>
+{
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar> &/*func*/)
+ {
+ eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
+
+ assign_sparse_to_sparse(dst.derived(), src.derived());
+ }
+};
+
+// Sparse to Dense assignment
+template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
+struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Dense, Scalar>
+{
+ static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
+ {
+ eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
+ typedef typename SrcXprType::Index Index;
+
+ typename internal::evaluator<SrcXprType>::type srcEval(src);
+ typename internal::evaluator<DstXprType>::type dstEval(dst);
+ const Index outerEvaluationSize = (internal::evaluator<SrcXprType>::Flags&RowMajorBit) ? src.rows() : src.cols();
+ for (Index j=0; j<outerEvaluationSize; ++j)
+ for (typename internal::evaluator<SrcXprType>::InnerIterator i(srcEval,j); i; ++i)
+ func.assignCoeff(dstEval.coeffRef(i.row(),i.col()), i.value());
+ }
+};
+
+template< typename DstXprType, typename SrcXprType, typename Scalar>
+struct Assignment<DstXprType, SrcXprType, internal::assign_op<typename DstXprType::Scalar>, Sparse2Dense, Scalar>
+{
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar> &)
+ {
+ eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
+ typedef typename SrcXprType::Index Index;
+
+ dst.setZero();
+ typename internal::evaluator<SrcXprType>::type srcEval(src);
+ typename internal::evaluator<DstXprType>::type dstEval(dst);
+ const Index outerEvaluationSize = (internal::evaluator<SrcXprType>::Flags&RowMajorBit) ? src.rows() : src.cols();
+ for (Index j=0; j<outerEvaluationSize; ++j)
+ for (typename internal::evaluator<SrcXprType>::InnerIterator i(srcEval,j); i; ++i)
+ dstEval.coeffRef(i.row(),i.col()) = i.value();
+ }
+};
+
+// Specialization for "dst = dec.solve(rhs)"
+// NOTE we need to specialize it for Sparse2Sparse to avoid ambiguous specialization error
+template<typename DstXprType, typename DecType, typename RhsType, typename Scalar>
+struct Assignment<DstXprType, Solve<DecType,RhsType>, internal::assign_op<Scalar>, Sparse2Sparse, Scalar>
+{
+ typedef Solve<DecType,RhsType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
+ {
+ src.dec()._solve_impl(src.rhs(), dst);
+ }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSEASSIGN_H
diff --git a/Eigen/src/SparseCore/SparseBlock.h b/Eigen/src/SparseCore/SparseBlock.h
index 491cc72b0..635d58d86 100644
--- a/Eigen/src/SparseCore/SparseBlock.h
+++ b/Eigen/src/SparseCore/SparseBlock.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -12,6 +12,7 @@
namespace Eigen {
+// Subset of columns or rows
template<typename XprType, int BlockRows, int BlockCols>
class BlockImpl<XprType,BlockRows,BlockCols,true,Sparse>
: public SparseMatrixBase<Block<XprType,BlockRows,BlockCols,true> >
@@ -24,31 +25,6 @@ protected:
enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
public:
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
-
- class InnerIterator: public XprType::InnerIterator
- {
- typedef typename BlockImpl::Index Index;
- public:
- inline InnerIterator(const BlockType& xpr, Index outer)
- : XprType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
- {}
- inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
- inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
- protected:
- Index m_outer;
- };
- class ReverseInnerIterator: public XprType::ReverseInnerIterator
- {
- typedef typename BlockImpl::Index Index;
- public:
- inline ReverseInnerIterator(const BlockType& xpr, Index outer)
- : XprType::ReverseInnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
- {}
- inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
- inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
- protected:
- Index m_outer;
- };
inline BlockImpl(const XprType& xpr, Index i)
: m_matrix(xpr), m_outerStart(i), m_outerSize(OuterSize)
@@ -63,13 +39,21 @@ public:
Index nonZeros() const
{
+ typedef typename internal::evaluator<XprType>::type EvaluatorType;
+ EvaluatorType matEval(m_matrix);
Index nnz = 0;
Index end = m_outerStart + m_outerSize.value();
- for(Index j=m_outerStart; j<end; ++j)
- for(typename XprType::InnerIterator it(m_matrix, j); it; ++it)
+ for(int j=m_outerStart; j<end; ++j)
+ for(typename EvaluatorType::InnerIterator it(matEval, j); it; ++it)
++nnz;
return nnz;
}
+
+ inline const _MatrixTypeNested& nestedExpression() const { return m_matrix; }
+ Index startRow() const { return IsRowMajor ? m_outerStart : 0; }
+ Index startCol() const { return IsRowMajor ? 0 : m_outerStart; }
+ Index blockRows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
+ Index blockCols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
protected:
@@ -100,29 +84,6 @@ public:
protected:
enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
public:
-
- class InnerIterator: public SparseMatrixType::InnerIterator
- {
- public:
- inline InnerIterator(const BlockType& xpr, Index outer)
- : SparseMatrixType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
- {}
- inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
- inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
- protected:
- Index m_outer;
- };
- class ReverseInnerIterator: public SparseMatrixType::ReverseInnerIterator
- {
- public:
- inline ReverseInnerIterator(const BlockType& xpr, Index outer)
- : SparseMatrixType::ReverseInnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
- {}
- inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
- inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
- protected:
- Index m_outer;
- };
inline sparse_matrix_block_impl(const SparseMatrixType& xpr, Index i)
: m_matrix(xpr), m_outerStart(i), m_outerSize(OuterSize)
@@ -248,6 +209,12 @@ public:
EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
+
+ inline const _MatrixTypeNested& nestedExpression() const { return m_matrix; }
+ Index startRow() const { return IsRowMajor ? m_outerStart : 0; }
+ Index startCol() const { return IsRowMajor ? 0 : m_outerStart; }
+ Index blockRows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
+ Index blockCols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
protected:
@@ -407,32 +374,11 @@ public:
}
inline const _MatrixTypeNested& nestedExpression() const { return m_matrix; }
+ Index startRow() const { return m_startRow.value(); }
+ Index startCol() const { return m_startCol.value(); }
+ Index blockRows() const { return m_blockRows.value(); }
+ Index blockCols() const { return m_blockCols.value(); }
- typedef internal::GenericSparseBlockInnerIteratorImpl<XprType,BlockRows,BlockCols,InnerPanel> InnerIterator;
-
- class ReverseInnerIterator : public _MatrixTypeNested::ReverseInnerIterator
- {
- typedef typename _MatrixTypeNested::ReverseInnerIterator Base;
- const BlockType& m_block;
- Index m_begin;
- public:
-
- EIGEN_STRONG_INLINE ReverseInnerIterator(const BlockType& block, Index outer)
- : Base(block.derived().nestedExpression(), outer + (IsRowMajor ? block.m_startRow.value() : block.m_startCol.value())),
- m_block(block),
- m_begin(IsRowMajor ? block.m_startCol.value() : block.m_startRow.value())
- {
- while( (Base::operator bool()) && (Base::index() >= (IsRowMajor ? m_block.m_startCol.value()+block.m_blockCols.value() : m_block.m_startRow.value()+block.m_blockRows.value())) )
- Base::operator--();
- }
-
- inline Index index() const { return Base::index() - (IsRowMajor ? m_block.m_startCol.value() : m_block.m_startRow.value()); }
- inline Index outer() const { return Base::outer() - (IsRowMajor ? m_block.m_startRow.value() : m_block.m_startCol.value()); }
- inline Index row() const { return Base::row() - m_block.m_startRow.value(); }
- inline Index col() const { return Base::col() - m_block.m_startCol.value(); }
-
- inline operator bool() const { return Base::operator bool() && Base::index() >= m_begin; }
- };
protected:
friend class internal::GenericSparseBlockInnerIteratorImpl<XprType,BlockRows,BlockCols,InnerPanel>;
friend class ReverseInnerIterator;
@@ -538,7 +484,120 @@ namespace internal {
inline operator bool() const { return m_outerPos < m_end; }
};
+
+template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
+struct unary_evaluator<Block<ArgType,BlockRows,BlockCols,InnerPanel>, IteratorBased >
+ : public evaluator_base<Block<ArgType,BlockRows,BlockCols,InnerPanel> >
+{
+ class InnerVectorInnerIterator;
+ class OuterVectorInnerIterator;
+ public:
+ typedef Block<ArgType,BlockRows,BlockCols,InnerPanel> XprType;
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+
+ class ReverseInnerIterator;
+
+ enum {
+ IsRowMajor = XprType::IsRowMajor,
+
+ OuterVector = (BlockCols==1 && ArgType::IsRowMajor)
+ | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
+ // revert to || as soon as not needed anymore.
+ (BlockRows==1 && !ArgType::IsRowMajor),
+
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+ Flags = XprType::Flags
+ };
+
+ typedef typename internal::conditional<OuterVector,OuterVectorInnerIterator,InnerVectorInnerIterator>::type InnerIterator;
+
+ unary_evaluator(const XprType& op)
+ : m_argImpl(op.nestedExpression()), m_block(op)
+ {}
+
+ protected:
+ typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
+
+ typename evaluator<ArgType>::nestedType m_argImpl;
+ const XprType &m_block;
+};
+
+template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
+class unary_evaluator<Block<ArgType,BlockRows,BlockCols,InnerPanel>, IteratorBased>::InnerVectorInnerIterator
+ : public EvalIterator
+{
+ const XprType& m_block;
+ Index m_end;
+public:
+
+ EIGEN_STRONG_INLINE InnerVectorInnerIterator(const unary_evaluator& aEval, Index outer)
+ : EvalIterator(aEval.m_argImpl, outer + (IsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol())),
+ m_block(aEval.m_block),
+ m_end(IsRowMajor ? aEval.m_block.startCol()+aEval.m_block.blockCols() : aEval.m_block.startRow()+aEval.m_block.blockRows())
+ {
+ while( (EvalIterator::operator bool()) && (EvalIterator::index() < (IsRowMajor ? m_block.startCol() : m_block.startRow())) )
+ EvalIterator::operator++();
+ }
+
+ inline Index index() const { return EvalIterator::index() - (IsRowMajor ? m_block.startCol() : m_block.startRow()); }
+ inline Index outer() const { return EvalIterator::outer() - (IsRowMajor ? m_block.startRow() : m_block.startCol()); }
+ inline Index row() const { return EvalIterator::row() - m_block.startRow(); }
+ inline Index col() const { return EvalIterator::col() - m_block.startCol(); }
+
+ inline operator bool() const { return EvalIterator::operator bool() && EvalIterator::index() < m_end; }
+};
+
+template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
+class unary_evaluator<Block<ArgType,BlockRows,BlockCols,InnerPanel>, IteratorBased>::OuterVectorInnerIterator
+{
+ const unary_evaluator& m_eval;
+ Index m_outerPos;
+ Index m_innerIndex;
+ Scalar m_value;
+ Index m_end;
+public:
+
+ EIGEN_STRONG_INLINE OuterVectorInnerIterator(const unary_evaluator& aEval, Index outer)
+ : m_eval(aEval),
+ m_outerPos( (IsRowMajor ? aEval.m_block.startCol() : aEval.m_block.startRow()) - 1), // -1 so that operator++ finds the first non-zero entry
+ m_innerIndex(IsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol()),
+ m_end(IsRowMajor ? aEval.m_block.startCol()+aEval.m_block.blockCols() : aEval.m_block.startRow()+aEval.m_block.blockRows())
+ {
+ EIGEN_UNUSED_VARIABLE(outer);
+ eigen_assert(outer==0);
+
+ ++(*this);
+ }
+
+ inline Index index() const { return m_outerPos - (IsRowMajor ? m_eval.m_block.startCol() : m_eval.m_block.startRow()); }
+ inline Index outer() const { return 0; }
+ inline Index row() const { return IsRowMajor ? 0 : index(); }
+ inline Index col() const { return IsRowMajor ? index() : 0; }
+ inline Scalar value() const { return m_value; }
+
+ inline OuterVectorInnerIterator& operator++()
+ {
+ // search next non-zero entry
+ while(m_outerPos<m_end)
+ {
+ m_outerPos++;
+ EvalIterator it(m_eval.m_argImpl, m_outerPos);
+ // search for the key m_innerIndex in the current outer-vector
+ while(it && it.index() < m_innerIndex) ++it;
+ if(it && it.index()==m_innerIndex)
+ {
+ m_value = it.value();
+ break;
+ }
+ }
+ return *this;
+ }
+
+ inline operator bool() const { return m_outerPos < m_end; }
+};
+
} // end namespace internal
diff --git a/Eigen/src/SparseCore/SparseCwiseBinaryOp.h b/Eigen/src/SparseCore/SparseCwiseBinaryOp.h
index 60fdd214a..5993c1caf 100644
--- a/Eigen/src/SparseCore/SparseCwiseBinaryOp.h
+++ b/Eigen/src/SparseCore/SparseCwiseBinaryOp.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -31,12 +31,6 @@ namespace Eigen {
namespace internal {
-template<> struct promote_storage_type<Dense,Sparse>
-{ typedef Sparse ret; };
-
-template<> struct promote_storage_type<Sparse,Dense>
-{ typedef Sparse ret; };
-
template<typename BinaryOp, typename Lhs, typename Rhs, typename Derived,
typename _LhsStorageMode = typename traits<Lhs>::StorageKind,
typename _RhsStorageMode = typename traits<Rhs>::StorageKind>
@@ -44,71 +38,35 @@ class sparse_cwise_binary_op_inner_iterator_selector;
} // end namespace internal
-template<typename BinaryOp, typename Lhs, typename Rhs>
-class CwiseBinaryOpImpl<BinaryOp, Lhs, Rhs, Sparse>
- : public SparseMatrixBase<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
-{
- public:
- class InnerIterator;
- class ReverseInnerIterator;
- typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> Derived;
- EIGEN_SPARSE_PUBLIC_INTERFACE(Derived)
- CwiseBinaryOpImpl()
- {
- typedef typename internal::traits<Lhs>::StorageKind LhsStorageKind;
- typedef typename internal::traits<Rhs>::StorageKind RhsStorageKind;
- EIGEN_STATIC_ASSERT((
- (!internal::is_same<LhsStorageKind,RhsStorageKind>::value)
- || ((Lhs::Flags&RowMajorBit) == (Rhs::Flags&RowMajorBit))),
- THE_STORAGE_ORDER_OF_BOTH_SIDES_MUST_MATCH);
- }
-};
-
-template<typename BinaryOp, typename Lhs, typename Rhs>
-class CwiseBinaryOpImpl<BinaryOp,Lhs,Rhs,Sparse>::InnerIterator
- : public internal::sparse_cwise_binary_op_inner_iterator_selector<BinaryOp,Lhs,Rhs,typename CwiseBinaryOpImpl<BinaryOp,Lhs,Rhs,Sparse>::InnerIterator>
-{
- public:
- typedef internal::sparse_cwise_binary_op_inner_iterator_selector<
- BinaryOp,Lhs,Rhs, InnerIterator> Base;
-
- EIGEN_STRONG_INLINE InnerIterator(const CwiseBinaryOpImpl& binOp, Index outer)
- : Base(binOp.derived(),outer)
- {}
-};
-
-/***************************************************************************
-* Implementation of inner-iterators
-***************************************************************************/
-
-// template<typename T> struct internal::func_is_conjunction { enum { ret = false }; };
-// template<typename T> struct internal::func_is_conjunction<internal::scalar_product_op<T> > { enum { ret = true }; };
-
-// TODO generalize the internal::scalar_product_op specialization to all conjunctions if any !
-
namespace internal {
-// sparse - sparse (generic)
-template<typename BinaryOp, typename Lhs, typename Rhs, typename Derived>
-class sparse_cwise_binary_op_inner_iterator_selector<BinaryOp, Lhs, Rhs, Derived, Sparse, Sparse>
+
+// Generic "sparse OP sparse"
+template<typename BinaryOp, typename Lhs, typename Rhs>
+struct binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs>, IteratorBased, IteratorBased>
+ : evaluator_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
{
- typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> CwiseBinaryXpr;
- typedef typename traits<CwiseBinaryXpr>::Scalar Scalar;
- typedef typename traits<CwiseBinaryXpr>::Index Index;
- typedef typename traits<CwiseBinaryXpr>::_LhsNested _LhsNested;
- typedef typename traits<CwiseBinaryXpr>::_RhsNested _RhsNested;
- typedef typename _LhsNested::InnerIterator LhsIterator;
- typedef typename _RhsNested::InnerIterator RhsIterator;
+protected:
+ typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
+ typedef typename evaluator<Rhs>::InnerIterator RhsIterator;
+public:
+ typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
+
+ class ReverseInnerIterator;
+ class InnerIterator
+ {
+ typedef typename traits<XprType>::Scalar Scalar;
+ typedef typename XprType::Index Index;
public:
-
- EIGEN_STRONG_INLINE sparse_cwise_binary_op_inner_iterator_selector(const CwiseBinaryXpr& xpr, Index outer)
- : m_lhsIter(xpr.lhs(),outer), m_rhsIter(xpr.rhs(),outer), m_functor(xpr.functor())
+
+ EIGEN_STRONG_INLINE InnerIterator(const binary_evaluator& aEval, Index outer)
+ : m_lhsIter(aEval.m_lhsImpl,outer), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor)
{
this->operator++();
}
- EIGEN_STRONG_INLINE Derived& operator++()
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
{
if (m_lhsIter && m_rhsIter && (m_lhsIter.index() == m_rhsIter.index()))
{
@@ -134,7 +92,7 @@ class sparse_cwise_binary_op_inner_iterator_selector<BinaryOp, Lhs, Rhs, Derived
m_value = 0; // this is to avoid a compilation warning
m_id = -1;
}
- return *static_cast<Derived*>(this);
+ return *this;
}
EIGEN_STRONG_INLINE Scalar value() const { return m_value; }
@@ -151,24 +109,48 @@ class sparse_cwise_binary_op_inner_iterator_selector<BinaryOp, Lhs, Rhs, Derived
const BinaryOp& m_functor;
Scalar m_value;
Index m_id;
+ };
+
+
+ enum {
+ CoeffReadCost = evaluator<Lhs>::CoeffReadCost + evaluator<Rhs>::CoeffReadCost + functor_traits<BinaryOp>::Cost,
+ Flags = XprType::Flags
+ };
+
+ binary_evaluator(const XprType& xpr)
+ : m_functor(xpr.functor()),
+ m_lhsImpl(xpr.lhs()),
+ m_rhsImpl(xpr.rhs())
+ { }
+
+protected:
+ const BinaryOp m_functor;
+ typename evaluator<Lhs>::nestedType m_lhsImpl;
+ typename evaluator<Rhs>::nestedType m_rhsImpl;
};
-// sparse - sparse (product)
-template<typename T, typename Lhs, typename Rhs, typename Derived>
-class sparse_cwise_binary_op_inner_iterator_selector<scalar_product_op<T>, Lhs, Rhs, Derived, Sparse, Sparse>
+// "sparse .* sparse"
+template<typename T, typename Lhs, typename Rhs>
+struct binary_evaluator<CwiseBinaryOp<scalar_product_op<T>, Lhs, Rhs>, IteratorBased, IteratorBased>
+ : evaluator_base<CwiseBinaryOp<scalar_product_op<T>, Lhs, Rhs> >
{
- typedef scalar_product_op<T> BinaryFunc;
- typedef CwiseBinaryOp<BinaryFunc, Lhs, Rhs> CwiseBinaryXpr;
- typedef typename CwiseBinaryXpr::Scalar Scalar;
- typedef typename CwiseBinaryXpr::Index Index;
- typedef typename traits<CwiseBinaryXpr>::_LhsNested _LhsNested;
- typedef typename _LhsNested::InnerIterator LhsIterator;
- typedef typename traits<CwiseBinaryXpr>::_RhsNested _RhsNested;
- typedef typename _RhsNested::InnerIterator RhsIterator;
- public:
+protected:
+ typedef scalar_product_op<T> BinaryOp;
+ typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
+ typedef typename evaluator<Rhs>::InnerIterator RhsIterator;
+public:
+ typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
+
+ class ReverseInnerIterator;
+ class InnerIterator
+ {
+ typedef typename traits<XprType>::Scalar Scalar;
+ typedef typename XprType::Index Index;
- EIGEN_STRONG_INLINE sparse_cwise_binary_op_inner_iterator_selector(const CwiseBinaryXpr& xpr, Index outer)
- : m_lhsIter(xpr.lhs(),outer), m_rhsIter(xpr.rhs(),outer), m_functor(xpr.functor())
+ public:
+
+ EIGEN_STRONG_INLINE InnerIterator(const binary_evaluator& aEval, Index outer)
+ : m_lhsIter(aEval.m_lhsImpl,outer), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor)
{
while (m_lhsIter && m_rhsIter && (m_lhsIter.index() != m_rhsIter.index()))
{
@@ -179,7 +161,7 @@ class sparse_cwise_binary_op_inner_iterator_selector<scalar_product_op<T>, Lhs,
}
}
- EIGEN_STRONG_INLINE Derived& operator++()
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
{
++m_lhsIter;
++m_rhsIter;
@@ -190,9 +172,9 @@ class sparse_cwise_binary_op_inner_iterator_selector<scalar_product_op<T>, Lhs,
else
++m_rhsIter;
}
- return *static_cast<Derived*>(this);
+ return *this;
}
-
+
EIGEN_STRONG_INLINE Scalar value() const { return m_functor(m_lhsIter.value(), m_rhsIter.value()); }
EIGEN_STRONG_INLINE Index index() const { return m_lhsIter.index(); }
@@ -204,91 +186,159 @@ class sparse_cwise_binary_op_inner_iterator_selector<scalar_product_op<T>, Lhs,
protected:
LhsIterator m_lhsIter;
RhsIterator m_rhsIter;
- const BinaryFunc& m_functor;
+ const BinaryOp& m_functor;
+ };
+
+
+ enum {
+ CoeffReadCost = evaluator<Lhs>::CoeffReadCost + evaluator<Rhs>::CoeffReadCost + functor_traits<BinaryOp>::Cost,
+ Flags = XprType::Flags
+ };
+
+ binary_evaluator(const XprType& xpr)
+ : m_functor(xpr.functor()),
+ m_lhsImpl(xpr.lhs()),
+ m_rhsImpl(xpr.rhs())
+ { }
+
+protected:
+ const BinaryOp m_functor;
+ typename evaluator<Lhs>::nestedType m_lhsImpl;
+ typename evaluator<Rhs>::nestedType m_rhsImpl;
};
-// sparse - dense (product)
-template<typename T, typename Lhs, typename Rhs, typename Derived>
-class sparse_cwise_binary_op_inner_iterator_selector<scalar_product_op<T>, Lhs, Rhs, Derived, Sparse, Dense>
+// "dense .* sparse"
+template<typename T, typename Lhs, typename Rhs>
+struct binary_evaluator<CwiseBinaryOp<scalar_product_op<T>, Lhs, Rhs>, IndexBased, IteratorBased>
+ : evaluator_base<CwiseBinaryOp<scalar_product_op<T>, Lhs, Rhs> >
{
- typedef scalar_product_op<T> BinaryFunc;
- typedef CwiseBinaryOp<BinaryFunc, Lhs, Rhs> CwiseBinaryXpr;
- typedef typename CwiseBinaryXpr::Scalar Scalar;
- typedef typename CwiseBinaryXpr::Index Index;
- typedef typename traits<CwiseBinaryXpr>::_LhsNested _LhsNested;
- typedef typename traits<CwiseBinaryXpr>::RhsNested RhsNested;
- typedef typename _LhsNested::InnerIterator LhsIterator;
- enum { IsRowMajor = (int(Lhs::Flags)&RowMajorBit)==RowMajorBit };
- public:
+protected:
+ typedef scalar_product_op<T> BinaryOp;
+ typedef typename evaluator<Lhs>::type LhsEvaluator;
+ typedef typename evaluator<Rhs>::InnerIterator RhsIterator;
+public:
+ typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
+
+ class ReverseInnerIterator;
+ class InnerIterator
+ {
+ typedef typename traits<XprType>::Scalar Scalar;
+ typedef typename XprType::Index Index;
+ enum { IsRowMajor = (int(Rhs::Flags)&RowMajorBit)==RowMajorBit };
- EIGEN_STRONG_INLINE sparse_cwise_binary_op_inner_iterator_selector(const CwiseBinaryXpr& xpr, Index outer)
- : m_rhs(xpr.rhs()), m_lhsIter(xpr.lhs(),typename _LhsNested::Index(outer)), m_functor(xpr.functor()), m_outer(outer)
+ public:
+
+ EIGEN_STRONG_INLINE InnerIterator(const binary_evaluator& aEval, Index outer)
+ : m_lhsEval(aEval.m_lhsImpl), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor), m_outer(outer)
{}
- EIGEN_STRONG_INLINE Derived& operator++()
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
{
- ++m_lhsIter;
- return *static_cast<Derived*>(this);
+ ++m_rhsIter;
+ return *this;
}
EIGEN_STRONG_INLINE Scalar value() const
- { return m_functor(m_lhsIter.value(),
- m_rhs.coeff(IsRowMajor?m_outer:m_lhsIter.index(),IsRowMajor?m_lhsIter.index():m_outer)); }
+ { return m_functor(m_lhsEval.coeff(IsRowMajor?m_outer:m_rhsIter.index(),IsRowMajor?m_rhsIter.index():m_outer), m_rhsIter.value()); }
- EIGEN_STRONG_INLINE Index index() const { return m_lhsIter.index(); }
- EIGEN_STRONG_INLINE Index row() const { return m_lhsIter.row(); }
- EIGEN_STRONG_INLINE Index col() const { return m_lhsIter.col(); }
+ EIGEN_STRONG_INLINE Index index() const { return m_rhsIter.index(); }
+ EIGEN_STRONG_INLINE Index row() const { return m_rhsIter.row(); }
+ EIGEN_STRONG_INLINE Index col() const { return m_rhsIter.col(); }
- EIGEN_STRONG_INLINE operator bool() const { return m_lhsIter; }
+ EIGEN_STRONG_INLINE operator bool() const { return m_rhsIter; }
protected:
- RhsNested m_rhs;
- LhsIterator m_lhsIter;
- const BinaryFunc m_functor;
+ const LhsEvaluator &m_lhsEval;
+ RhsIterator m_rhsIter;
+ const BinaryOp& m_functor;
const Index m_outer;
+ };
+
+
+ enum {
+ CoeffReadCost = evaluator<Lhs>::CoeffReadCost + evaluator<Rhs>::CoeffReadCost + functor_traits<BinaryOp>::Cost,
+ Flags = XprType::Flags
+ };
+
+ binary_evaluator(const XprType& xpr)
+ : m_functor(xpr.functor()),
+ m_lhsImpl(xpr.lhs()),
+ m_rhsImpl(xpr.rhs())
+ { }
+
+protected:
+ const BinaryOp m_functor;
+ typename evaluator<Lhs>::nestedType m_lhsImpl;
+ typename evaluator<Rhs>::nestedType m_rhsImpl;
};
-// sparse - dense (product)
-template<typename T, typename Lhs, typename Rhs, typename Derived>
-class sparse_cwise_binary_op_inner_iterator_selector<scalar_product_op<T>, Lhs, Rhs, Derived, Dense, Sparse>
+// "sparse .* dense"
+template<typename T, typename Lhs, typename Rhs>
+struct binary_evaluator<CwiseBinaryOp<scalar_product_op<T>, Lhs, Rhs>, IteratorBased, IndexBased>
+ : evaluator_base<CwiseBinaryOp<scalar_product_op<T>, Lhs, Rhs> >
{
- typedef scalar_product_op<T> BinaryFunc;
- typedef CwiseBinaryOp<BinaryFunc, Lhs, Rhs> CwiseBinaryXpr;
- typedef typename CwiseBinaryXpr::Scalar Scalar;
- typedef typename CwiseBinaryXpr::Index Index;
- typedef typename traits<CwiseBinaryXpr>::_RhsNested _RhsNested;
- typedef typename _RhsNested::InnerIterator RhsIterator;
+protected:
+ typedef scalar_product_op<T> BinaryOp;
+ typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
+ typedef typename evaluator<Rhs>::type RhsEvaluator;
+public:
+ typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
+
+ class ReverseInnerIterator;
+ class InnerIterator
+ {
+ typedef typename traits<XprType>::Scalar Scalar;
+ typedef typename XprType::Index Index;
+ enum { IsRowMajor = (int(Lhs::Flags)&RowMajorBit)==RowMajorBit };
- enum { IsRowMajor = (int(Rhs::Flags)&RowMajorBit)==RowMajorBit };
public:
-
- EIGEN_STRONG_INLINE sparse_cwise_binary_op_inner_iterator_selector(const CwiseBinaryXpr& xpr, Index outer)
- : m_xpr(xpr), m_rhsIter(xpr.rhs(),outer), m_functor(xpr.functor()), m_outer(outer)
+
+ EIGEN_STRONG_INLINE InnerIterator(const binary_evaluator& aEval, Index outer)
+ : m_lhsIter(aEval.m_lhsImpl,outer), m_rhsEval(aEval.m_rhsImpl), m_functor(aEval.m_functor), m_outer(outer)
{}
- EIGEN_STRONG_INLINE Derived& operator++()
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
{
- ++m_rhsIter;
- return *static_cast<Derived*>(this);
+ ++m_lhsIter;
+ return *this;
}
EIGEN_STRONG_INLINE Scalar value() const
- { return m_functor(m_xpr.lhs().coeff(IsRowMajor?m_outer:m_rhsIter.index(),IsRowMajor?m_rhsIter.index():m_outer), m_rhsIter.value()); }
+ { return m_functor(m_lhsIter.value(),
+ m_rhsEval.coeff(IsRowMajor?m_outer:m_lhsIter.index(),IsRowMajor?m_lhsIter.index():m_outer)); }
- EIGEN_STRONG_INLINE Index index() const { return m_rhsIter.index(); }
- EIGEN_STRONG_INLINE Index row() const { return m_rhsIter.row(); }
- EIGEN_STRONG_INLINE Index col() const { return m_rhsIter.col(); }
+ EIGEN_STRONG_INLINE Index index() const { return m_lhsIter.index(); }
+ EIGEN_STRONG_INLINE Index row() const { return m_lhsIter.row(); }
+ EIGEN_STRONG_INLINE Index col() const { return m_lhsIter.col(); }
- EIGEN_STRONG_INLINE operator bool() const { return m_rhsIter; }
+ EIGEN_STRONG_INLINE operator bool() const { return m_lhsIter; }
protected:
- const CwiseBinaryXpr& m_xpr;
- RhsIterator m_rhsIter;
- const BinaryFunc& m_functor;
+ LhsIterator m_lhsIter;
+ const RhsEvaluator &m_rhsEval;
+ const BinaryOp& m_functor;
const Index m_outer;
+ };
+
+
+ enum {
+ CoeffReadCost = evaluator<Lhs>::CoeffReadCost + evaluator<Rhs>::CoeffReadCost + functor_traits<BinaryOp>::Cost,
+ Flags = XprType::Flags
+ };
+
+ binary_evaluator(const XprType& xpr)
+ : m_functor(xpr.functor()),
+ m_lhsImpl(xpr.lhs()),
+ m_rhsImpl(xpr.rhs())
+ { }
+
+protected:
+ const BinaryOp m_functor;
+ typename evaluator<Lhs>::nestedType m_lhsImpl;
+ typename evaluator<Rhs>::nestedType m_rhsImpl;
};
-} // end namespace internal
+}
/***************************************************************************
* Implementation of SparseMatrixBase and SparseCwise functions/operators
diff --git a/Eigen/src/SparseCore/SparseCwiseUnaryOp.h b/Eigen/src/SparseCore/SparseCwiseUnaryOp.h
index 5a50c7803..6036fd0a7 100644
--- a/Eigen/src/SparseCore/SparseCwiseUnaryOp.h
+++ b/Eigen/src/SparseCore/SparseCwiseUnaryOp.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -12,131 +12,154 @@
namespace Eigen {
-template<typename UnaryOp, typename MatrixType>
-class CwiseUnaryOpImpl<UnaryOp,MatrixType,Sparse>
- : public SparseMatrixBase<CwiseUnaryOp<UnaryOp, MatrixType> >
+namespace internal {
+
+template<typename UnaryOp, typename ArgType>
+struct unary_evaluator<CwiseUnaryOp<UnaryOp,ArgType>, IteratorBased>
+ : public evaluator_base<CwiseUnaryOp<UnaryOp,ArgType> >
{
public:
+ typedef CwiseUnaryOp<UnaryOp, ArgType> XprType;
class InnerIterator;
- class ReverseInnerIterator;
-
- typedef CwiseUnaryOp<UnaryOp, MatrixType> Derived;
- EIGEN_SPARSE_PUBLIC_INTERFACE(Derived)
+// class ReverseInnerIterator;
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost + functor_traits<UnaryOp>::Cost,
+ Flags = XprType::Flags
+ };
+
+ unary_evaluator(const XprType& op) : m_functor(op.functor()), m_argImpl(op.nestedExpression()) {}
protected:
- typedef typename internal::traits<Derived>::_XprTypeNested _MatrixTypeNested;
- typedef typename _MatrixTypeNested::InnerIterator MatrixTypeIterator;
- typedef typename _MatrixTypeNested::ReverseInnerIterator MatrixTypeReverseIterator;
+ typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
+// typedef typename evaluator<ArgType>::ReverseInnerIterator EvalReverseIterator;
+
+ const UnaryOp m_functor;
+ typename evaluator<ArgType>::nestedType m_argImpl;
};
-template<typename UnaryOp, typename MatrixType>
-class CwiseUnaryOpImpl<UnaryOp,MatrixType,Sparse>::InnerIterator
- : public CwiseUnaryOpImpl<UnaryOp,MatrixType,Sparse>::MatrixTypeIterator
+template<typename UnaryOp, typename ArgType>
+class unary_evaluator<CwiseUnaryOp<UnaryOp,ArgType>, IteratorBased>::InnerIterator
+ : public unary_evaluator<CwiseUnaryOp<UnaryOp,ArgType>, IteratorBased>::EvalIterator
{
- typedef typename CwiseUnaryOpImpl::Scalar Scalar;
- typedef typename CwiseUnaryOpImpl<UnaryOp,MatrixType,Sparse>::MatrixTypeIterator Base;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename unary_evaluator<CwiseUnaryOp<UnaryOp,ArgType>, IteratorBased>::EvalIterator Base;
public:
- EIGEN_STRONG_INLINE InnerIterator(const CwiseUnaryOpImpl& unaryOp, typename CwiseUnaryOpImpl::Index outer)
- : Base(unaryOp.derived().nestedExpression(),outer), m_functor(unaryOp.derived().functor())
+ EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& unaryOp, typename XprType::Index outer)
+ : Base(unaryOp.m_argImpl,outer), m_functor(unaryOp.m_functor)
{}
EIGEN_STRONG_INLINE InnerIterator& operator++()
{ Base::operator++(); return *this; }
- EIGEN_STRONG_INLINE typename CwiseUnaryOpImpl::Scalar value() const { return m_functor(Base::value()); }
+ EIGEN_STRONG_INLINE Scalar value() const { return m_functor(Base::value()); }
protected:
const UnaryOp m_functor;
private:
- typename CwiseUnaryOpImpl::Scalar& valueRef();
+ Scalar& valueRef();
};
-template<typename UnaryOp, typename MatrixType>
-class CwiseUnaryOpImpl<UnaryOp,MatrixType,Sparse>::ReverseInnerIterator
- : public CwiseUnaryOpImpl<UnaryOp,MatrixType,Sparse>::MatrixTypeReverseIterator
-{
- typedef typename CwiseUnaryOpImpl::Scalar Scalar;
- typedef typename CwiseUnaryOpImpl<UnaryOp,MatrixType,Sparse>::MatrixTypeReverseIterator Base;
- public:
-
- EIGEN_STRONG_INLINE ReverseInnerIterator(const CwiseUnaryOpImpl& unaryOp, typename CwiseUnaryOpImpl::Index outer)
- : Base(unaryOp.derived().nestedExpression(),outer), m_functor(unaryOp.derived().functor())
- {}
-
- EIGEN_STRONG_INLINE ReverseInnerIterator& operator--()
- { Base::operator--(); return *this; }
-
- EIGEN_STRONG_INLINE typename CwiseUnaryOpImpl::Scalar value() const { return m_functor(Base::value()); }
-
- protected:
- const UnaryOp m_functor;
- private:
- typename CwiseUnaryOpImpl::Scalar& valueRef();
-};
-
-template<typename ViewOp, typename MatrixType>
-class CwiseUnaryViewImpl<ViewOp,MatrixType,Sparse>
- : public SparseMatrixBase<CwiseUnaryView<ViewOp, MatrixType> >
+// template<typename UnaryOp, typename ArgType>
+// class unary_evaluator<CwiseUnaryOp<UnaryOp,ArgType>, IteratorBased>::ReverseInnerIterator
+// : public unary_evaluator<CwiseUnaryOp<UnaryOp,ArgType>, IteratorBased>::EvalReverseIterator
+// {
+// typedef typename XprType::Scalar Scalar;
+// typedef typename unary_evaluator<CwiseUnaryOp<UnaryOp,ArgType>, IteratorBased>::EvalReverseIterator Base;
+// public:
+//
+// EIGEN_STRONG_INLINE ReverseInnerIterator(const XprType& unaryOp, typename XprType::Index outer)
+// : Base(unaryOp.derived().nestedExpression(),outer), m_functor(unaryOp.derived().functor())
+// {}
+//
+// EIGEN_STRONG_INLINE ReverseInnerIterator& operator--()
+// { Base::operator--(); return *this; }
+//
+// EIGEN_STRONG_INLINE Scalar value() const { return m_functor(Base::value()); }
+//
+// protected:
+// const UnaryOp m_functor;
+// private:
+// Scalar& valueRef();
+// };
+
+
+
+
+
+template<typename ViewOp, typename ArgType>
+struct unary_evaluator<CwiseUnaryView<ViewOp,ArgType>, IteratorBased>
+ : public evaluator_base<CwiseUnaryView<ViewOp,ArgType> >
{
public:
+ typedef CwiseUnaryView<ViewOp, ArgType> XprType;
class InnerIterator;
class ReverseInnerIterator;
-
- typedef CwiseUnaryView<ViewOp, MatrixType> Derived;
- EIGEN_SPARSE_PUBLIC_INTERFACE(Derived)
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost + functor_traits<ViewOp>::Cost,
+ Flags = XprType::Flags
+ };
+
+ unary_evaluator(const XprType& op) : m_functor(op.functor()), m_argImpl(op.nestedExpression()) {}
protected:
- typedef typename internal::traits<Derived>::_MatrixTypeNested _MatrixTypeNested;
- typedef typename _MatrixTypeNested::InnerIterator MatrixTypeIterator;
- typedef typename _MatrixTypeNested::ReverseInnerIterator MatrixTypeReverseIterator;
+ typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
+// typedef typename evaluator<ArgType>::ReverseInnerIterator EvalReverseIterator;
+
+ const ViewOp m_functor;
+ typename evaluator<ArgType>::nestedType m_argImpl;
};
-template<typename ViewOp, typename MatrixType>
-class CwiseUnaryViewImpl<ViewOp,MatrixType,Sparse>::InnerIterator
- : public CwiseUnaryViewImpl<ViewOp,MatrixType,Sparse>::MatrixTypeIterator
+template<typename ViewOp, typename ArgType>
+class unary_evaluator<CwiseUnaryView<ViewOp,ArgType>, IteratorBased>::InnerIterator
+ : public unary_evaluator<CwiseUnaryView<ViewOp,ArgType>, IteratorBased>::EvalIterator
{
- typedef typename CwiseUnaryViewImpl::Scalar Scalar;
- typedef typename CwiseUnaryViewImpl<ViewOp,MatrixType,Sparse>::MatrixTypeIterator Base;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename unary_evaluator<CwiseUnaryView<ViewOp,ArgType>, IteratorBased>::EvalIterator Base;
public:
- EIGEN_STRONG_INLINE InnerIterator(const CwiseUnaryViewImpl& unaryOp, typename CwiseUnaryViewImpl::Index outer)
- : Base(unaryOp.derived().nestedExpression(),outer), m_functor(unaryOp.derived().functor())
+ EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& unaryOp, typename XprType::Index outer)
+ : Base(unaryOp.m_argImpl,outer), m_functor(unaryOp.m_functor)
{}
EIGEN_STRONG_INLINE InnerIterator& operator++()
{ Base::operator++(); return *this; }
- EIGEN_STRONG_INLINE typename CwiseUnaryViewImpl::Scalar value() const { return m_functor(Base::value()); }
- EIGEN_STRONG_INLINE typename CwiseUnaryViewImpl::Scalar& valueRef() { return m_functor(Base::valueRef()); }
+ EIGEN_STRONG_INLINE Scalar value() const { return m_functor(Base::value()); }
+ EIGEN_STRONG_INLINE Scalar& valueRef() { return m_functor(Base::valueRef()); }
protected:
const ViewOp m_functor;
};
-template<typename ViewOp, typename MatrixType>
-class CwiseUnaryViewImpl<ViewOp,MatrixType,Sparse>::ReverseInnerIterator
- : public CwiseUnaryViewImpl<ViewOp,MatrixType,Sparse>::MatrixTypeReverseIterator
-{
- typedef typename CwiseUnaryViewImpl::Scalar Scalar;
- typedef typename CwiseUnaryViewImpl<ViewOp,MatrixType,Sparse>::MatrixTypeReverseIterator Base;
- public:
-
- EIGEN_STRONG_INLINE ReverseInnerIterator(const CwiseUnaryViewImpl& unaryOp, typename CwiseUnaryViewImpl::Index outer)
- : Base(unaryOp.derived().nestedExpression(),outer), m_functor(unaryOp.derived().functor())
- {}
-
- EIGEN_STRONG_INLINE ReverseInnerIterator& operator--()
- { Base::operator--(); return *this; }
-
- EIGEN_STRONG_INLINE typename CwiseUnaryViewImpl::Scalar value() const { return m_functor(Base::value()); }
- EIGEN_STRONG_INLINE typename CwiseUnaryViewImpl::Scalar& valueRef() { return m_functor(Base::valueRef()); }
-
- protected:
- const ViewOp m_functor;
-};
+// template<typename ViewOp, typename ArgType>
+// class unary_evaluator<CwiseUnaryView<ViewOp,ArgType>, IteratorBased>::ReverseInnerIterator
+// : public unary_evaluator<CwiseUnaryView<ViewOp,ArgType>, IteratorBased>::EvalReverseIterator
+// {
+// typedef typename XprType::Scalar Scalar;
+// typedef typename unary_evaluator<CwiseUnaryView<ViewOp,ArgType>, IteratorBased>::EvalReverseIterator Base;
+// public:
+//
+// EIGEN_STRONG_INLINE ReverseInnerIterator(const XprType& unaryOp, typename XprType::Index outer)
+// : Base(unaryOp.derived().nestedExpression(),outer), m_functor(unaryOp.derived().functor())
+// {}
+//
+// EIGEN_STRONG_INLINE ReverseInnerIterator& operator--()
+// { Base::operator--(); return *this; }
+//
+// EIGEN_STRONG_INLINE Scalar value() const { return m_functor(Base::value()); }
+// EIGEN_STRONG_INLINE Scalar& valueRef() { return m_functor(Base::valueRef()); }
+//
+// protected:
+// const ViewOp m_functor;
+// };
+
+
+} // end namespace internal
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
diff --git a/Eigen/src/SparseCore/SparseDenseProduct.h b/Eigen/src/SparseCore/SparseDenseProduct.h
index d40e966c1..04c838a71 100644
--- a/Eigen/src/SparseCore/SparseDenseProduct.h
+++ b/Eigen/src/SparseCore/SparseDenseProduct.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -12,152 +12,10 @@
namespace Eigen {
-template<typename Lhs, typename Rhs, int InnerSize> struct SparseDenseProductReturnType
-{
- typedef SparseTimeDenseProduct<Lhs,Rhs> Type;
-};
-
-template<typename Lhs, typename Rhs> struct SparseDenseProductReturnType<Lhs,Rhs,1>
-{
- typedef typename internal::conditional<
- Lhs::IsRowMajor,
- SparseDenseOuterProduct<Rhs,Lhs,true>,
- SparseDenseOuterProduct<Lhs,Rhs,false> >::type Type;
-};
-
-template<typename Lhs, typename Rhs, int InnerSize> struct DenseSparseProductReturnType
-{
- typedef DenseTimeSparseProduct<Lhs,Rhs> Type;
-};
-
-template<typename Lhs, typename Rhs> struct DenseSparseProductReturnType<Lhs,Rhs,1>
-{
- typedef typename internal::conditional<
- Rhs::IsRowMajor,
- SparseDenseOuterProduct<Rhs,Lhs,true>,
- SparseDenseOuterProduct<Lhs,Rhs,false> >::type Type;
-};
-
namespace internal {
-template<typename Lhs, typename Rhs, bool Tr>
-struct traits<SparseDenseOuterProduct<Lhs,Rhs,Tr> >
-{
- typedef Sparse StorageKind;
- typedef typename scalar_product_traits<typename traits<Lhs>::Scalar,
- typename traits<Rhs>::Scalar>::ReturnType Scalar;
- typedef typename Lhs::Index Index;
- typedef typename Lhs::Nested LhsNested;
- typedef typename Rhs::Nested RhsNested;
- typedef typename remove_all<LhsNested>::type _LhsNested;
- typedef typename remove_all<RhsNested>::type _RhsNested;
-
- enum {
- LhsCoeffReadCost = traits<_LhsNested>::CoeffReadCost,
- RhsCoeffReadCost = traits<_RhsNested>::CoeffReadCost,
-
- RowsAtCompileTime = Tr ? int(traits<Rhs>::RowsAtCompileTime) : int(traits<Lhs>::RowsAtCompileTime),
- ColsAtCompileTime = Tr ? int(traits<Lhs>::ColsAtCompileTime) : int(traits<Rhs>::ColsAtCompileTime),
- MaxRowsAtCompileTime = Tr ? int(traits<Rhs>::MaxRowsAtCompileTime) : int(traits<Lhs>::MaxRowsAtCompileTime),
- MaxColsAtCompileTime = Tr ? int(traits<Lhs>::MaxColsAtCompileTime) : int(traits<Rhs>::MaxColsAtCompileTime),
-
- Flags = Tr ? RowMajorBit : 0,
-
- CoeffReadCost = LhsCoeffReadCost + RhsCoeffReadCost + NumTraits<Scalar>::MulCost
- };
-};
-
-} // end namespace internal
-
-template<typename Lhs, typename Rhs, bool Tr>
-class SparseDenseOuterProduct
- : public SparseMatrixBase<SparseDenseOuterProduct<Lhs,Rhs,Tr> >
-{
- public:
-
- typedef SparseMatrixBase<SparseDenseOuterProduct> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(SparseDenseOuterProduct)
- typedef internal::traits<SparseDenseOuterProduct> Traits;
-
- private:
-
- typedef typename Traits::LhsNested LhsNested;
- typedef typename Traits::RhsNested RhsNested;
- typedef typename Traits::_LhsNested _LhsNested;
- typedef typename Traits::_RhsNested _RhsNested;
-
- public:
-
- class InnerIterator;
-
- EIGEN_STRONG_INLINE SparseDenseOuterProduct(const Lhs& lhs, const Rhs& rhs)
- : m_lhs(lhs), m_rhs(rhs)
- {
- EIGEN_STATIC_ASSERT(!Tr,YOU_MADE_A_PROGRAMMING_MISTAKE);
- }
-
- EIGEN_STRONG_INLINE SparseDenseOuterProduct(const Rhs& rhs, const Lhs& lhs)
- : m_lhs(lhs), m_rhs(rhs)
- {
- EIGEN_STATIC_ASSERT(Tr,YOU_MADE_A_PROGRAMMING_MISTAKE);
- }
-
- EIGEN_STRONG_INLINE Index rows() const { return Tr ? Index(m_rhs.rows()) : m_lhs.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return Tr ? m_lhs.cols() : Index(m_rhs.cols()); }
-
- EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; }
- EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; }
-
- protected:
- LhsNested m_lhs;
- RhsNested m_rhs;
-};
-
-template<typename Lhs, typename Rhs, bool Transpose>
-class SparseDenseOuterProduct<Lhs,Rhs,Transpose>::InnerIterator : public _LhsNested::InnerIterator
-{
- typedef typename _LhsNested::InnerIterator Base;
- typedef typename SparseDenseOuterProduct::Index Index;
- public:
- EIGEN_STRONG_INLINE InnerIterator(const SparseDenseOuterProduct& prod, Index outer)
- : Base(prod.lhs(), 0), m_outer(outer), m_empty(false), m_factor(get(prod.rhs(), outer, typename internal::traits<Rhs>::StorageKind() ))
- {}
-
- inline Index outer() const { return m_outer; }
- inline Index row() const { return Transpose ? m_outer : Base::index(); }
- inline Index col() const { return Transpose ? Base::index() : m_outer; }
-
- inline Scalar value() const { return Base::value() * m_factor; }
- inline operator bool() const { return Base::operator bool() && !m_empty; }
-
- protected:
- Scalar get(const _RhsNested &rhs, Index outer, Dense = Dense()) const
- {
- return rhs.coeff(outer);
- }
-
- Scalar get(const _RhsNested &rhs, Index outer, Sparse = Sparse())
- {
- typename Traits::_RhsNested::InnerIterator it(rhs, outer);
- if (it && it.index()==0 && it.value()!=Scalar(0))
- return it.value();
- m_empty = true;
- return Scalar(0);
- }
-
- Index m_outer;
- bool m_empty;
- Scalar m_factor;
-};
-
-namespace internal {
-template<typename Lhs, typename Rhs>
-struct traits<SparseTimeDenseProduct<Lhs,Rhs> >
- : traits<ProductBase<SparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs> >
-{
- typedef Dense StorageKind;
- typedef MatrixXpr XprKind;
-};
+template <> struct product_promote_storage_type<Sparse,Dense, OuterProduct> { typedef Sparse ret; };
+template <> struct product_promote_storage_type<Dense,Sparse, OuterProduct> { typedef Sparse ret; };
template<typename SparseLhsType, typename DenseRhsType, typename DenseResType,
typename AlphaType,
@@ -172,16 +30,17 @@ struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, t
typedef typename internal::remove_all<DenseRhsType>::type Rhs;
typedef typename internal::remove_all<DenseResType>::type Res;
typedef typename Lhs::Index Index;
- typedef typename Lhs::InnerIterator LhsInnerIterator;
+ typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
{
+ typename evaluator<Lhs>::type lhsEval(lhs);
for(Index c=0; c<rhs.cols(); ++c)
{
Index n = lhs.outerSize();
for(Index j=0; j<n; ++j)
{
typename Res::Scalar tmp(0);
- for(LhsInnerIterator it(lhs,j); it ;++it)
+ for(LhsInnerIterator it(lhsEval,j); it ;++it)
tmp += it.value() * rhs.coeff(it.index(),c);
res.coeffRef(j,c) = alpha * tmp;
}
@@ -203,17 +62,18 @@ struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, A
typedef typename internal::remove_all<SparseLhsType>::type Lhs;
typedef typename internal::remove_all<DenseRhsType>::type Rhs;
typedef typename internal::remove_all<DenseResType>::type Res;
- typedef typename Lhs::InnerIterator LhsInnerIterator;
typedef typename Lhs::Index Index;
+ typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
{
+ typename evaluator<Lhs>::type lhsEval(lhs);
for(Index c=0; c<rhs.cols(); ++c)
{
for(Index j=0; j<lhs.outerSize(); ++j)
{
// typename Res::Scalar rhs_j = alpha * rhs.coeff(j,c);
typename internal::scalar_product_traits<AlphaType, typename Rhs::Scalar>::ReturnType rhs_j(alpha * rhs.coeff(j,c));
- for(LhsInnerIterator it(lhs,j); it ;++it)
+ for(LhsInnerIterator it(lhsEval,j); it ;++it)
res.coeffRef(it.index(),c) += it.value() * rhs_j;
}
}
@@ -226,14 +86,15 @@ struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, t
typedef typename internal::remove_all<SparseLhsType>::type Lhs;
typedef typename internal::remove_all<DenseRhsType>::type Rhs;
typedef typename internal::remove_all<DenseResType>::type Res;
- typedef typename Lhs::InnerIterator LhsInnerIterator;
typedef typename Lhs::Index Index;
+ typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
{
+ typename evaluator<Lhs>::type lhsEval(lhs);
for(Index j=0; j<lhs.outerSize(); ++j)
{
typename Res::RowXpr res_j(res.row(j));
- for(LhsInnerIterator it(lhs,j); it ;++it)
+ for(LhsInnerIterator it(lhsEval,j); it ;++it)
res_j += (alpha*it.value()) * rhs.row(it.index());
}
}
@@ -245,14 +106,15 @@ struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, t
typedef typename internal::remove_all<SparseLhsType>::type Lhs;
typedef typename internal::remove_all<DenseRhsType>::type Rhs;
typedef typename internal::remove_all<DenseResType>::type Res;
- typedef typename Lhs::InnerIterator LhsInnerIterator;
typedef typename Lhs::Index Index;
+ typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
{
+ typename evaluator<Lhs>::type lhsEval(lhs);
for(Index j=0; j<lhs.outerSize(); ++j)
{
typename Rhs::ConstRowXpr rhs_j(rhs.row(j));
- for(LhsInnerIterator it(lhs,j); it ;++it)
+ for(LhsInnerIterator it(lhsEval,j); it ;++it)
res.row(it.index()) += (alpha*it.value()) * rhs_j;
}
}
@@ -266,58 +128,154 @@ inline void sparse_time_dense_product(const SparseLhsType& lhs, const DenseRhsTy
} // end namespace internal
-template<typename Lhs, typename Rhs>
-class SparseTimeDenseProduct
- : public ProductBase<SparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs>
+namespace internal {
+
+template<typename Lhs, typename Rhs, int ProductType>
+struct generic_product_impl<Lhs, Rhs, SparseShape, DenseShape, ProductType>
{
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(SparseTimeDenseProduct)
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
+ typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
+ LhsNested lhsNested(lhs);
+ RhsNested rhsNested(rhs);
+
+ dst.setZero();
+ internal::sparse_time_dense_product(lhsNested, rhsNested, dst, typename Dest::Scalar(1));
+ }
+};
- SparseTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
+template<typename Lhs, typename Rhs, int ProductType>
+struct generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType>
+{
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
+ typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
+ LhsNested lhsNested(lhs);
+ RhsNested rhsNested(rhs);
+
+ dst.setZero();
+ // transpoe everything
+ Transpose<Dest> dstT(dst);
+ internal::sparse_time_dense_product(rhsNested.transpose(), lhsNested.transpose(), dstT, typename Dest::Scalar(1));
+ }
+};
+
+template<typename LhsT, typename RhsT, bool NeedToTranspose>
+struct sparse_dense_outer_product_evaluator
+{
+protected:
+ typedef typename conditional<NeedToTranspose,RhsT,LhsT>::type Lhs1;
+ typedef typename conditional<NeedToTranspose,LhsT,RhsT>::type ActualRhs;
+ typedef Product<LhsT,RhsT,DefaultProduct> ProdXprType;
+
+ // if the actual left-hand side is a dense vector,
+ // then build a sparse-view so that we can seamlessly iterator over it.
+ typedef typename conditional<is_same<typename internal::traits<Lhs1>::StorageKind,Sparse>::value,
+ Lhs1, SparseView<Lhs1> >::type ActualLhs;
+ typedef typename conditional<is_same<typename internal::traits<Lhs1>::StorageKind,Sparse>::value,
+ Lhs1 const&, SparseView<Lhs1> >::type LhsArg;
+
+ typedef typename evaluator<ActualLhs>::type LhsEval;
+ typedef typename evaluator<ActualRhs>::type RhsEval;
+ typedef typename evaluator<ActualLhs>::InnerIterator LhsIterator;
+ typedef typename ProdXprType::Scalar Scalar;
+ typedef typename ProdXprType::Index Index;
+
+public:
+ enum {
+ Flags = NeedToTranspose ? RowMajorBit : 0,
+ CoeffReadCost = Dynamic
+ };
+
+ class InnerIterator : public LhsIterator
+ {
+ public:
+ InnerIterator(const sparse_dense_outer_product_evaluator &xprEval, Index outer)
+ : LhsIterator(xprEval.m_lhsXprImpl, 0),
+ m_outer(outer),
+ m_empty(false),
+ m_factor(get(xprEval.m_rhsXprImpl, outer, typename internal::traits<ActualRhs>::StorageKind() ))
{}
+
+ EIGEN_STRONG_INLINE Index outer() const { return m_outer; }
+ EIGEN_STRONG_INLINE Index row() const { return NeedToTranspose ? m_outer : LhsIterator::index(); }
+ EIGEN_STRONG_INLINE Index col() const { return NeedToTranspose ? LhsIterator::index() : m_outer; }
- template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
+ EIGEN_STRONG_INLINE Scalar value() const { return LhsIterator::value() * m_factor; }
+ EIGEN_STRONG_INLINE operator bool() const { return LhsIterator::operator bool() && (!m_empty); }
+
+ protected:
+ Scalar get(const RhsEval &rhs, Index outer, Dense = Dense()) const
{
- internal::sparse_time_dense_product(m_lhs, m_rhs, dest, alpha);
+ return rhs.coeff(outer);
}
-
- private:
- SparseTimeDenseProduct& operator=(const SparseTimeDenseProduct&);
+
+ Scalar get(const RhsEval &rhs, Index outer, Sparse = Sparse())
+ {
+ typename RhsEval::InnerIterator it(rhs, outer);
+ if (it && it.index()==0 && it.value()!=Scalar(0))
+ return it.value();
+ m_empty = true;
+ return Scalar(0);
+ }
+
+ Index m_outer;
+ bool m_empty;
+ Scalar m_factor;
+ };
+
+ sparse_dense_outer_product_evaluator(const ActualLhs &lhs, const ActualRhs &rhs)
+ : m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs)
+ {}
+
+ // transpose case
+ sparse_dense_outer_product_evaluator(const ActualRhs &rhs, const Lhs1 &lhs)
+ : m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs)
+ {}
+
+protected:
+ const LhsArg m_lhs;
+ typename evaluator<ActualLhs>::nestedType m_lhsXprImpl;
+ typename evaluator<ActualRhs>::nestedType m_rhsXprImpl;
};
-
-// dense = dense * sparse
-namespace internal {
+// sparse * dense outer product
template<typename Lhs, typename Rhs>
-struct traits<DenseTimeSparseProduct<Lhs,Rhs> >
- : traits<ProductBase<DenseTimeSparseProduct<Lhs,Rhs>, Lhs, Rhs> >
+struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, OuterProduct, SparseShape, DenseShape, typename traits<Lhs>::Scalar, typename traits<Rhs>::Scalar>
+ : sparse_dense_outer_product_evaluator<Lhs,Rhs, Lhs::IsRowMajor>
{
- typedef Dense StorageKind;
+ typedef sparse_dense_outer_product_evaluator<Lhs,Rhs, Lhs::IsRowMajor> Base;
+
+ typedef Product<Lhs, Rhs> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+
+ product_evaluator(const XprType& xpr)
+ : Base(xpr.lhs(), xpr.rhs())
+ {}
+
};
-} // end namespace internal
template<typename Lhs, typename Rhs>
-class DenseTimeSparseProduct
- : public ProductBase<DenseTimeSparseProduct<Lhs,Rhs>, Lhs, Rhs>
+struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, OuterProduct, DenseShape, SparseShape, typename traits<Lhs>::Scalar, typename traits<Rhs>::Scalar>
+ : sparse_dense_outer_product_evaluator<Lhs,Rhs, Rhs::IsRowMajor>
{
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(DenseTimeSparseProduct)
-
- DenseTimeSparseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
- {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
- {
- Transpose<const _LhsNested> lhs_t(m_lhs);
- Transpose<const _RhsNested> rhs_t(m_rhs);
- Transpose<Dest> dest_t(dest);
- internal::sparse_time_dense_product(rhs_t, lhs_t, dest_t, alpha);
- }
-
- private:
- DenseTimeSparseProduct& operator=(const DenseTimeSparseProduct&);
+ typedef sparse_dense_outer_product_evaluator<Lhs,Rhs, Rhs::IsRowMajor> Base;
+
+ typedef Product<Lhs, Rhs> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+
+ product_evaluator(const XprType& xpr)
+ : Base(xpr.lhs(), xpr.rhs())
+ {}
+
};
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_SPARSEDENSEPRODUCT_H
diff --git a/Eigen/src/SparseCore/SparseDiagonalProduct.h b/Eigen/src/SparseCore/SparseDiagonalProduct.h
index c056b4914..0cb2bd572 100644
--- a/Eigen/src/SparseCore/SparseDiagonalProduct.h
+++ b/Eigen/src/SparseCore/SparseDiagonalProduct.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -26,173 +26,122 @@ namespace Eigen {
namespace internal {
-template<typename Lhs, typename Rhs>
-struct traits<SparseDiagonalProduct<Lhs, Rhs> >
-{
- typedef typename remove_all<Lhs>::type _Lhs;
- typedef typename remove_all<Rhs>::type _Rhs;
- typedef typename _Lhs::Scalar Scalar;
- // propagate the index type of the sparse matrix
- typedef typename conditional< is_diagonal<_Lhs>::ret,
- typename traits<Rhs>::Index,
- typename traits<Lhs>::Index>::type Index;
- typedef Sparse StorageKind;
- typedef MatrixXpr XprKind;
- enum {
- RowsAtCompileTime = _Lhs::RowsAtCompileTime,
- ColsAtCompileTime = _Rhs::ColsAtCompileTime,
-
- MaxRowsAtCompileTime = _Lhs::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = _Rhs::MaxColsAtCompileTime,
-
- SparseFlags = is_diagonal<_Lhs>::ret ? int(_Rhs::Flags) : int(_Lhs::Flags),
- Flags = (SparseFlags&RowMajorBit),
- CoeffReadCost = Dynamic
- };
+enum {
+ SDP_AsScalarProduct,
+ SDP_AsCwiseProduct
};
+
+template<typename SparseXprType, typename DiagonalCoeffType, int SDP_Tag>
+struct sparse_diagonal_product_evaluator;
-enum {SDP_IsDiagonal, SDP_IsSparseRowMajor, SDP_IsSparseColMajor};
-template<typename Lhs, typename Rhs, typename SparseDiagonalProductType, int RhsMode, int LhsMode>
-class sparse_diagonal_product_inner_iterator_selector;
-
-} // end namespace internal
-
-template<typename Lhs, typename Rhs>
-class SparseDiagonalProduct
- : public SparseMatrixBase<SparseDiagonalProduct<Lhs,Rhs> >,
- internal::no_assignment_operator
+template<typename Lhs, typename Rhs, int ProductTag>
+struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, ProductTag, DiagonalShape, SparseShape, typename traits<Lhs>::Scalar, typename traits<Rhs>::Scalar>
+ : public sparse_diagonal_product_evaluator<Rhs, typename Lhs::DiagonalVectorType, Rhs::Flags&RowMajorBit?SDP_AsScalarProduct:SDP_AsCwiseProduct>
{
- typedef typename Lhs::Nested LhsNested;
- typedef typename Rhs::Nested RhsNested;
-
- typedef typename internal::remove_all<LhsNested>::type _LhsNested;
- typedef typename internal::remove_all<RhsNested>::type _RhsNested;
-
- enum {
- LhsMode = internal::is_diagonal<_LhsNested>::ret ? internal::SDP_IsDiagonal
- : (_LhsNested::Flags&RowMajorBit) ? internal::SDP_IsSparseRowMajor : internal::SDP_IsSparseColMajor,
- RhsMode = internal::is_diagonal<_RhsNested>::ret ? internal::SDP_IsDiagonal
- : (_RhsNested::Flags&RowMajorBit) ? internal::SDP_IsSparseRowMajor : internal::SDP_IsSparseColMajor
- };
-
- public:
-
- EIGEN_SPARSE_PUBLIC_INTERFACE(SparseDiagonalProduct)
-
- typedef internal::sparse_diagonal_product_inner_iterator_selector
- <_LhsNested,_RhsNested,SparseDiagonalProduct,LhsMode,RhsMode> InnerIterator;
-
- // We do not want ReverseInnerIterator for diagonal-sparse products,
- // but this dummy declaration is needed to make diag * sparse * diag compile.
- class ReverseInnerIterator;
-
- EIGEN_STRONG_INLINE SparseDiagonalProduct(const Lhs& lhs, const Rhs& rhs)
- : m_lhs(lhs), m_rhs(rhs)
- {
- eigen_assert(lhs.cols() == rhs.rows() && "invalid sparse matrix * diagonal matrix product");
- }
-
- EIGEN_STRONG_INLINE Index rows() const { return Index(m_lhs.rows()); }
- EIGEN_STRONG_INLINE Index cols() const { return Index(m_rhs.cols()); }
-
- EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; }
- EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; }
-
- protected:
- LhsNested m_lhs;
- RhsNested m_rhs;
+ typedef Product<Lhs, Rhs, DefaultProduct> XprType;
+ typedef evaluator<XprType> type;
+ typedef evaluator<XprType> nestedType;
+ enum { CoeffReadCost = Dynamic, Flags = Rhs::Flags&RowMajorBit }; // FIXME CoeffReadCost & Flags
+
+ typedef sparse_diagonal_product_evaluator<Rhs, typename Lhs::DiagonalVectorType, Rhs::Flags&RowMajorBit?SDP_AsScalarProduct:SDP_AsCwiseProduct> Base;
+ product_evaluator(const XprType& xpr) : Base(xpr.rhs(), xpr.lhs().diagonal()) {}
};
-namespace internal {
-
-template<typename Lhs, typename Rhs, typename SparseDiagonalProductType>
-class sparse_diagonal_product_inner_iterator_selector
-<Lhs,Rhs,SparseDiagonalProductType,SDP_IsDiagonal,SDP_IsSparseRowMajor>
- : public CwiseUnaryOp<scalar_multiple_op<typename Lhs::Scalar>,const Rhs>::InnerIterator
+template<typename Lhs, typename Rhs, int ProductTag>
+struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, ProductTag, SparseShape, DiagonalShape, typename traits<Lhs>::Scalar, typename traits<Rhs>::Scalar>
+ : public sparse_diagonal_product_evaluator<Lhs, Transpose<const typename Rhs::DiagonalVectorType>, Lhs::Flags&RowMajorBit?SDP_AsCwiseProduct:SDP_AsScalarProduct>
{
- typedef typename CwiseUnaryOp<scalar_multiple_op<typename Lhs::Scalar>,const Rhs>::InnerIterator Base;
- typedef typename Rhs::Index Index;
- public:
- inline sparse_diagonal_product_inner_iterator_selector(
- const SparseDiagonalProductType& expr, Index outer)
- : Base(expr.rhs()*(expr.lhs().diagonal().coeff(outer)), outer)
- {}
+ typedef Product<Lhs, Rhs, DefaultProduct> XprType;
+ typedef evaluator<XprType> type;
+ typedef evaluator<XprType> nestedType;
+ enum { CoeffReadCost = Dynamic, Flags = Lhs::Flags&RowMajorBit }; // FIXME CoeffReadCost & Flags
+
+ typedef sparse_diagonal_product_evaluator<Lhs, Transpose<const typename Rhs::DiagonalVectorType>, Lhs::Flags&RowMajorBit?SDP_AsCwiseProduct:SDP_AsScalarProduct> Base;
+ product_evaluator(const XprType& xpr) : Base(xpr.lhs(), xpr.rhs().diagonal()) {}
};
-template<typename Lhs, typename Rhs, typename SparseDiagonalProductType>
-class sparse_diagonal_product_inner_iterator_selector
-<Lhs,Rhs,SparseDiagonalProductType,SDP_IsDiagonal,SDP_IsSparseColMajor>
- : public CwiseBinaryOp<
- scalar_product_op<typename Lhs::Scalar>,
- const typename Rhs::ConstInnerVectorReturnType,
- const typename Lhs::DiagonalVectorType>::InnerIterator
+template<typename SparseXprType, typename DiagonalCoeffType>
+struct sparse_diagonal_product_evaluator<SparseXprType, DiagonalCoeffType, SDP_AsScalarProduct>
{
- typedef typename CwiseBinaryOp<
- scalar_product_op<typename Lhs::Scalar>,
- const typename Rhs::ConstInnerVectorReturnType,
- const typename Lhs::DiagonalVectorType>::InnerIterator Base;
- typedef typename Rhs::Index Index;
- Index m_outer;
+protected:
+ typedef typename evaluator<SparseXprType>::InnerIterator SparseXprInnerIterator;
+ typedef typename SparseXprType::Scalar Scalar;
+ typedef typename SparseXprType::Index Index;
+
+public:
+ class InnerIterator : public SparseXprInnerIterator
+ {
public:
- inline sparse_diagonal_product_inner_iterator_selector(
- const SparseDiagonalProductType& expr, Index outer)
- : Base(expr.rhs().innerVector(outer) .cwiseProduct(expr.lhs().diagonal()), 0), m_outer(outer)
+ InnerIterator(const sparse_diagonal_product_evaluator &xprEval, Index outer)
+ : SparseXprInnerIterator(xprEval.m_sparseXprImpl, outer),
+ m_coeff(xprEval.m_diagCoeffImpl.coeff(outer))
{}
- inline Index outer() const { return m_outer; }
- inline Index col() const { return m_outer; }
+ EIGEN_STRONG_INLINE Scalar value() const { return m_coeff * SparseXprInnerIterator::value(); }
+ protected:
+ typename DiagonalCoeffType::Scalar m_coeff;
+ };
+
+ sparse_diagonal_product_evaluator(const SparseXprType &sparseXpr, const DiagonalCoeffType &diagCoeff)
+ : m_sparseXprImpl(sparseXpr), m_diagCoeffImpl(diagCoeff)
+ {}
+
+protected:
+ typename evaluator<SparseXprType>::nestedType m_sparseXprImpl;
+ typename evaluator<DiagonalCoeffType>::nestedType m_diagCoeffImpl;
};
-template<typename Lhs, typename Rhs, typename SparseDiagonalProductType>
-class sparse_diagonal_product_inner_iterator_selector
-<Lhs,Rhs,SparseDiagonalProductType,SDP_IsSparseColMajor,SDP_IsDiagonal>
- : public CwiseUnaryOp<scalar_multiple_op<typename Rhs::Scalar>,const Lhs>::InnerIterator
-{
- typedef typename CwiseUnaryOp<scalar_multiple_op<typename Rhs::Scalar>,const Lhs>::InnerIterator Base;
- typedef typename Lhs::Index Index;
- public:
- inline sparse_diagonal_product_inner_iterator_selector(
- const SparseDiagonalProductType& expr, Index outer)
- : Base(expr.lhs()*expr.rhs().diagonal().coeff(outer), outer)
- {}
-};
-template<typename Lhs, typename Rhs, typename SparseDiagonalProductType>
-class sparse_diagonal_product_inner_iterator_selector
-<Lhs,Rhs,SparseDiagonalProductType,SDP_IsSparseRowMajor,SDP_IsDiagonal>
- : public CwiseBinaryOp<
- scalar_product_op<typename Rhs::Scalar>,
- const typename Lhs::ConstInnerVectorReturnType,
- const Transpose<const typename Rhs::DiagonalVectorType> >::InnerIterator
+template<typename SparseXprType, typename DiagCoeffType>
+struct sparse_diagonal_product_evaluator<SparseXprType, DiagCoeffType, SDP_AsCwiseProduct>
{
- typedef typename CwiseBinaryOp<
- scalar_product_op<typename Rhs::Scalar>,
- const typename Lhs::ConstInnerVectorReturnType,
- const Transpose<const typename Rhs::DiagonalVectorType> >::InnerIterator Base;
- typedef typename Lhs::Index Index;
- Index m_outer;
+ typedef typename SparseXprType::Scalar Scalar;
+ typedef typename SparseXprType::Index Index;
+
+ typedef CwiseBinaryOp<scalar_product_op<Scalar>,
+ const typename SparseXprType::ConstInnerVectorReturnType,
+ const DiagCoeffType> CwiseProductType;
+
+ typedef typename evaluator<CwiseProductType>::type CwiseProductEval;
+ typedef typename evaluator<CwiseProductType>::InnerIterator CwiseProductIterator;
+
+ class InnerIterator
+ {
public:
- inline sparse_diagonal_product_inner_iterator_selector(
- const SparseDiagonalProductType& expr, Index outer)
- : Base(expr.lhs().innerVector(outer) .cwiseProduct(expr.rhs().diagonal().transpose()), 0), m_outer(outer)
+ InnerIterator(const sparse_diagonal_product_evaluator &xprEval, Index outer)
+ : m_cwiseEval(xprEval.m_sparseXprNested.innerVector(outer).cwiseProduct(xprEval.m_diagCoeffNested)),
+ m_cwiseIter(m_cwiseEval, 0),
+ m_outer(outer)
{}
- inline Index outer() const { return m_outer; }
- inline Index row() const { return m_outer; }
+ inline Scalar value() const { return m_cwiseIter.value(); }
+ inline Index index() const { return m_cwiseIter.index(); }
+ inline Index outer() const { return m_outer; }
+ inline Index col() const { return SparseXprType::IsRowMajor ? m_cwiseIter.index() : m_outer; }
+ inline Index row() const { return SparseXprType::IsRowMajor ? m_outer : m_cwiseIter.index(); }
+
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
+ { ++m_cwiseIter; return *this; }
+ inline operator bool() const { return m_cwiseIter; }
+
+ protected:
+ CwiseProductEval m_cwiseEval;
+ CwiseProductIterator m_cwiseIter;
+ Index m_outer;
+ };
+
+ sparse_diagonal_product_evaluator(const SparseXprType &sparseXpr, const DiagCoeffType &diagCoeff)
+ : m_sparseXprNested(sparseXpr), m_diagCoeffNested(diagCoeff)
+ {}
+
+protected:
+ typename nested_eval<SparseXprType,1>::type m_sparseXprNested;
+ typename nested_eval<DiagCoeffType,SparseXprType::IsRowMajor ? SparseXprType::RowsAtCompileTime
+ : SparseXprType::ColsAtCompileTime>::type m_diagCoeffNested;
};
} // end namespace internal
-// SparseMatrixBase functions
-
-template<typename Derived>
-template<typename OtherDerived>
-const SparseDiagonalProduct<Derived,OtherDerived>
-SparseMatrixBase<Derived>::operator*(const DiagonalBase<OtherDerived> &other) const
-{
- return SparseDiagonalProduct<Derived,OtherDerived>(this->derived(), other.derived());
-}
-
} // end namespace Eigen
#endif // EIGEN_SPARSE_DIAGONAL_PRODUCT_H
diff --git a/Eigen/src/SparseCore/SparseDot.h b/Eigen/src/SparseCore/SparseDot.h
index db39c9aec..b10c8058f 100644
--- a/Eigen/src/SparseCore/SparseDot.h
+++ b/Eigen/src/SparseCore/SparseDot.h
@@ -26,7 +26,8 @@ SparseMatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
eigen_assert(size() == other.size());
eigen_assert(other.size()>0 && "you are using a non initialized vector");
- typename Derived::InnerIterator i(derived(),0);
+ typename internal::evaluator<Derived>::type thisEval(derived());
+ typename internal::evaluator<Derived>::InnerIterator i(thisEval, 0);
Scalar res(0);
while (i)
{
@@ -49,16 +50,12 @@ SparseMatrixBase<Derived>::dot(const SparseMatrixBase<OtherDerived>& other) cons
eigen_assert(size() == other.size());
- typedef typename Derived::Nested Nested;
- typedef typename OtherDerived::Nested OtherNested;
- typedef typename internal::remove_all<Nested>::type NestedCleaned;
- typedef typename internal::remove_all<OtherNested>::type OtherNestedCleaned;
+ typename internal::evaluator<Derived>::type thisEval(derived());
+ typename internal::evaluator<Derived>::InnerIterator i(thisEval, 0);
+
+ typename internal::evaluator<OtherDerived>::type otherEval(other.derived());
+ typename internal::evaluator<OtherDerived>::InnerIterator j(otherEval, 0);
- Nested nthis(derived());
- OtherNested nother(other.derived());
-
- typename NestedCleaned::InnerIterator i(nthis,0);
- typename OtherNestedCleaned::InnerIterator j(nother,0);
Scalar res(0);
while (i && j)
{
diff --git a/Eigen/src/SparseCore/SparseMatrix.h b/Eigen/src/SparseCore/SparseMatrix.h
index 2ed2f3ebd..9e7124ff2 100644
--- a/Eigen/src/SparseCore/SparseMatrix.h
+++ b/Eigen/src/SparseCore/SparseMatrix.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -52,7 +52,6 @@ struct traits<SparseMatrix<_Scalar, _Options, _Index> >
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic,
Flags = _Options | NestByRefBit | LvalueBit,
- CoeffReadCost = NumTraits<Scalar>::ReadCost,
SupportedAccessPatterns = InnerRandomAccessPattern
};
};
@@ -74,8 +73,7 @@ struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _Index>, DiagIndex>
ColsAtCompileTime = 1,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = 1,
- Flags = 0,
- CoeffReadCost = _MatrixTypeNested::CoeffReadCost*10
+ Flags = 0
};
};
@@ -649,7 +647,9 @@ class SparseMatrix
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
check_template_parameters();
- *this = other.derived();
+ const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
+ if (needToTranspose) *this = other.derived();
+ else internal::call_assignment_no_alias(*this, other.derived());
}
/** Constructs a sparse matrix from the sparse selfadjoint view \a other */
@@ -658,7 +658,7 @@ class SparseMatrix
: m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
{
check_template_parameters();
- *this = other;
+ Base::operator=(other);
}
/** Copy constructor (it performs a deep copy) */
@@ -722,22 +722,11 @@ class SparseMatrix
return *this;
}
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename Lhs, typename Rhs>
- inline SparseMatrix& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
- { return Base::operator=(product); }
-
- template<typename OtherDerived>
- inline SparseMatrix& operator=(const ReturnByValue<OtherDerived>& other)
- {
- initAssignment(other);
- return Base::operator=(other.derived());
- }
-
+#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename OtherDerived>
inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
{ return Base::operator=(other.derived()); }
- #endif
+#endif // EIGEN_PARSED_BY_DOXYGEN
template<typename OtherDerived>
EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other);
@@ -898,6 +887,11 @@ class SparseMatrix<Scalar,_Options,_Index>::InnerIterator
const Index m_outer;
Index m_id;
Index m_end;
+ private:
+ // If you get here, then you're not using the right InnerIterator type, e.g.:
+ // SparseMatrix<double,RowMajor> A;
+ // SparseMatrix<double>::InnerIterator it(A,0);
+ template<typename T> InnerIterator(const SparseMatrixBase<T>&,Index outer);
};
template<typename Scalar, int _Options, typename _Index>
@@ -1061,17 +1055,19 @@ EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_Index>& SparseMatrix<Scalar,_Opt
{
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
- const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
+
+ const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
if (needToTranspose)
{
// two passes algorithm:
// 1 - compute the number of coeffs per dest inner vector
// 2 - do the actual copy/eval
// Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
- typedef typename internal::nested<OtherDerived,2>::type OtherCopy;
+ typedef typename internal::nested_eval<OtherDerived,2,typename internal::plain_matrix_type<OtherDerived>::type >::type OtherCopy;
typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
+ typedef internal::evaluator<_OtherCopy> OtherCopyEval;
OtherCopy otherCopy(other.derived());
+ OtherCopyEval otherCopyEval(otherCopy);
SparseMatrix dest(other.rows(),other.cols());
Eigen::Map<Matrix<Index, Dynamic, 1> > (dest.m_outerIndex,dest.outerSize()).setZero();
@@ -1079,7 +1075,7 @@ EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_Index>& SparseMatrix<Scalar,_Opt
// pass 1
// FIXME the above copy could be merged with that pass
for (Index j=0; j<otherCopy.outerSize(); ++j)
- for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
+ for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
++dest.m_outerIndex[it.index()];
// prefix sum
@@ -1098,7 +1094,7 @@ EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_Index>& SparseMatrix<Scalar,_Opt
// pass 2
for (Index j=0; j<otherCopy.outerSize(); ++j)
{
- for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
+ for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
{
Index pos = positions[it.index()]++;
dest.m_data.index(pos) = j;
@@ -1111,7 +1107,9 @@ EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_Index>& SparseMatrix<Scalar,_Opt
else
{
if(other.isRValue())
+ {
initAssignment(other.derived());
+ }
// there is no special optimization
return Base::operator=(other.derived());
}
@@ -1256,6 +1254,36 @@ EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& Sparse
return (m_data.value(p) = 0);
}
+namespace internal {
+
+template<typename _Scalar, int _Options, typename _Index>
+struct evaluator<SparseMatrix<_Scalar,_Options,_Index> >
+ : evaluator_base<SparseMatrix<_Scalar,_Options,_Index> >
+{
+ typedef _Scalar Scalar;
+ typedef _Index Index;
+ typedef SparseMatrix<_Scalar,_Options,_Index> SparseMatrixType;
+ typedef typename SparseMatrixType::InnerIterator InnerIterator;
+ typedef typename SparseMatrixType::ReverseInnerIterator ReverseInnerIterator;
+
+ enum {
+ CoeffReadCost = NumTraits<_Scalar>::ReadCost,
+ Flags = SparseMatrixType::Flags
+ };
+
+ evaluator() : m_matrix(0) {}
+ evaluator(const SparseMatrixType &mat) : m_matrix(&mat) {}
+
+ operator SparseMatrixType&() { return m_matrix->const_cast_derived(); }
+ operator const SparseMatrixType&() const { return *m_matrix; }
+
+ Scalar coeff(Index row, Index col) const { return m_matrix->coeff(row,col); }
+
+ const SparseMatrixType *m_matrix;
+};
+
+}
+
} // end namespace Eigen
#endif // EIGEN_SPARSEMATRIX_H
diff --git a/Eigen/src/SparseCore/SparseMatrixBase.h b/Eigen/src/SparseCore/SparseMatrixBase.h
index fb5025049..b5c50d93a 100644
--- a/Eigen/src/SparseCore/SparseMatrixBase.h
+++ b/Eigen/src/SparseCore/SparseMatrixBase.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -39,11 +39,7 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
typedef EigenBase<Derived> Base;
template<typename OtherDerived>
- Derived& operator=(const EigenBase<OtherDerived> &other)
- {
- other.derived().evalTo(derived());
- return derived();
- }
+ Derived& operator=(const EigenBase<OtherDerived> &other);
enum {
@@ -83,11 +79,6 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
* constructed from this one. See the \ref flags "list of flags".
*/
- CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
- /**< This is a rough measure of how expensive it is to read one coefficient from
- * this expression.
- */
-
IsRowMajor = Flags&RowMajorBit ? 1 : 0,
InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime)
@@ -104,10 +95,9 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
Transpose<const Derived>
>::type AdjointReturnType;
-
+ // FIXME storage order do not match evaluator storage order
typedef SparseMatrix<Scalar, Flags&RowMajorBit ? RowMajor : ColMajor, Index> PlainObject;
-
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is the "real scalar" type; if the \a Scalar type is already real numbers
* (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
@@ -175,93 +165,23 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
template<typename OtherDerived>
- Derived& operator=(const ReturnByValue<OtherDerived>& other)
- {
- other.evalTo(derived());
- return derived();
- }
-
+ Derived& operator=(const ReturnByValue<OtherDerived>& other);
template<typename OtherDerived>
- inline Derived& operator=(const SparseMatrixBase<OtherDerived>& other)
- {
- return assign(other.derived());
- }
+ inline Derived& operator=(const SparseMatrixBase<OtherDerived>& other);
- inline Derived& operator=(const Derived& other)
- {
-// if (other.isRValue())
-// derived().swap(other.const_cast_derived());
-// else
- return assign(other.derived());
- }
+ inline Derived& operator=(const Derived& other);
protected:
template<typename OtherDerived>
- inline Derived& assign(const OtherDerived& other)
- {
- const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
- const Index outerSize = (int(OtherDerived::Flags) & RowMajorBit) ? Index(other.rows()) : Index(other.cols());
- if ((!transpose) && other.isRValue())
- {
- // eval without temporary
- derived().resize(Index(other.rows()), Index(other.cols()));
- derived().setZero();
- derived().reserve((std::max)(this->rows(),this->cols())*2);
- for (Index j=0; j<outerSize; ++j)
- {
- derived().startVec(j);
- for (typename OtherDerived::InnerIterator it(other, typename OtherDerived::Index(j)); it; ++it)
- {
- Scalar v = it.value();
- derived().insertBackByOuterInner(j,Index(it.index())) = v;
- }
- }
- derived().finalize();
- }
- else
- {
- assignGeneric(other);
- }
- return derived();
- }
+ inline Derived& assign(const OtherDerived& other);
template<typename OtherDerived>
- inline void assignGeneric(const OtherDerived& other)
- {
- //const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
- eigen_assert(( ((internal::traits<Derived>::SupportedAccessPatterns&OuterRandomAccessPattern)==OuterRandomAccessPattern) ||
- (!((Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit)))) &&
- "the transpose operation is supposed to be handled in SparseMatrix::operator=");
-
- enum { Flip = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit) };
-
- const Index outerSize = Index(other.outerSize());
- //typedef typename internal::conditional<transpose, LinkedVectorMatrix<Scalar,Flags&RowMajorBit>, Derived>::type TempType;
- // thanks to shallow copies, we always eval to a tempary
- Derived temp(Index(other.rows()), Index(other.cols()));
-
- temp.reserve((std::max)(this->rows(),this->cols())*2);
- for (Index j=0; j<outerSize; ++j)
- {
- temp.startVec(j);
- for (typename OtherDerived::InnerIterator it(other.derived(), typename OtherDerived::Index(j)); it; ++it)
- {
- Scalar v = it.value();
- temp.insertBackByOuterInner(Flip?Index(it.index()):j,Flip?j:Index(it.index())) = v;
- }
- }
- temp.finalize();
-
- derived() = temp.markAsRValue();
- }
+ inline void assignGeneric(const OtherDerived& other);
public:
- template<typename Lhs, typename Rhs>
- inline Derived& operator=(const SparseSparseProduct<Lhs,Rhs>& product);
-
friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m)
{
typedef typename Derived::Nested Nested;
@@ -333,33 +253,34 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE
cwiseProduct(const MatrixBase<OtherDerived> &other) const;
- // sparse * sparse
- template<typename OtherDerived>
- const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type
- operator*(const SparseMatrixBase<OtherDerived> &other) const;
-
// sparse * diagonal
template<typename OtherDerived>
- const SparseDiagonalProduct<Derived,OtherDerived>
- operator*(const DiagonalBase<OtherDerived> &other) const;
+ const Product<Derived,OtherDerived>
+ operator*(const DiagonalBase<OtherDerived> &other) const
+ { return Product<Derived,OtherDerived>(derived(), other.derived()); }
// diagonal * sparse
template<typename OtherDerived> friend
- const SparseDiagonalProduct<OtherDerived,Derived>
+ const Product<OtherDerived,Derived>
operator*(const DiagonalBase<OtherDerived> &lhs, const SparseMatrixBase& rhs)
- { return SparseDiagonalProduct<OtherDerived,Derived>(lhs.derived(), rhs.derived()); }
-
- /** dense * sparse (return a dense object unless it is an outer product) */
- template<typename OtherDerived> friend
- const typename DenseSparseProductReturnType<OtherDerived,Derived>::Type
- operator*(const MatrixBase<OtherDerived>& lhs, const Derived& rhs)
- { return typename DenseSparseProductReturnType<OtherDerived,Derived>::Type(lhs.derived(),rhs); }
-
- /** sparse * dense (returns a dense object unless it is an outer product) */
+ { return Product<OtherDerived,Derived>(lhs.derived(), rhs.derived()); }
+
+ // sparse * sparse
+ template<typename OtherDerived>
+ const Product<Derived,OtherDerived>
+ operator*(const SparseMatrixBase<OtherDerived> &other) const;
+
+ // sparse * dense
template<typename OtherDerived>
- const typename SparseDenseProductReturnType<Derived,OtherDerived>::Type
+ const Product<Derived,OtherDerived>
operator*(const MatrixBase<OtherDerived> &other) const
- { return typename SparseDenseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived()); }
+ { return Product<Derived,OtherDerived>(derived(), other.derived()); }
+
+ // dense * sparse
+ template<typename OtherDerived> friend
+ const Product<OtherDerived,Derived>
+ operator*(const MatrixBase<OtherDerived> &lhs, const SparseMatrixBase& rhs)
+ { return Product<OtherDerived,Derived>(lhs.derived(), rhs.derived()); }
/** \returns an expression of P H P^-1 where H is the matrix represented by \c *this */
SparseSymmetricPermutationProduct<Derived,Upper|Lower> twistedBy(const PermutationMatrix<Dynamic,Dynamic,Index>& perm) const
@@ -371,7 +292,7 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
Derived& operator*=(const SparseMatrixBase<OtherDerived>& other);
template<int Mode>
- inline const SparseTriangularView<Derived, Mode> triangularView() const;
+ inline const TriangularView<Derived, Mode> triangularView() const;
template<unsigned int UpLo> inline const SparseSelfAdjointView<Derived, UpLo> selfadjointView() const;
template<unsigned int UpLo> inline SparseSelfAdjointView<Derived, UpLo> selfadjointView();
@@ -396,16 +317,6 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
Block<Derived,Dynamic,Dynamic,true> innerVectors(Index outerStart, Index outerSize);
const Block<const Derived,Dynamic,Dynamic,true> innerVectors(Index outerStart, Index outerSize) const;
- /** \internal use operator= */
- template<typename DenseDerived>
- void evalTo(MatrixBase<DenseDerived>& dst) const
- {
- dst.setZero();
- for (Index j=0; j<outerSize(); ++j)
- for (typename Derived::InnerIterator i(derived(),typename Derived::Index(j)); i; ++i)
- dst.coeffRef(i.row(),i.col()) = i.value();
- }
-
Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> toDense() const
{
return derived();
@@ -430,6 +341,9 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
{ return typename internal::eval<Derived>::type(derived()); }
Scalar sum() const;
+
+ inline const SparseView<Derived>
+ pruned(const Scalar& reference = Scalar(0), const RealScalar& epsilon = NumTraits<Scalar>::dummy_precision()) const;
protected:
diff --git a/Eigen/src/SparseCore/SparsePermutation.h b/Eigen/src/SparseCore/SparsePermutation.h
index b85be93f6..228796bf8 100644
--- a/Eigen/src/SparseCore/SparsePermutation.h
+++ b/Eigen/src/SparseCore/SparsePermutation.h
@@ -103,44 +103,133 @@ struct permut_sparsematrix_product_retval
}
+namespace internal {
+
+template <int ProductTag> struct product_promote_storage_type<Sparse, PermutationStorage, ProductTag> { typedef Sparse ret; };
+template <int ProductTag> struct product_promote_storage_type<PermutationStorage, Sparse, ProductTag> { typedef Sparse ret; };
+
+// TODO, the following need cleaning, this is just a copy-past of the dense case
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs, Rhs, PermutationShape, SparseShape, ProductTag>
+{
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ permut_sparsematrix_product_retval<Lhs, Rhs, OnTheLeft, false> pmpr(lhs, rhs);
+ pmpr.evalTo(dst);
+ }
+};
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs, Rhs, SparseShape, PermutationShape, ProductTag>
+{
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ permut_sparsematrix_product_retval<Rhs, Lhs, OnTheRight, false> pmpr(rhs, lhs);
+ pmpr.evalTo(dst);
+ }
+};
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Transpose<Lhs>, Rhs, PermutationShape, SparseShape, ProductTag>
+{
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Transpose<Lhs>& lhs, const Rhs& rhs)
+ {
+ permut_sparsematrix_product_retval<Lhs, Rhs, OnTheLeft, true> pmpr(lhs.nestedPermutation(), rhs);
+ pmpr.evalTo(dst);
+ }
+};
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs, Transpose<Rhs>, SparseShape, PermutationShape, ProductTag>
+{
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Transpose<Rhs>& rhs)
+ {
+ permut_sparsematrix_product_retval<Rhs, Lhs, OnTheRight, true> pmpr(rhs.nestedPermutation(), lhs);
+ pmpr.evalTo(dst);
+ }
+};
+
+// TODO, the following two overloads are only needed to define the right temporary type through
+// typename traits<permut_sparsematrix_product_retval<Rhs,Lhs,OnTheRight,false> >::ReturnType
+// while it should be correctly handled by traits<Product<> >::PlainObject
+template<typename Lhs, typename Rhs, int ProductTag>
+struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, ProductTag, PermutationShape, SparseShape, typename traits<Lhs>::Scalar, typename traits<Rhs>::Scalar>
+ : public evaluator<typename traits<permut_sparsematrix_product_retval<Lhs,Rhs,OnTheRight,false> >::ReturnType>::type
+{
+ typedef Product<Lhs, Rhs, DefaultProduct> XprType;
+ typedef typename traits<permut_sparsematrix_product_retval<Lhs,Rhs,OnTheRight,false> >::ReturnType PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
+
+ product_evaluator(const XprType& xpr)
+ : m_result(xpr.rows(), xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ generic_product_impl<Lhs, Rhs, PermutationShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
+ }
+
+protected:
+ PlainObject m_result;
+};
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, ProductTag, SparseShape, PermutationShape, typename traits<Lhs>::Scalar, typename traits<Rhs>::Scalar>
+ : public evaluator<typename traits<permut_sparsematrix_product_retval<Rhs,Lhs,OnTheRight,false> >::ReturnType>::type
+{
+ typedef Product<Lhs, Rhs, DefaultProduct> XprType;
+ typedef typename traits<permut_sparsematrix_product_retval<Rhs,Lhs,OnTheRight,false> >::ReturnType PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
+
+ product_evaluator(const XprType& xpr)
+ : m_result(xpr.rows(), xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ generic_product_impl<Lhs, Rhs, SparseShape, PermutationShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
+ }
+
+protected:
+ PlainObject m_result;
+};
+
+} // end namespace internal
/** \returns the matrix with the permutation applied to the columns
*/
template<typename SparseDerived, typename PermDerived>
-inline const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, false>
+inline const Product<SparseDerived, PermDerived>
operator*(const SparseMatrixBase<SparseDerived>& matrix, const PermutationBase<PermDerived>& perm)
-{
- return internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, false>(perm, matrix.derived());
-}
+{ return Product<SparseDerived, PermDerived>(matrix.derived(), perm.derived()); }
/** \returns the matrix with the permutation applied to the rows
*/
template<typename SparseDerived, typename PermDerived>
-inline const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, false>
+inline const Product<PermDerived, SparseDerived>
operator*( const PermutationBase<PermDerived>& perm, const SparseMatrixBase<SparseDerived>& matrix)
-{
- return internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, false>(perm, matrix.derived());
-}
-
+{ return Product<PermDerived, SparseDerived>(perm.derived(), matrix.derived()); }
+// TODO, the following specializations should not be needed as Transpose<Permutation*> should be a PermutationBase.
/** \returns the matrix with the inverse permutation applied to the columns.
*/
template<typename SparseDerived, typename PermDerived>
-inline const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, true>
+inline const Product<SparseDerived, Transpose<PermutationBase<PermDerived> > >
operator*(const SparseMatrixBase<SparseDerived>& matrix, const Transpose<PermutationBase<PermDerived> >& tperm)
{
- return internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, true>(tperm.nestedPermutation(), matrix.derived());
+ return Product<SparseDerived, Transpose<PermutationBase<PermDerived> > >(matrix.derived(), tperm);
}
/** \returns the matrix with the inverse permutation applied to the rows.
*/
template<typename SparseDerived, typename PermDerived>
-inline const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, true>
+inline const Product<Transpose<PermutationBase<PermDerived> >, SparseDerived>
operator*(const Transpose<PermutationBase<PermDerived> >& tperm, const SparseMatrixBase<SparseDerived>& matrix)
{
- return internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, true>(tperm.nestedPermutation(), matrix.derived());
+ return Product<Transpose<PermutationBase<PermDerived> >, SparseDerived>(tperm, matrix.derived());
}
} // end namespace Eigen
diff --git a/Eigen/src/SparseCore/SparseProduct.h b/Eigen/src/SparseCore/SparseProduct.h
index cf7663070..b68fe986a 100644
--- a/Eigen/src/SparseCore/SparseProduct.h
+++ b/Eigen/src/SparseCore/SparseProduct.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -12,158 +12,6 @@
namespace Eigen {
-template<typename Lhs, typename Rhs>
-struct SparseSparseProductReturnType
-{
- typedef typename internal::traits<Lhs>::Scalar Scalar;
- typedef typename internal::traits<Lhs>::Index Index;
- enum {
- LhsRowMajor = internal::traits<Lhs>::Flags & RowMajorBit,
- RhsRowMajor = internal::traits<Rhs>::Flags & RowMajorBit,
- TransposeRhs = (!LhsRowMajor) && RhsRowMajor,
- TransposeLhs = LhsRowMajor && (!RhsRowMajor)
- };
-
- typedef typename internal::conditional<TransposeLhs,
- SparseMatrix<Scalar,0,Index>,
- typename internal::nested<Lhs,Rhs::RowsAtCompileTime>::type>::type LhsNested;
-
- typedef typename internal::conditional<TransposeRhs,
- SparseMatrix<Scalar,0,Index>,
- typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type>::type RhsNested;
-
- typedef SparseSparseProduct<LhsNested, RhsNested> Type;
-};
-
-namespace internal {
-template<typename LhsNested, typename RhsNested>
-struct traits<SparseSparseProduct<LhsNested, RhsNested> >
-{
- typedef MatrixXpr XprKind;
- // clean the nested types:
- typedef typename remove_all<LhsNested>::type _LhsNested;
- typedef typename remove_all<RhsNested>::type _RhsNested;
- typedef typename _LhsNested::Scalar Scalar;
- typedef typename promote_index_type<typename traits<_LhsNested>::Index,
- typename traits<_RhsNested>::Index>::type Index;
-
- enum {
- LhsCoeffReadCost = _LhsNested::CoeffReadCost,
- RhsCoeffReadCost = _RhsNested::CoeffReadCost,
- LhsFlags = _LhsNested::Flags,
- RhsFlags = _RhsNested::Flags,
-
- RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
- ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
- MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
-
- InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
-
- EvalToRowMajor = (RhsFlags & LhsFlags & RowMajorBit),
-
- RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit),
-
- Flags = (int(LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
- | EvalBeforeAssigningBit
- | EvalBeforeNestingBit,
-
- CoeffReadCost = Dynamic
- };
-
- typedef Sparse StorageKind;
-};
-
-} // end namespace internal
-
-template<typename LhsNested, typename RhsNested>
-class SparseSparseProduct : internal::no_assignment_operator,
- public SparseMatrixBase<SparseSparseProduct<LhsNested, RhsNested> >
-{
- public:
-
- typedef SparseMatrixBase<SparseSparseProduct> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(SparseSparseProduct)
-
- private:
-
- typedef typename internal::traits<SparseSparseProduct>::_LhsNested _LhsNested;
- typedef typename internal::traits<SparseSparseProduct>::_RhsNested _RhsNested;
-
- public:
-
- template<typename Lhs, typename Rhs>
- EIGEN_STRONG_INLINE SparseSparseProduct(const Lhs& lhs, const Rhs& rhs)
- : m_lhs(lhs), m_rhs(rhs), m_tolerance(0), m_conservative(true)
- {
- init();
- }
-
- template<typename Lhs, typename Rhs>
- EIGEN_STRONG_INLINE SparseSparseProduct(const Lhs& lhs, const Rhs& rhs, const RealScalar& tolerance)
- : m_lhs(lhs), m_rhs(rhs), m_tolerance(tolerance), m_conservative(false)
- {
- init();
- }
-
- SparseSparseProduct pruned(const Scalar& reference = 0, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) const
- {
- using std::abs;
- return SparseSparseProduct(m_lhs,m_rhs,abs(reference)*epsilon);
- }
-
- template<typename Dest>
- void evalTo(Dest& result) const
- {
- if(m_conservative)
- internal::conservative_sparse_sparse_product_selector<_LhsNested, _RhsNested, Dest>::run(lhs(),rhs(),result);
- else
- internal::sparse_sparse_product_with_pruning_selector<_LhsNested, _RhsNested, Dest>::run(lhs(),rhs(),result,m_tolerance);
- }
-
- EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
-
- EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; }
- EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; }
-
- protected:
- void init()
- {
- eigen_assert(m_lhs.cols() == m_rhs.rows());
-
- enum {
- ProductIsValid = _LhsNested::ColsAtCompileTime==Dynamic
- || _RhsNested::RowsAtCompileTime==Dynamic
- || int(_LhsNested::ColsAtCompileTime)==int(_RhsNested::RowsAtCompileTime),
- AreVectors = _LhsNested::IsVectorAtCompileTime && _RhsNested::IsVectorAtCompileTime,
- SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(_LhsNested,_RhsNested)
- };
- // note to the lost user:
- // * for a dot product use: v1.dot(v2)
- // * for a coeff-wise product use: v1.cwise()*v2
- EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
- INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
- EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
- INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
- EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
- }
-
- LhsNested m_lhs;
- RhsNested m_rhs;
- RealScalar m_tolerance;
- bool m_conservative;
-};
-
-// sparse = sparse * sparse
-template<typename Derived>
-template<typename Lhs, typename Rhs>
-inline Derived& SparseMatrixBase<Derived>::operator=(const SparseSparseProduct<Lhs,Rhs>& product)
-{
- product.evalTo(derived());
- return derived();
-}
-
/** \returns an expression of the product of two sparse matrices.
* By default a conservative product preserving the symbolic non zeros is performed.
* The automatic pruning of the small values can be achieved by calling the pruned() function
@@ -177,12 +25,61 @@ inline Derived& SparseMatrixBase<Derived>::operator=(const SparseSparseProduct<L
* */
template<typename Derived>
template<typename OtherDerived>
-inline const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type
+inline const Product<Derived,OtherDerived>
SparseMatrixBase<Derived>::operator*(const SparseMatrixBase<OtherDerived> &other) const
{
- return typename SparseSparseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
+ return Product<Derived,OtherDerived>(derived(), other.derived());
}
+namespace internal {
+
+template<typename Lhs, typename Rhs, int ProductType>
+struct generic_product_impl<Lhs, Rhs, SparseShape, SparseShape, ProductType>
+{
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
+ typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
+ LhsNested lhsNested(lhs);
+ RhsNested rhsNested(rhs);
+ internal::conservative_sparse_sparse_product_selector<typename remove_all<LhsNested>::type,
+ typename remove_all<RhsNested>::type, Dest>::run(lhsNested,rhsNested,dst);
+ }
+};
+
+template<typename Lhs, typename Rhs, int Options>
+struct evaluator<SparseView<Product<Lhs, Rhs, Options> > >
+ : public evaluator<typename Product<Lhs, Rhs, DefaultProduct>::PlainObject>::type
+{
+ typedef SparseView<Product<Lhs, Rhs, Options> > XprType;
+ typedef typename XprType::PlainObject PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
+
+ typedef evaluator type;
+ typedef evaluator nestedType;
+
+ evaluator(const XprType& xpr)
+ : m_result(xpr.rows(), xpr.cols())
+ {
+ using std::abs;
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
+ typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
+ LhsNested lhsNested(xpr.nestedExpression().lhs());
+ RhsNested rhsNested(xpr.nestedExpression().rhs());
+
+ internal::sparse_sparse_product_with_pruning_selector<typename remove_all<LhsNested>::type,
+ typename remove_all<RhsNested>::type, PlainObject>::run(lhsNested,rhsNested,m_result,
+ abs(xpr.reference())*xpr.epsilon());
+ }
+
+protected:
+ PlainObject m_result;
+};
+
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_SPARSEPRODUCT_H
diff --git a/Eigen/src/SparseCore/SparseRedux.h b/Eigen/src/SparseCore/SparseRedux.h
index f3da93a71..763f2296b 100644
--- a/Eigen/src/SparseCore/SparseRedux.h
+++ b/Eigen/src/SparseCore/SparseRedux.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -18,8 +18,9 @@ SparseMatrixBase<Derived>::sum() const
{
eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix");
Scalar res(0);
+ typename internal::evaluator<Derived>::type thisEval(derived());
for (Index j=0; j<outerSize(); ++j)
- for (typename Derived::InnerIterator iter(derived(),j); iter; ++iter)
+ for (typename internal::evaluator<Derived>::InnerIterator iter(thisEval,j); iter; ++iter)
res += iter.value();
return res;
}
diff --git a/Eigen/src/SparseCore/SparseSelfAdjointView.h b/Eigen/src/SparseCore/SparseSelfAdjointView.h
index 56c922929..69ac1a398 100644
--- a/Eigen/src/SparseCore/SparseSelfAdjointView.h
+++ b/Eigen/src/SparseCore/SparseSelfAdjointView.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -11,14 +11,14 @@
#define EIGEN_SPARSE_SELFADJOINTVIEW_H
namespace Eigen {
-
+
/** \ingroup SparseCore_Module
* \class SparseSelfAdjointView
*
* \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
*
* \param MatrixType the type of the dense matrix storing the coefficients
- * \param UpLo can be either \c #Lower or \c #Upper
+ * \param Mode can be either \c #Lower or \c #Upper
*
* This class is an expression of a sefladjoint matrix from a triangular part of a matrix
* with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
@@ -26,37 +26,33 @@ namespace Eigen {
*
* \sa SparseMatrixBase::selfadjointView()
*/
-template<typename Lhs, typename Rhs, int UpLo>
-class SparseSelfAdjointTimeDenseProduct;
-
-template<typename Lhs, typename Rhs, int UpLo>
-class DenseTimeSparseSelfAdjointProduct;
-
namespace internal {
-template<typename MatrixType, unsigned int UpLo>
-struct traits<SparseSelfAdjointView<MatrixType,UpLo> > : traits<MatrixType> {
+template<typename MatrixType, unsigned int Mode>
+struct traits<SparseSelfAdjointView<MatrixType,Mode> > : traits<MatrixType> {
};
-template<int SrcUpLo,int DstUpLo,typename MatrixType,int DestOrder>
+template<int SrcMode,int DstMode,typename MatrixType,int DestOrder>
void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm = 0);
-template<int UpLo,typename MatrixType,int DestOrder>
+template<int Mode,typename MatrixType,int DestOrder>
void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm = 0);
}
-template<typename MatrixType, unsigned int UpLo> class SparseSelfAdjointView
- : public EigenBase<SparseSelfAdjointView<MatrixType,UpLo> >
+template<typename MatrixType, unsigned int _Mode> class SparseSelfAdjointView
+ : public EigenBase<SparseSelfAdjointView<MatrixType,_Mode> >
{
public:
+
+ enum { Mode = _Mode };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef Matrix<Index,Dynamic,1> VectorI;
typedef typename MatrixType::Nested MatrixTypeNested;
typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
-
+
inline SparseSelfAdjointView(const MatrixType& matrix) : m_matrix(matrix)
{
eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices");
@@ -75,10 +71,10 @@ template<typename MatrixType, unsigned int UpLo> class SparseSelfAdjointView
* Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
*/
template<typename OtherDerived>
- SparseSparseProduct<typename OtherDerived::PlainObject, OtherDerived>
+ Product<SparseSelfAdjointView, OtherDerived>
operator*(const SparseMatrixBase<OtherDerived>& rhs) const
{
- return SparseSparseProduct<typename OtherDerived::PlainObject, OtherDerived>(*this, rhs.derived());
+ return Product<SparseSelfAdjointView, OtherDerived>(*this, rhs.derived());
}
/** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs.
@@ -87,26 +83,26 @@ template<typename MatrixType, unsigned int UpLo> class SparseSelfAdjointView
* Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
*/
template<typename OtherDerived> friend
- SparseSparseProduct<OtherDerived, typename OtherDerived::PlainObject >
+ Product<OtherDerived, SparseSelfAdjointView>
operator*(const SparseMatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
{
- return SparseSparseProduct<OtherDerived, typename OtherDerived::PlainObject>(lhs.derived(), rhs);
+ return Product<OtherDerived, SparseSelfAdjointView>(lhs.derived(), rhs);
}
/** Efficient sparse self-adjoint matrix times dense vector/matrix product */
template<typename OtherDerived>
- SparseSelfAdjointTimeDenseProduct<MatrixType,OtherDerived,UpLo>
+ Product<SparseSelfAdjointView,OtherDerived>
operator*(const MatrixBase<OtherDerived>& rhs) const
{
- return SparseSelfAdjointTimeDenseProduct<MatrixType,OtherDerived,UpLo>(m_matrix, rhs.derived());
+ return Product<SparseSelfAdjointView,OtherDerived>(*this, rhs.derived());
}
/** Efficient dense vector/matrix times sparse self-adjoint matrix product */
template<typename OtherDerived> friend
- DenseTimeSparseSelfAdjointProduct<OtherDerived,MatrixType,UpLo>
+ Product<OtherDerived,SparseSelfAdjointView>
operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
{
- return DenseTimeSparseSelfAdjointProduct<OtherDerived,_MatrixTypeNested,UpLo>(lhs.derived(), rhs.m_matrix);
+ return Product<OtherDerived,SparseSelfAdjointView>(lhs.derived(), rhs);
}
/** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
@@ -123,53 +119,49 @@ template<typename MatrixType, unsigned int UpLo> class SparseSelfAdjointView
/** \internal triggered by sparse_matrix = SparseSelfadjointView; */
template<typename DestScalar,int StorageOrder> void evalTo(SparseMatrix<DestScalar,StorageOrder,Index>& _dest) const
{
- internal::permute_symm_to_fullsymm<UpLo>(m_matrix, _dest);
+ internal::permute_symm_to_fullsymm<Mode>(m_matrix, _dest);
}
template<typename DestScalar> void evalTo(DynamicSparseMatrix<DestScalar,ColMajor,Index>& _dest) const
{
// TODO directly evaluate into _dest;
SparseMatrix<DestScalar,ColMajor,Index> tmp(_dest.rows(),_dest.cols());
- internal::permute_symm_to_fullsymm<UpLo>(m_matrix, tmp);
+ internal::permute_symm_to_fullsymm<Mode>(m_matrix, tmp);
_dest = tmp;
}
/** \returns an expression of P H P^-1 */
- SparseSymmetricPermutationProduct<_MatrixTypeNested,UpLo> twistedBy(const PermutationMatrix<Dynamic,Dynamic,Index>& perm) const
+ // TODO implement twists in a more evaluator friendly fashion
+ SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode> twistedBy(const PermutationMatrix<Dynamic,Dynamic,Index>& perm) const
{
- return SparseSymmetricPermutationProduct<_MatrixTypeNested,UpLo>(m_matrix, perm);
+ return SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode>(m_matrix, perm);
}
-
- template<typename SrcMatrixType,int SrcUpLo>
- SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcUpLo>& permutedMatrix)
+
+ template<typename SrcMatrixType,int SrcMode>
+ SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcMode>& permutedMatrix)
{
permutedMatrix.evalTo(*this);
return *this;
}
-
SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src)
{
PermutationMatrix<Dynamic> pnull;
return *this = src.twistedBy(pnull);
}
- template<typename SrcMatrixType,unsigned int SrcUpLo>
- SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcUpLo>& src)
+ template<typename SrcMatrixType,unsigned int SrcMode>
+ SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcMode>& src)
{
PermutationMatrix<Dynamic> pnull;
return *this = src.twistedBy(pnull);
}
-
- // const SparseLLT<PlainObject, UpLo> llt() const;
- // const SparseLDLT<PlainObject, UpLo> ldlt() const;
-
protected:
typename MatrixType::Nested m_matrix;
- mutable VectorI m_countPerRow;
- mutable VectorI m_countPerCol;
+ //mutable VectorI m_countPerRow;
+ //mutable VectorI m_countPerCol;
};
/***************************************************************************
@@ -177,15 +169,15 @@ template<typename MatrixType, unsigned int UpLo> class SparseSelfAdjointView
***************************************************************************/
template<typename Derived>
-template<unsigned int UpLo>
-const SparseSelfAdjointView<Derived, UpLo> SparseMatrixBase<Derived>::selfadjointView() const
+template<unsigned int Mode>
+const SparseSelfAdjointView<Derived, Mode> SparseMatrixBase<Derived>::selfadjointView() const
{
return derived();
}
template<typename Derived>
-template<unsigned int UpLo>
-SparseSelfAdjointView<Derived, UpLo> SparseMatrixBase<Derived>::selfadjointView()
+template<unsigned int Mode>
+SparseSelfAdjointView<Derived, Mode> SparseMatrixBase<Derived>::selfadjointView()
{
return derived();
}
@@ -194,16 +186,16 @@ SparseSelfAdjointView<Derived, UpLo> SparseMatrixBase<Derived>::selfadjointView(
* Implementation of SparseSelfAdjointView methods
***************************************************************************/
-template<typename MatrixType, unsigned int UpLo>
+template<typename MatrixType, unsigned int Mode>
template<typename DerivedU>
-SparseSelfAdjointView<MatrixType,UpLo>&
-SparseSelfAdjointView<MatrixType,UpLo>::rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha)
+SparseSelfAdjointView<MatrixType,Mode>&
+SparseSelfAdjointView<MatrixType,Mode>::rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha)
{
- SparseMatrix<Scalar,MatrixType::Flags&RowMajorBit?RowMajor:ColMajor> tmp = u * u.adjoint();
+ SparseMatrix<Scalar,(MatrixType::Flags&RowMajorBit)?RowMajor:ColMajor> tmp = u * u.adjoint();
if(alpha==Scalar(0))
- m_matrix.const_cast_derived() = tmp.template triangularView<UpLo>();
+ m_matrix.const_cast_derived() = tmp.template triangularView<Mode>();
else
- m_matrix.const_cast_derived() += alpha * tmp.template triangularView<UpLo>();
+ m_matrix.const_cast_derived() += alpha * tmp.template triangularView<Mode>();
return *this;
}
@@ -213,104 +205,154 @@ SparseSelfAdjointView<MatrixType,UpLo>::rankUpdate(const SparseMatrixBase<Derive
***************************************************************************/
namespace internal {
-template<typename Lhs, typename Rhs, int UpLo>
-struct traits<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo> >
- : traits<ProductBase<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo>, Lhs, Rhs> >
-{
- typedef Dense StorageKind;
-};
-}
-template<typename Lhs, typename Rhs, int UpLo>
-class SparseSelfAdjointTimeDenseProduct
- : public ProductBase<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo>, Lhs, Rhs>
+template<int Mode, typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType>
+inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
{
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(SparseSelfAdjointTimeDenseProduct)
-
- SparseSelfAdjointTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
- {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
+ EIGEN_ONLY_USED_FOR_DEBUG(alpha);
+ // TODO use alpha
+ eigen_assert(alpha==AlphaType(1) && "alpha != 1 is not implemented yet, sorry");
+
+ typedef typename evaluator<SparseLhsType>::type LhsEval;
+ typedef typename evaluator<SparseLhsType>::InnerIterator LhsIterator;
+ typedef typename SparseLhsType::Index Index;
+ typedef typename SparseLhsType::Scalar LhsScalar;
+
+ enum {
+ LhsIsRowMajor = (LhsEval::Flags&RowMajorBit)==RowMajorBit,
+ ProcessFirstHalf =
+ ((Mode&(Upper|Lower))==(Upper|Lower))
+ || ( (Mode&Upper) && !LhsIsRowMajor)
+ || ( (Mode&Lower) && LhsIsRowMajor),
+ ProcessSecondHalf = !ProcessFirstHalf
+ };
+
+ LhsEval lhsEval(lhs);
+
+ for (Index j=0; j<lhs.outerSize(); ++j)
+ {
+ LhsIterator i(lhsEval,j);
+ if (ProcessSecondHalf)
{
- EIGEN_ONLY_USED_FOR_DEBUG(alpha);
- // TODO use alpha
- eigen_assert(alpha==Scalar(1) && "alpha != 1 is not implemented yet, sorry");
- typedef typename internal::remove_all<Lhs>::type _Lhs;
- typedef typename _Lhs::InnerIterator LhsInnerIterator;
- enum {
- LhsIsRowMajor = (_Lhs::Flags&RowMajorBit)==RowMajorBit,
- ProcessFirstHalf =
- ((UpLo&(Upper|Lower))==(Upper|Lower))
- || ( (UpLo&Upper) && !LhsIsRowMajor)
- || ( (UpLo&Lower) && LhsIsRowMajor),
- ProcessSecondHalf = !ProcessFirstHalf
- };
- for (typename _Lhs::Index j=0; j<m_lhs.outerSize(); ++j)
+ while (i && i.index()<j) ++i;
+ if(i && i.index()==j)
{
- LhsInnerIterator i(m_lhs,j);
- if (ProcessSecondHalf)
- {
- while (i && i.index()<j) ++i;
- if(i && i.index()==j)
- {
- dest.row(j) += i.value() * m_rhs.row(j);
- ++i;
- }
- }
- for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i)
- {
- Index a = LhsIsRowMajor ? j : i.index();
- Index b = LhsIsRowMajor ? i.index() : j;
- typename Lhs::Scalar v = i.value();
- dest.row(a) += (v) * m_rhs.row(b);
- dest.row(b) += numext::conj(v) * m_rhs.row(a);
- }
- if (ProcessFirstHalf && i && (i.index()==j))
- dest.row(j) += i.value() * m_rhs.row(j);
+ res.row(j) += i.value() * rhs.row(j);
+ ++i;
}
}
+ for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i)
+ {
+ Index a = LhsIsRowMajor ? j : i.index();
+ Index b = LhsIsRowMajor ? i.index() : j;
+ LhsScalar v = i.value();
+ res.row(a) += (v) * rhs.row(b);
+ res.row(b) += numext::conj(v) * rhs.row(a);
+ }
+ if (ProcessFirstHalf && i && (i.index()==j))
+ res.row(j) += i.value() * rhs.row(j);
+ }
+}
+
+// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.>
+// in the future selfadjoint-ness should be defined by the expression traits
+// such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
+template<typename MatrixType, unsigned int Mode>
+struct evaluator_traits<SparseSelfAdjointView<MatrixType,Mode> >
+{
+ typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
+ typedef SparseSelfAdjointShape Shape;
+
+ static const int AssumeAliasing = 0;
+};
- private:
- SparseSelfAdjointTimeDenseProduct& operator=(const SparseSelfAdjointTimeDenseProduct&);
+template<typename LhsView, typename Rhs, int ProductType>
+struct generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType>
+{
+ template<typename Dest>
+ static void evalTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs)
+ {
+ typedef typename LhsView::_MatrixTypeNested Lhs;
+ typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
+ typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
+ LhsNested lhsNested(lhsView.matrix());
+ RhsNested rhsNested(rhs);
+
+ dst.setZero();
+ internal::sparse_selfadjoint_time_dense_product<LhsView::Mode>(lhsNested, rhsNested, dst, typename Dest::Scalar(1));
+ }
};
-namespace internal {
-template<typename Lhs, typename Rhs, int UpLo>
-struct traits<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo> >
- : traits<ProductBase<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo>, Lhs, Rhs> >
-{};
-}
+template<typename Lhs, typename RhsView, int ProductType>
+struct generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType>
+{
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView)
+ {
+ typedef typename RhsView::_MatrixTypeNested Rhs;
+ typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
+ typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
+ LhsNested lhsNested(lhs);
+ RhsNested rhsNested(rhsView.matrix());
+
+ dst.setZero();
+ // transpoe everything
+ Transpose<Dest> dstT(dst);
+ internal::sparse_selfadjoint_time_dense_product<RhsView::Mode>(rhsNested.transpose(), lhsNested.transpose(), dstT, typename Dest::Scalar(1));
+ }
+};
-template<typename Lhs, typename Rhs, int UpLo>
-class DenseTimeSparseSelfAdjointProduct
- : public ProductBase<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo>, Lhs, Rhs>
+// NOTE: these two overloads are needed to evaluate the sparse sefladjoint view into a full sparse matrix
+// TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore
+
+template<typename LhsView, typename Rhs, int ProductTag>
+struct product_evaluator<Product<LhsView, Rhs, DefaultProduct>, ProductTag, SparseSelfAdjointShape, SparseShape, typename traits<LhsView>::Scalar, typename traits<Rhs>::Scalar>
+ : public evaluator<typename Product<typename Rhs::PlainObject, Rhs, DefaultProduct>::PlainObject>::type
{
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(DenseTimeSparseSelfAdjointProduct)
+ typedef Product<LhsView, Rhs, DefaultProduct> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
- DenseTimeSparseSelfAdjointProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
- {}
+ product_evaluator(const XprType& xpr)
+ : m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ generic_product_impl<typename Rhs::PlainObject, Rhs, SparseShape, SparseShape, ProductTag>::evalTo(m_result, m_lhs, xpr.rhs());
+ }
+
+protected:
+ typename Rhs::PlainObject m_lhs;
+ PlainObject m_result;
+};
- template<typename Dest> void scaleAndAddTo(Dest& /*dest*/, const Scalar& /*alpha*/) const
- {
- // TODO
- }
+template<typename Lhs, typename RhsView, int ProductTag>
+struct product_evaluator<Product<Lhs, RhsView, DefaultProduct>, ProductTag, SparseShape, SparseSelfAdjointShape, typename traits<Lhs>::Scalar, typename traits<RhsView>::Scalar>
+ : public evaluator<typename Product<Lhs, typename Lhs::PlainObject, DefaultProduct>::PlainObject>::type
+{
+ typedef Product<Lhs, RhsView, DefaultProduct> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
- private:
- DenseTimeSparseSelfAdjointProduct& operator=(const DenseTimeSparseSelfAdjointProduct&);
+ product_evaluator(const XprType& xpr)
+ : m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ generic_product_impl<Lhs, typename Lhs::PlainObject, SparseShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), m_rhs);
+ }
+
+protected:
+ typename Lhs::PlainObject m_rhs;
+ PlainObject m_result;
};
+} // namespace internal
+
/***************************************************************************
* Implementation of symmetric copies and permutations
***************************************************************************/
namespace internal {
-
-template<typename MatrixType, int UpLo>
-struct traits<SparseSymmetricPermutationProduct<MatrixType,UpLo> > : traits<MatrixType> {
-};
-template<int UpLo,typename MatrixType,int DestOrder>
+template<int Mode,typename MatrixType,int DestOrder>
void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm)
{
typedef typename MatrixType::Index Index;
@@ -337,11 +379,11 @@ void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename Matri
Index r = it.row();
Index c = it.col();
Index ip = perm ? perm[i] : i;
- if(UpLo==(Upper|Lower))
+ if(Mode==(Upper|Lower))
count[StorageOrderMatch ? jp : ip]++;
else if(r==c)
count[ip]++;
- else if(( UpLo==Lower && r>c) || ( UpLo==Upper && r<c))
+ else if(( Mode==Lower && r>c) || ( Mode==Upper && r<c))
{
count[ip]++;
count[jp]++;
@@ -370,7 +412,7 @@ void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename Matri
Index jp = perm ? perm[j] : j;
Index ip = perm ? perm[i] : i;
- if(UpLo==(Upper|Lower))
+ if(Mode==(Upper|Lower))
{
Index k = count[StorageOrderMatch ? jp : ip]++;
dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp;
@@ -382,7 +424,7 @@ void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename Matri
dest.innerIndexPtr()[k] = ip;
dest.valuePtr()[k] = it.value();
}
- else if(( (UpLo&Lower)==Lower && r>c) || ( (UpLo&Upper)==Upper && r<c))
+ else if(( (Mode&Lower)==Lower && r>c) || ( (Mode&Upper)==Upper && r<c))
{
if(!StorageOrderMatch)
std::swap(ip,jp);
@@ -397,7 +439,7 @@ void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename Matri
}
}
-template<int _SrcUpLo,int _DstUpLo,typename MatrixType,int DstOrder>
+template<int _SrcMode,int _DstMode,typename MatrixType,int DstOrder>
void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm)
{
typedef typename MatrixType::Index Index;
@@ -407,8 +449,8 @@ void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixTyp
enum {
SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor,
StorageOrderMatch = int(SrcOrder) == int(DstOrder),
- DstUpLo = DstOrder==RowMajor ? (_DstUpLo==Upper ? Lower : Upper) : _DstUpLo,
- SrcUpLo = SrcOrder==RowMajor ? (_SrcUpLo==Upper ? Lower : Upper) : _SrcUpLo
+ DstMode = DstOrder==RowMajor ? (_DstMode==Upper ? Lower : Upper) : _DstMode,
+ SrcMode = SrcOrder==RowMajor ? (_SrcMode==Upper ? Lower : Upper) : _SrcMode
};
Index size = mat.rows();
@@ -421,11 +463,11 @@ void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixTyp
for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
{
Index i = it.index();
- if((int(SrcUpLo)==int(Lower) && i<j) || (int(SrcUpLo)==int(Upper) && i>j))
+ if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
continue;
Index ip = perm ? perm[i] : i;
- count[int(DstUpLo)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
+ count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
}
}
dest.outerIndexPtr()[0] = 0;
@@ -441,17 +483,17 @@ void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixTyp
for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
{
Index i = it.index();
- if((int(SrcUpLo)==int(Lower) && i<j) || (int(SrcUpLo)==int(Upper) && i>j))
+ if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
continue;
Index jp = perm ? perm[j] : j;
Index ip = perm? perm[i] : i;
- Index k = count[int(DstUpLo)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
- dest.innerIndexPtr()[k] = int(DstUpLo)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp);
+ Index k = count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
+ dest.innerIndexPtr()[k] = int(DstMode)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp);
if(!StorageOrderMatch) std::swap(ip,jp);
- if( ((int(DstUpLo)==int(Lower) && ip<jp) || (int(DstUpLo)==int(Upper) && ip>jp)))
+ if( ((int(DstMode)==int(Lower) && ip<jp) || (int(DstMode)==int(Upper) && ip>jp)))
dest.valuePtr()[k] = numext::conj(it.value());
else
dest.valuePtr()[k] = it.value();
@@ -461,9 +503,19 @@ void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixTyp
}
-template<typename MatrixType,int UpLo>
+// TODO implement twists in a more evaluator friendly fashion
+
+namespace internal {
+
+template<typename MatrixType, int Mode>
+struct traits<SparseSymmetricPermutationProduct<MatrixType,Mode> > : traits<MatrixType> {
+};
+
+}
+
+template<typename MatrixType,int Mode>
class SparseSymmetricPermutationProduct
- : public EigenBase<SparseSymmetricPermutationProduct<MatrixType,UpLo> >
+ : public EigenBase<SparseSymmetricPermutationProduct<MatrixType,Mode> >
{
public:
typedef typename MatrixType::Scalar Scalar;
@@ -485,15 +537,15 @@ class SparseSymmetricPermutationProduct
template<typename DestScalar, int Options, typename DstIndex>
void evalTo(SparseMatrix<DestScalar,Options,DstIndex>& _dest) const
{
-// internal::permute_symm_to_fullsymm<UpLo>(m_matrix,_dest,m_perm.indices().data());
+// internal::permute_symm_to_fullsymm<Mode>(m_matrix,_dest,m_perm.indices().data());
SparseMatrix<DestScalar,(Options&RowMajor)==RowMajor ? ColMajor : RowMajor, DstIndex> tmp;
- internal::permute_symm_to_fullsymm<UpLo>(m_matrix,tmp,m_perm.indices().data());
+ internal::permute_symm_to_fullsymm<Mode>(m_matrix,tmp,m_perm.indices().data());
_dest = tmp;
}
- template<typename DestType,unsigned int DestUpLo> void evalTo(SparseSelfAdjointView<DestType,DestUpLo>& dest) const
+ template<typename DestType,unsigned int DestMode> void evalTo(SparseSelfAdjointView<DestType,DestMode>& dest) const
{
- internal::permute_symm_to_symm<UpLo,DestUpLo>(m_matrix,dest.matrix(),m_perm.indices().data());
+ internal::permute_symm_to_symm<Mode,DestMode>(m_matrix,dest.matrix(),m_perm.indices().data());
}
protected:
diff --git a/Eigen/src/SparseCore/SparseSolverBase.h b/Eigen/src/SparseCore/SparseSolverBase.h
new file mode 100644
index 000000000..df4e2f017
--- /dev/null
+++ b/Eigen/src/SparseCore/SparseSolverBase.h
@@ -0,0 +1,110 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPARSESOLVERBASE_H
+#define EIGEN_SPARSESOLVERBASE_H
+
+namespace Eigen {
+
+namespace internal {
+
+ /** \internal
+ * Helper functions to solve with a sparse right-hand-side and result.
+ * The rhs is decomposed into small vertical panels which are solved through dense temporaries.
+ */
+template<typename Decomposition, typename Rhs, typename Dest>
+void solve_sparse_through_dense_panels(const Decomposition &dec, const Rhs& rhs, Dest &dest)
+{
+ EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
+ typedef typename Dest::Scalar DestScalar;
+ // we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix.
+ static const int NbColsAtOnce = 4;
+ int rhsCols = rhs.cols();
+ int size = rhs.rows();
+ // the temporary matrices do not need more columns than NbColsAtOnce:
+ int tmpCols = (std::min)(rhsCols, NbColsAtOnce);
+ Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmp(size,tmpCols);
+ Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmpX(size,tmpCols);
+ for(int k=0; k<rhsCols; k+=NbColsAtOnce)
+ {
+ int actualCols = std::min<int>(rhsCols-k, NbColsAtOnce);
+ tmp.leftCols(actualCols) = rhs.middleCols(k,actualCols);
+ tmpX.leftCols(actualCols) = dec.solve(tmp.leftCols(actualCols));
+ dest.middleCols(k,actualCols) = tmpX.leftCols(actualCols).sparseView();
+ }
+}
+
+} // end namespace internal
+
+/** \class SparseSolverBase
+ * \ingroup SparseCore_Module
+ * \brief A base class for sparse solvers
+ *
+ * \tparam Derived the actual type of the solver.
+ *
+ */
+template<typename Derived>
+class SparseSolverBase : internal::noncopyable
+{
+ public:
+
+ /** Default constructor */
+ SparseSolverBase()
+ : m_isInitialized(false)
+ {}
+
+ ~SparseSolverBase()
+ {}
+
+ Derived& derived() { return *static_cast<Derived*>(this); }
+ const Derived& derived() const { return *static_cast<const Derived*>(this); }
+
+ /** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A.
+ *
+ * \sa compute()
+ */
+ template<typename Rhs>
+ inline const Solve<Derived, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ eigen_assert(m_isInitialized && "Solver is not initialized.");
+ eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b");
+ return Solve<Derived, Rhs>(derived(), b.derived());
+ }
+
+ /** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A.
+ *
+ * \sa compute()
+ */
+ template<typename Rhs>
+ inline const Solve<Derived, Rhs>
+ solve(const SparseMatrixBase<Rhs>& b) const
+ {
+ eigen_assert(m_isInitialized && "Solver is not initialized.");
+ eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b");
+ return Solve<Derived, Rhs>(derived(), b.derived());
+ }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ /** \internal default implementation of solving with a sparse rhs */
+ template<typename Rhs,typename Dest>
+ void _solve_impl(const SparseMatrixBase<Rhs> &b, SparseMatrixBase<Dest> &dest) const
+ {
+ internal::solve_sparse_through_dense_panels(derived(), b.derived(), dest.derived());
+ }
+ #endif // EIGEN_PARSED_BY_DOXYGEN
+
+ protected:
+
+ mutable bool m_isInitialized;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPARSESOLVERBASE_H
diff --git a/Eigen/src/SparseCore/SparseSparseProductWithPruning.h b/Eigen/src/SparseCore/SparseSparseProductWithPruning.h
index fcc18f5c9..f291f8cef 100644
--- a/Eigen/src/SparseCore/SparseSparseProductWithPruning.h
+++ b/Eigen/src/SparseCore/SparseSparseProductWithPruning.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -46,6 +46,9 @@ static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& r
res.resize(cols, rows);
else
res.resize(rows, cols);
+
+ typename evaluator<Lhs>::type lhsEval(lhs);
+ typename evaluator<Rhs>::type rhsEval(rhs);
res.reserve(estimated_nnz_prod);
double ratioColRes = double(estimated_nnz_prod)/double(lhs.rows()*rhs.cols());
@@ -56,12 +59,12 @@ static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& r
// let's do a more accurate determination of the nnz ratio for the current column j of res
tempVector.init(ratioColRes);
tempVector.setZero();
- for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
+ for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt)
{
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
tempVector.restart();
Scalar x = rhsIt.value();
- for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
+ for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, rhsIt.index()); lhsIt; ++lhsIt)
{
tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
}
@@ -140,8 +143,53 @@ struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,R
}
};
-// NOTE the 2 others cases (col row *) must never occur since they are caught
-// by ProductReturnType which transforms it to (col col *) by evaluating rhs.
+template<typename Lhs, typename Rhs, typename ResultType>
+struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
+{
+ typedef typename ResultType::RealScalar RealScalar;
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
+ {
+ typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename Lhs::Index> RowMajorMatrixLhs;
+ RowMajorMatrixLhs rowLhs(lhs);
+ sparse_sparse_product_with_pruning_selector<RowMajorMatrixLhs,Rhs,ResultType,RowMajor,RowMajor>(rowLhs,rhs,res,tolerance);
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
+{
+ typedef typename ResultType::RealScalar RealScalar;
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
+ {
+ typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename Lhs::Index> RowMajorMatrixRhs;
+ RowMajorMatrixRhs rowRhs(rhs);
+ sparse_sparse_product_with_pruning_selector<Lhs,RowMajorMatrixRhs,ResultType,RowMajor,RowMajor,RowMajor>(lhs,rowRhs,res,tolerance);
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
+{
+ typedef typename ResultType::RealScalar RealScalar;
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
+ {
+ typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename Lhs::Index> ColMajorMatrixRhs;
+ ColMajorMatrixRhs colRhs(rhs);
+ internal::sparse_sparse_product_with_pruning_impl<Lhs,ColMajorMatrixRhs,ResultType>(lhs, colRhs, res, tolerance);
+ }
+};
+
+template<typename Lhs, typename Rhs, typename ResultType>
+struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
+{
+ typedef typename ResultType::RealScalar RealScalar;
+ static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
+ {
+ typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename Lhs::Index> ColMajorMatrixLhs;
+ ColMajorMatrixLhs colLhs(lhs);
+ internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrixLhs,Rhs,ResultType>(colLhs, rhs, res, tolerance);
+ }
+};
} // end namespace internal
diff --git a/Eigen/src/SparseCore/SparseTranspose.h b/Eigen/src/SparseCore/SparseTranspose.h
index 7c300ee8d..fae7cae97 100644
--- a/Eigen/src/SparseCore/SparseTranspose.h
+++ b/Eigen/src/SparseCore/SparseTranspose.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -12,52 +12,64 @@
namespace Eigen {
+// Implement nonZeros() for transpose. I'm not sure that's the best approach for that.
+// Perhaps it should be implemented in Transpose<> itself.
template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>
: public SparseMatrixBase<Transpose<MatrixType> >
{
- typedef typename internal::remove_all<typename MatrixType::Nested>::type _MatrixTypeNested;
+ protected:
+ typedef SparseMatrixBase<Transpose<MatrixType> > Base;
public:
-
- EIGEN_SPARSE_PUBLIC_INTERFACE(Transpose<MatrixType> )
-
- class InnerIterator;
- class ReverseInnerIterator;
-
- inline Index nonZeros() const { return derived().nestedExpression().nonZeros(); }
+ inline typename MatrixType::Index nonZeros() const { return Base::derived().nestedExpression().nonZeros(); }
};
-// NOTE: VC10 trigger an ICE if don't put typename TransposeImpl<MatrixType,Sparse>:: in front of Index,
-// a typedef typename TransposeImpl<MatrixType,Sparse>::Index Index;
-// does not fix the issue.
-// An alternative is to define the nested class in the parent class itself.
-template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::InnerIterator
- : public _MatrixTypeNested::InnerIterator
+namespace internal {
+
+template<typename ArgType>
+struct unary_evaluator<Transpose<ArgType>, IteratorBased>
+ : public evaluator_base<Transpose<ArgType> >
{
- typedef typename _MatrixTypeNested::InnerIterator Base;
- typedef typename TransposeImpl::Index Index;
+ typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
+ typedef typename evaluator<ArgType>::ReverseInnerIterator EvalReverseIterator;
public:
+ typedef Transpose<ArgType> XprType;
+ typedef typename XprType::Index Index;
- EIGEN_STRONG_INLINE InnerIterator(const TransposeImpl& trans, typename TransposeImpl<MatrixType,Sparse>::Index outer)
- : Base(trans.derived().nestedExpression(), outer)
- {}
- Index row() const { return Base::col(); }
- Index col() const { return Base::row(); }
-};
-
-template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::ReverseInnerIterator
- : public _MatrixTypeNested::ReverseInnerIterator
-{
- typedef typename _MatrixTypeNested::ReverseInnerIterator Base;
- typedef typename TransposeImpl::Index Index;
- public:
+ class InnerIterator : public EvalIterator
+ {
+ public:
+ EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& unaryOp, typename XprType::Index outer)
+ : EvalIterator(unaryOp.m_argImpl,outer)
+ {}
+
+ Index row() const { return EvalIterator::col(); }
+ Index col() const { return EvalIterator::row(); }
+ };
+
+ class ReverseInnerIterator : public EvalReverseIterator
+ {
+ public:
+ EIGEN_STRONG_INLINE ReverseInnerIterator(const unary_evaluator& unaryOp, typename XprType::Index outer)
+ : EvalReverseIterator(unaryOp.m_argImpl,outer)
+ {}
+
+ Index row() const { return EvalReverseIterator::col(); }
+ Index col() const { return EvalReverseIterator::row(); }
+ };
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+ Flags = XprType::Flags
+ };
+
+ unary_evaluator(const XprType& op) :m_argImpl(op.nestedExpression()) {}
- EIGEN_STRONG_INLINE ReverseInnerIterator(const TransposeImpl& xpr, typename TransposeImpl<MatrixType,Sparse>::Index outer)
- : Base(xpr.derived().nestedExpression(), outer)
- {}
- Index row() const { return Base::col(); }
- Index col() const { return Base::row(); }
+ protected:
+ typename evaluator<ArgType>::nestedType m_argImpl;
};
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_SPARSETRANSPOSE_H
diff --git a/Eigen/src/SparseCore/SparseTriangularView.h b/Eigen/src/SparseCore/SparseTriangularView.h
index 333127b78..744c3d730 100644
--- a/Eigen/src/SparseCore/SparseTriangularView.h
+++ b/Eigen/src/SparseCore/SparseTriangularView.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
@@ -13,17 +13,8 @@
namespace Eigen {
-namespace internal {
-
-template<typename MatrixType, int Mode>
-struct traits<SparseTriangularView<MatrixType,Mode> >
-: public traits<MatrixType>
-{};
-
-} // namespace internal
-
-template<typename MatrixType, int Mode> class SparseTriangularView
- : public SparseMatrixBase<SparseTriangularView<MatrixType,Mode> >
+template<typename MatrixType, unsigned int Mode> class TriangularViewImpl<MatrixType,Mode,Sparse>
+ : public SparseMatrixBase<TriangularView<MatrixType,Mode> >
{
enum { SkipFirst = ((Mode&Lower) && !(MatrixType::Flags&RowMajorBit))
|| ((Mode&Upper) && (MatrixType::Flags&RowMajorBit)),
@@ -31,46 +22,46 @@ template<typename MatrixType, int Mode> class SparseTriangularView
SkipDiag = (Mode&ZeroDiag) ? 1 : 0,
HasUnitDiag = (Mode&UnitDiag) ? 1 : 0
};
+
+ typedef TriangularView<MatrixType,Mode> TriangularViewType;
+
+protected:
+ // dummy solve function to make TriangularView happy.
+ void solve() const;
public:
- EIGEN_SPARSE_PUBLIC_INTERFACE(SparseTriangularView)
-
+ EIGEN_SPARSE_PUBLIC_INTERFACE(TriangularViewType)
+
class InnerIterator;
class ReverseInnerIterator;
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
-
typedef typename MatrixType::Nested MatrixTypeNested;
typedef typename internal::remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef;
typedef typename internal::remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
- inline SparseTriangularView(const MatrixType& matrix) : m_matrix(matrix) {}
-
- /** \internal */
- inline const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
-
- template<typename OtherDerived>
- typename internal::plain_matrix_type_column_major<OtherDerived>::type
- solve(const MatrixBase<OtherDerived>& other) const;
+ template<typename RhsType, typename DstType>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE void _solve_impl(const RhsType &rhs, DstType &dst) const {
+ if(!(internal::is_same<RhsType,DstType>::value && internal::extract_data(dst) == internal::extract_data(rhs)))
+ dst = rhs;
+ this->solveInPlace(dst);
+ }
template<typename OtherDerived> void solveInPlace(MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived> void solveInPlace(SparseMatrixBase<OtherDerived>& other) const;
-
- protected:
- MatrixTypeNested m_matrix;
+
};
-template<typename MatrixType, int Mode>
-class SparseTriangularView<MatrixType,Mode>::InnerIterator : public MatrixTypeNestedCleaned::InnerIterator
+template<typename MatrixType, unsigned int Mode>
+class TriangularViewImpl<MatrixType,Mode,Sparse>::InnerIterator : public MatrixTypeNestedCleaned::InnerIterator
{
typedef typename MatrixTypeNestedCleaned::InnerIterator Base;
- typedef typename SparseTriangularView::Index Index;
+ typedef typename TriangularViewType::Index Index;
public:
- EIGEN_STRONG_INLINE InnerIterator(const SparseTriangularView& view, Index outer)
- : Base(view.nestedExpression(), outer), m_returnOne(false)
+ EIGEN_STRONG_INLINE InnerIterator(const TriangularViewImpl& view, Index outer)
+ : Base(view.derived().nestedExpression(), outer), m_returnOne(false)
{
if(SkipFirst)
{
@@ -132,15 +123,15 @@ class SparseTriangularView<MatrixType,Mode>::InnerIterator : public MatrixTypeNe
bool m_returnOne;
};
-template<typename MatrixType, int Mode>
-class SparseTriangularView<MatrixType,Mode>::ReverseInnerIterator : public MatrixTypeNestedCleaned::ReverseInnerIterator
+template<typename MatrixType, unsigned int Mode>
+class TriangularViewImpl<MatrixType,Mode,Sparse>::ReverseInnerIterator : public MatrixTypeNestedCleaned::ReverseInnerIterator
{
typedef typename MatrixTypeNestedCleaned::ReverseInnerIterator Base;
- typedef typename SparseTriangularView::Index Index;
+ typedef typename TriangularViewImpl::Index Index;
public:
- EIGEN_STRONG_INLINE ReverseInnerIterator(const SparseTriangularView& view, Index outer)
- : Base(view.nestedExpression(), outer)
+ EIGEN_STRONG_INLINE ReverseInnerIterator(const TriangularViewType& view, Index outer)
+ : Base(view.derived().nestedExpression(), outer)
{
eigen_assert((!HasUnitDiag) && "ReverseInnerIterator does not support yet triangular views with a unit diagonal");
if(SkipLast) {
@@ -166,9 +157,116 @@ class SparseTriangularView<MatrixType,Mode>::ReverseInnerIterator : public Matri
}
};
+namespace internal {
+
+template<typename ArgType, unsigned int Mode>
+struct unary_evaluator<TriangularView<ArgType,Mode>, IteratorBased>
+ : evaluator_base<TriangularView<ArgType,Mode> >
+{
+ typedef TriangularView<ArgType,Mode> XprType;
+
+protected:
+
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::Index Index;
+ typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
+
+ enum { SkipFirst = ((Mode&Lower) && !(ArgType::Flags&RowMajorBit))
+ || ((Mode&Upper) && (ArgType::Flags&RowMajorBit)),
+ SkipLast = !SkipFirst,
+ SkipDiag = (Mode&ZeroDiag) ? 1 : 0,
+ HasUnitDiag = (Mode&UnitDiag) ? 1 : 0
+ };
+
+public:
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+ Flags = XprType::Flags
+ };
+
+ unary_evaluator(const XprType &xpr) : m_argImpl(xpr.nestedExpression()) {}
+
+ class InnerIterator : public EvalIterator
+ {
+ typedef EvalIterator Base;
+ public:
+
+ EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& xprEval, Index outer)
+ : Base(xprEval.m_argImpl,outer), m_returnOne(false)
+ {
+ if(SkipFirst)
+ {
+ while((*this) && ((HasUnitDiag||SkipDiag) ? this->index()<=outer : this->index()<outer))
+ Base::operator++();
+ if(HasUnitDiag)
+ m_returnOne = true;
+ }
+ else if(HasUnitDiag && ((!Base::operator bool()) || Base::index()>=Base::outer()))
+ {
+ if((!SkipFirst) && Base::operator bool())
+ Base::operator++();
+ m_returnOne = true;
+ }
+ }
+
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
+ {
+ if(HasUnitDiag && m_returnOne)
+ m_returnOne = false;
+ else
+ {
+ Base::operator++();
+ if(HasUnitDiag && (!SkipFirst) && ((!Base::operator bool()) || Base::index()>=Base::outer()))
+ {
+ if((!SkipFirst) && Base::operator bool())
+ Base::operator++();
+ m_returnOne = true;
+ }
+ }
+ return *this;
+ }
+
+ EIGEN_STRONG_INLINE operator bool() const
+ {
+ if(HasUnitDiag && m_returnOne)
+ return true;
+ if(SkipFirst) return Base::operator bool();
+ else
+ {
+ if (SkipDiag) return (Base::operator bool() && this->index() < this->outer());
+ else return (Base::operator bool() && this->index() <= this->outer());
+ }
+ }
+
+// inline Index row() const { return (ArgType::Flags&RowMajorBit ? Base::outer() : this->index()); }
+// inline Index col() const { return (ArgType::Flags&RowMajorBit ? this->index() : Base::outer()); }
+ inline Index index() const
+ {
+ if(HasUnitDiag && m_returnOne) return Base::outer();
+ else return Base::index();
+ }
+ inline Scalar value() const
+ {
+ if(HasUnitDiag && m_returnOne) return Scalar(1);
+ else return Base::value();
+ }
+
+ protected:
+ bool m_returnOne;
+ private:
+ Scalar& valueRef();
+ };
+
+protected:
+ typename evaluator<ArgType>::type m_argImpl;
+};
+
+} // end namespace internal
+
template<typename Derived>
template<int Mode>
-inline const SparseTriangularView<Derived, Mode>
+inline const TriangularView<Derived, Mode>
SparseMatrixBase<Derived>::triangularView() const
{
return derived();
diff --git a/Eigen/src/SparseCore/SparseUtil.h b/Eigen/src/SparseCore/SparseUtil.h
index 02c19d18f..8de227b88 100644
--- a/Eigen/src/SparseCore/SparseUtil.h
+++ b/Eigen/src/SparseCore/SparseUtil.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -52,13 +52,12 @@ EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, /=)
typedef typename Eigen::internal::traits<Derived >::Index Index; \
enum { RowsAtCompileTime = Eigen::internal::traits<Derived >::RowsAtCompileTime, \
ColsAtCompileTime = Eigen::internal::traits<Derived >::ColsAtCompileTime, \
- Flags = Eigen::internal::traits<Derived >::Flags, \
- CoeffReadCost = Eigen::internal::traits<Derived >::CoeffReadCost, \
+ Flags = Eigen::internal::traits<Derived>::Flags, \
SizeAtCompileTime = Base::SizeAtCompileTime, \
IsVectorAtCompileTime = Base::IsVectorAtCompileTime }; \
using Base::derived; \
using Base::const_cast_derived;
-
+
#define EIGEN_SPARSE_PUBLIC_INTERFACE(Derived) \
_EIGEN_SPARSE_PUBLIC_INTERFACE(Derived, Eigen::SparseMatrixBase<Derived >)
@@ -73,7 +72,6 @@ template<typename _Scalar, int _Flags = 0, typename _Index = int> class Dynamic
template<typename _Scalar, int _Flags = 0, typename _Index = int> class SparseVector;
template<typename _Scalar, int _Flags = 0, typename _Index = int> class MappedSparseMatrix;
-template<typename MatrixType, int Mode> class SparseTriangularView;
template<typename MatrixType, unsigned int UpLo> class SparseSelfAdjointView;
template<typename Lhs, typename Rhs> class SparseDiagonalProduct;
template<typename MatrixType> class SparseView;
@@ -131,11 +129,29 @@ template<typename T> struct plain_matrix_type<T,Sparse>
{
typedef typename traits<T>::Scalar _Scalar;
typedef typename traits<T>::Index _Index;
- enum { _Options = ((traits<T>::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor };
+ enum { _Options = ((evaluator<T>::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor };
public:
typedef SparseMatrix<_Scalar, _Options, _Index> type;
};
+template<typename Decomposition, typename RhsType>
+struct solve_traits<Decomposition,RhsType,Sparse>
+{
+ typedef typename sparse_eval<RhsType, RhsType::RowsAtCompileTime, RhsType::ColsAtCompileTime>::type PlainObject;
+};
+
+template<typename Derived>
+struct generic_xpr_base<Derived, MatrixXpr, Sparse>
+{
+ typedef SparseMatrixBase<Derived> type;
+};
+
+struct SparseTriangularShape { static std::string debugName() { return "SparseTriangularShape"; } };
+struct SparseSelfAdjointShape { static std::string debugName() { return "SparseSelfAdjointShape"; } };
+
+template<> struct glue_shapes<SparseShape,SelfAdjointShape> { typedef SparseSelfAdjointShape type; };
+template<> struct glue_shapes<SparseShape,TriangularShape > { typedef SparseTriangularShape type; };
+
} // end namespace internal
/** \ingroup SparseCore_Module
diff --git a/Eigen/src/SparseCore/SparseVector.h b/Eigen/src/SparseCore/SparseVector.h
index 0b1b389ce..c9f9d61e9 100644
--- a/Eigen/src/SparseCore/SparseVector.h
+++ b/Eigen/src/SparseCore/SparseVector.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -422,11 +422,34 @@ class SparseVector<Scalar,_Options,_Index>::ReverseInnerIterator
namespace internal {
+template<typename _Scalar, int _Options, typename _Index>
+struct evaluator<SparseVector<_Scalar,_Options,_Index> >
+ : evaluator_base<SparseVector<_Scalar,_Options,_Index> >
+{
+ typedef SparseVector<_Scalar,_Options,_Index> SparseVectorType;
+ typedef typename SparseVectorType::InnerIterator InnerIterator;
+ typedef typename SparseVectorType::ReverseInnerIterator ReverseInnerIterator;
+
+ enum {
+ CoeffReadCost = NumTraits<_Scalar>::ReadCost,
+ Flags = SparseVectorType::Flags
+ };
+
+ evaluator(const SparseVectorType &mat) : m_matrix(mat) {}
+
+ operator SparseVectorType&() { return m_matrix.const_cast_derived(); }
+ operator const SparseVectorType&() const { return m_matrix; }
+
+ const SparseVectorType &m_matrix;
+};
+
template< typename Dest, typename Src>
struct sparse_vector_assign_selector<Dest,Src,SVA_Inner> {
static void run(Dest& dst, const Src& src) {
eigen_internal_assert(src.innerSize()==src.size());
- for(typename Src::InnerIterator it(src, 0); it; ++it)
+ typedef typename internal::evaluator<Src>::type SrcEvaluatorType;
+ SrcEvaluatorType srcEval(src);
+ for(typename SrcEvaluatorType::InnerIterator it(srcEval, 0); it; ++it)
dst.insert(it.index()) = it.value();
}
};
@@ -435,9 +458,11 @@ template< typename Dest, typename Src>
struct sparse_vector_assign_selector<Dest,Src,SVA_Outer> {
static void run(Dest& dst, const Src& src) {
eigen_internal_assert(src.outerSize()==src.size());
+ typedef typename internal::evaluator<Src>::type SrcEvaluatorType;
+ SrcEvaluatorType srcEval(src);
for(typename Dest::Index i=0; i<src.size(); ++i)
{
- typename Src::InnerIterator it(src, i);
+ typename SrcEvaluatorType::InnerIterator it(srcEval, i);
if(it)
dst.insert(i) = it.value();
}
diff --git a/Eigen/src/SparseCore/SparseView.h b/Eigen/src/SparseCore/SparseView.h
index fd8450463..d10cc5a35 100644
--- a/Eigen/src/SparseCore/SparseView.h
+++ b/Eigen/src/SparseCore/SparseView.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Daniel Lowengrub <lowdanie@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
@@ -34,64 +34,186 @@ class SparseView : public SparseMatrixBase<SparseView<MatrixType> >
typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
public:
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseView)
+ typedef typename internal::remove_all<MatrixType>::type NestedExpression;
SparseView(const MatrixType& mat, const Scalar& m_reference = Scalar(0),
- typename NumTraits<Scalar>::Real m_epsilon = NumTraits<Scalar>::dummy_precision()) :
+ RealScalar m_epsilon = NumTraits<Scalar>::dummy_precision()) :
m_matrix(mat), m_reference(m_reference), m_epsilon(m_epsilon) {}
- class InnerIterator;
-
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
inline Index innerSize() const { return m_matrix.innerSize(); }
inline Index outerSize() const { return m_matrix.outerSize(); }
-
+
+ /** \returns the nested expression */
+ const typename internal::remove_all<MatrixTypeNested>::type&
+ nestedExpression() const { return m_matrix; }
+
+ Scalar reference() const { return m_reference; }
+ RealScalar epsilon() const { return m_epsilon; }
+
protected:
MatrixTypeNested m_matrix;
Scalar m_reference;
- typename NumTraits<Scalar>::Real m_epsilon;
+ RealScalar m_epsilon;
};
-template<typename MatrixType>
-class SparseView<MatrixType>::InnerIterator : public _MatrixTypeNested::InnerIterator
-{
- typedef typename SparseView::Index Index;
-public:
- typedef typename _MatrixTypeNested::InnerIterator IterBase;
- InnerIterator(const SparseView& view, Index outer) :
- IterBase(view.m_matrix, outer), m_view(view)
- {
- incrementToNonZero();
- }
-
- EIGEN_STRONG_INLINE InnerIterator& operator++()
- {
- IterBase::operator++();
- incrementToNonZero();
- return *this;
- }
-
- using IterBase::value;
+namespace internal {
-protected:
- const SparseView& m_view;
+// TODO find a way to unify the two following variants
+// This is tricky because implementing an inner iterator on top of an IndexBased evaluator is
+// not easy because the evaluators do not expose the sizes of the underlying expression.
+
+template<typename ArgType>
+struct unary_evaluator<SparseView<ArgType>, IteratorBased>
+ : public evaluator_base<SparseView<ArgType> >
+{
+ typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
+ public:
+ typedef SparseView<ArgType> XprType;
+
+ class InnerIterator : public EvalIterator
+ {
+ typedef typename XprType::Scalar Scalar;
+ public:
+
+ EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, typename XprType::Index outer)
+ : EvalIterator(sve.m_argImpl,outer), m_view(sve.m_view)
+ {
+ incrementToNonZero();
+ }
+
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
+ {
+ EvalIterator::operator++();
+ incrementToNonZero();
+ return *this;
+ }
+
+ using EvalIterator::value;
+
+ protected:
+ const XprType &m_view;
+
+ private:
+ void incrementToNonZero()
+ {
+ while((bool(*this)) && internal::isMuchSmallerThan(value(), m_view.reference(), m_view.epsilon()))
+ {
+ EvalIterator::operator++();
+ }
+ }
+ };
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+ Flags = XprType::Flags
+ };
+
+ unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {}
+
+ protected:
+ typename evaluator<ArgType>::nestedType m_argImpl;
+ const XprType &m_view;
+};
-private:
- void incrementToNonZero()
- {
- while((bool(*this)) && internal::isMuchSmallerThan(value(), m_view.m_reference, m_view.m_epsilon))
+template<typename ArgType>
+struct unary_evaluator<SparseView<ArgType>, IndexBased>
+ : public evaluator_base<SparseView<ArgType> >
+{
+ public:
+ typedef SparseView<ArgType> XprType;
+ protected:
+ enum { IsRowMajor = (XprType::Flags&RowMajorBit)==RowMajorBit };
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ public:
+
+ class InnerIterator
{
- IterBase::operator++();
- }
- }
+ public:
+
+ EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, typename XprType::Index outer)
+ : m_sve(sve), m_inner(0), m_outer(outer), m_end(sve.m_view.innerSize())
+ {
+ incrementToNonZero();
+ }
+
+ EIGEN_STRONG_INLINE InnerIterator& operator++()
+ {
+ m_inner++;
+ incrementToNonZero();
+ return *this;
+ }
+
+ EIGEN_STRONG_INLINE Scalar value() const
+ {
+ return (IsRowMajor) ? m_sve.m_argImpl.coeff(m_outer, m_inner)
+ : m_sve.m_argImpl.coeff(m_inner, m_outer);
+ }
+
+ EIGEN_STRONG_INLINE Index index() const { return m_inner; }
+ inline Index row() const { return IsRowMajor ? m_outer : index(); }
+ inline Index col() const { return IsRowMajor ? index() : m_outer; }
+
+ EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; }
+
+ protected:
+ const unary_evaluator &m_sve;
+ Index m_inner;
+ const Index m_outer;
+ const Index m_end;
+
+ private:
+ void incrementToNonZero()
+ {
+ while((bool(*this)) && internal::isMuchSmallerThan(value(), m_sve.m_view.reference(), m_sve.m_view.epsilon()))
+ {
+ m_inner++;
+ }
+ }
+ };
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+ Flags = XprType::Flags
+ };
+
+ unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {}
+
+ protected:
+ typename evaluator<ArgType>::nestedType m_argImpl;
+ const XprType &m_view;
};
+} // end namespace internal
+
+template<typename Derived>
+const SparseView<Derived> MatrixBase<Derived>::sparseView(const Scalar& reference,
+ const typename NumTraits<Scalar>::Real& epsilon) const
+{
+ return SparseView<Derived>(derived(), reference, epsilon);
+}
+
+/** \returns an expression of \c *this with values smaller than
+ * \a reference * \a epsilon are removed.
+ *
+ * This method is typically used in conjunction with the product of two sparse matrices
+ * to automatically prune the smallest values as follows:
+ * \code
+ * C = (A*B).pruned(); // suppress numerical zeros (exact)
+ * C = (A*B).pruned(ref);
+ * C = (A*B).pruned(ref,epsilon);
+ * \endcode
+ * where \c ref is a meaningful non zero reference value.
+ * */
template<typename Derived>
-const SparseView<Derived> MatrixBase<Derived>::sparseView(const Scalar& m_reference,
- const typename NumTraits<Scalar>::Real& m_epsilon) const
+const SparseView<Derived>
+SparseMatrixBase<Derived>::pruned(const Scalar& reference,
+ const RealScalar& epsilon) const
{
- return SparseView<Derived>(derived(), m_reference, m_epsilon);
+ return SparseView<Derived>(derived(), reference, epsilon);
}
} // end namespace Eigen
diff --git a/Eigen/src/SparseCore/TriangularSolver.h b/Eigen/src/SparseCore/TriangularSolver.h
index dd55522a7..98062e9c6 100644
--- a/Eigen/src/SparseCore/TriangularSolver.h
+++ b/Eigen/src/SparseCore/TriangularSolver.h
@@ -29,8 +29,11 @@ struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Lower,RowMajor>
{
typedef typename Rhs::Scalar Scalar;
typedef typename Lhs::Index Index;
+ typedef typename evaluator<Lhs>::type LhsEval;
+ typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
static void run(const Lhs& lhs, Rhs& other)
{
+ LhsEval lhsEval(lhs);
for(Index col=0 ; col<other.cols() ; ++col)
{
for(Index i=0; i<lhs.rows(); ++i)
@@ -38,7 +41,7 @@ struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Lower,RowMajor>
Scalar tmp = other.coeff(i,col);
Scalar lastVal(0);
Index lastIndex = 0;
- for(typename Lhs::InnerIterator it(lhs, i); it; ++it)
+ for(LhsIterator it(lhsEval, i); it; ++it)
{
lastVal = it.value();
lastIndex = it.index();
@@ -64,15 +67,18 @@ struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,RowMajor>
{
typedef typename Rhs::Scalar Scalar;
typedef typename Lhs::Index Index;
+ typedef typename evaluator<Lhs>::type LhsEval;
+ typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
static void run(const Lhs& lhs, Rhs& other)
{
+ LhsEval lhsEval(lhs);
for(Index col=0 ; col<other.cols() ; ++col)
{
for(Index i=lhs.rows()-1 ; i>=0 ; --i)
{
Scalar tmp = other.coeff(i,col);
Scalar l_ii = 0;
- typename Lhs::InnerIterator it(lhs, i);
+ LhsIterator it(lhsEval, i);
while(it && it.index()<i)
++it;
if(!(Mode & UnitDiag))
@@ -88,10 +94,8 @@ struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,RowMajor>
tmp -= it.value() * other.coeff(it.index(),col);
}
- if (Mode & UnitDiag)
- other.coeffRef(i,col) = tmp;
- else
- other.coeffRef(i,col) = tmp/l_ii;
+ if (Mode & UnitDiag) other.coeffRef(i,col) = tmp;
+ else other.coeffRef(i,col) = tmp/l_ii;
}
}
}
@@ -103,8 +107,11 @@ struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Lower,ColMajor>
{
typedef typename Rhs::Scalar Scalar;
typedef typename Lhs::Index Index;
+ typedef typename evaluator<Lhs>::type LhsEval;
+ typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
static void run(const Lhs& lhs, Rhs& other)
{
+ LhsEval lhsEval(lhs);
for(Index col=0 ; col<other.cols() ; ++col)
{
for(Index i=0; i<lhs.cols(); ++i)
@@ -112,7 +119,7 @@ struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Lower,ColMajor>
Scalar& tmp = other.coeffRef(i,col);
if (tmp!=Scalar(0)) // optimization when other is actually sparse
{
- typename Lhs::InnerIterator it(lhs, i);
+ LhsIterator it(lhsEval, i);
while(it && it.index()<i)
++it;
if(!(Mode & UnitDiag))
@@ -136,8 +143,11 @@ struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,ColMajor>
{
typedef typename Rhs::Scalar Scalar;
typedef typename Lhs::Index Index;
+ typedef typename evaluator<Lhs>::type LhsEval;
+ typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
static void run(const Lhs& lhs, Rhs& other)
{
+ LhsEval lhsEval(lhs);
for(Index col=0 ; col<other.cols() ; ++col)
{
for(Index i=lhs.cols()-1; i>=0; --i)
@@ -148,13 +158,13 @@ struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,ColMajor>
if(!(Mode & UnitDiag))
{
// TODO replace this by a binary search. make sure the binary search is safe for partially sorted elements
- typename Lhs::ReverseInnerIterator it(lhs, i);
+ LhsIterator it(lhsEval, i);
while(it && it.index()!=i)
- --it;
+ ++it;
eigen_assert(it && it.index()==i);
other.coeffRef(i,col) /= it.value();
}
- typename Lhs::InnerIterator it(lhs, i);
+ LhsIterator it(lhsEval, i);
for(; it && it.index()<i; ++it)
other.coeffRef(it.index(), col) -= tmp * it.value();
}
@@ -165,11 +175,11 @@ struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,ColMajor>
} // end namespace internal
-template<typename ExpressionType,int Mode>
+template<typename ExpressionType,unsigned int Mode>
template<typename OtherDerived>
-void SparseTriangularView<ExpressionType,Mode>::solveInPlace(MatrixBase<OtherDerived>& other) const
+void TriangularViewImpl<ExpressionType,Mode,Sparse>::solveInPlace(MatrixBase<OtherDerived>& other) const
{
- eigen_assert(m_matrix.cols() == m_matrix.rows() && m_matrix.cols() == other.rows());
+ eigen_assert(derived().cols() == derived().rows() && derived().cols() == other.rows());
eigen_assert((!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower)));
enum { copy = internal::traits<OtherDerived>::Flags & RowMajorBit };
@@ -178,22 +188,12 @@ void SparseTriangularView<ExpressionType,Mode>::solveInPlace(MatrixBase<OtherDer
typename internal::plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::type OtherCopy;
OtherCopy otherCopy(other.derived());
- internal::sparse_solve_triangular_selector<ExpressionType, typename internal::remove_reference<OtherCopy>::type, Mode>::run(m_matrix, otherCopy);
+ internal::sparse_solve_triangular_selector<ExpressionType, typename internal::remove_reference<OtherCopy>::type, Mode>::run(derived().nestedExpression(), otherCopy);
if (copy)
other = otherCopy;
}
-template<typename ExpressionType,int Mode>
-template<typename OtherDerived>
-typename internal::plain_matrix_type_column_major<OtherDerived>::type
-SparseTriangularView<ExpressionType,Mode>::solve(const MatrixBase<OtherDerived>& other) const
-{
- typename internal::plain_matrix_type_column_major<OtherDerived>::type res(other);
- solveInPlace(res);
- return res;
-}
-
// pure sparse path
namespace internal {
@@ -290,11 +290,11 @@ struct sparse_solve_triangular_sparse_selector<Lhs,Rhs,Mode,UpLo,ColMajor>
} // end namespace internal
-template<typename ExpressionType,int Mode>
+template<typename ExpressionType,unsigned int Mode>
template<typename OtherDerived>
-void SparseTriangularView<ExpressionType,Mode>::solveInPlace(SparseMatrixBase<OtherDerived>& other) const
+void TriangularViewImpl<ExpressionType,Mode,Sparse>::solveInPlace(SparseMatrixBase<OtherDerived>& other) const
{
- eigen_assert(m_matrix.cols() == m_matrix.rows() && m_matrix.cols() == other.rows());
+ eigen_assert(derived().cols() == derived().rows() && derived().cols() == other.rows());
eigen_assert( (!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower)));
// enum { copy = internal::traits<OtherDerived>::Flags & RowMajorBit };
@@ -303,7 +303,7 @@ void SparseTriangularView<ExpressionType,Mode>::solveInPlace(SparseMatrixBase<Ot
// typename internal::plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::type OtherCopy;
// OtherCopy otherCopy(other.derived());
- internal::sparse_solve_triangular_sparse_selector<ExpressionType, OtherDerived, Mode>::run(m_matrix, other.derived());
+ internal::sparse_solve_triangular_sparse_selector<ExpressionType, OtherDerived, Mode>::run(derived().nestedExpression(), other.derived());
// if (copy)
// other = otherCopy;
diff --git a/Eigen/src/SparseLU/SparseLU.h b/Eigen/src/SparseLU/SparseLU.h
index 7a9aeec2d..14d7e713e 100644
--- a/Eigen/src/SparseLU/SparseLU.h
+++ b/Eigen/src/SparseLU/SparseLU.h
@@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
-// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -70,9 +70,14 @@ template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixURetu
* \sa \ref OrderingMethods_Module
*/
template <typename _MatrixType, typename _OrderingType>
-class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::Index>
+class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >, public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::Index>
{
+ protected:
+ typedef SparseSolverBase<SparseLU<_MatrixType,_OrderingType> > APIBase;
+ using APIBase::m_isInitialized;
public:
+ using APIBase::_solve_impl;
+
typedef _MatrixType MatrixType;
typedef _OrderingType OrderingType;
typedef typename MatrixType::Scalar Scalar;
@@ -86,11 +91,11 @@ class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typ
typedef internal::SparseLUImpl<Scalar, Index> Base;
public:
- SparseLU():m_isInitialized(true),m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
+ SparseLU():m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
{
initperfvalues();
}
- SparseLU(const MatrixType& matrix):m_isInitialized(true),m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
+ SparseLU(const MatrixType& matrix):m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
{
initperfvalues();
compute(matrix);
@@ -168,6 +173,7 @@ class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typ
m_diagpivotthresh = thresh;
}
+#ifdef EIGEN_PARSED_BY_DOXYGEN
/** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
*
* \warning the destination matrix X in X = this->solve(B) must be colmun-major.
@@ -175,26 +181,8 @@ class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typ
* \sa compute()
*/
template<typename Rhs>
- inline const internal::solve_retval<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const
- {
- eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
- eigen_assert(rows()==B.rows()
- && "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
- return internal::solve_retval<SparseLU, Rhs>(*this, B.derived());
- }
-
- /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<SparseLU, Rhs> solve(const SparseMatrixBase<Rhs>& B) const
- {
- eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
- eigen_assert(rows()==B.rows()
- && "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
- return internal::sparse_solve_retval<SparseLU, Rhs>(*this, B.derived());
- }
+ inline const Solve<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const;
+#endif // EIGEN_PARSED_BY_DOXYGEN
/** \brief Reports whether previous computation was successful.
*
@@ -219,7 +207,7 @@ class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typ
}
template<typename Rhs, typename Dest>
- bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
+ bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
{
Dest& X(X_base.derived());
eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
@@ -332,7 +320,6 @@ class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typ
// Variables
mutable ComputationInfo m_info;
- bool m_isInitialized;
bool m_factorizationIsOk;
bool m_analysisIsOk;
std::string m_lastError;
@@ -463,6 +450,8 @@ void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
typedef typename IndexVector::Scalar Index;
+ m_isInitialized = true;
+
// Apply the column permutation computed in analyzepattern()
// m_mat = matrix * m_perm_c.inverse();
@@ -728,35 +717,6 @@ struct SparseLUMatrixUReturnType : internal::no_assignment_operator
const MatrixUType& m_mapU;
};
-namespace internal {
-
-template<typename _MatrixType, typename Derived, typename Rhs>
-struct solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
- : solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
-{
- typedef SparseLU<_MatrixType,Derived> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-template<typename _MatrixType, typename Derived, typename Rhs>
-struct sparse_solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
- : sparse_solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
-{
- typedef SparseLU<_MatrixType,Derived> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- this->defaultEvalTo(dst);
- }
-};
-} // end namespace internal
-
} // End namespace Eigen
#endif
diff --git a/Eigen/src/SparseQR/SparseQR.h b/Eigen/src/SparseQR/SparseQR.h
index 002b4824b..6d85ea9be 100644
--- a/Eigen/src/SparseQR/SparseQR.h
+++ b/Eigen/src/SparseQR/SparseQR.h
@@ -62,9 +62,13 @@ namespace internal {
*
*/
template<typename _MatrixType, typename _OrderingType>
-class SparseQR
+class SparseQR : public SparseSolverBase<SparseQR<_MatrixType,_OrderingType> >
{
+ protected:
+ typedef SparseSolverBase<SparseQR<_MatrixType,_OrderingType> > Base;
+ using Base::m_isInitialized;
public:
+ using Base::_solve_impl;
typedef _MatrixType MatrixType;
typedef _OrderingType OrderingType;
typedef typename MatrixType::Scalar Scalar;
@@ -75,7 +79,7 @@ class SparseQR
typedef Matrix<Scalar, Dynamic, 1> ScalarVector;
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
public:
- SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
+ SparseQR () : m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
{ }
/** Construct a QR factorization of the matrix \a mat.
@@ -84,7 +88,7 @@ class SparseQR
*
* \sa compute()
*/
- SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
+ SparseQR(const MatrixType& mat) : m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
{
compute(mat);
}
@@ -162,7 +166,7 @@ class SparseQR
/** \internal */
template<typename Rhs, typename Dest>
- bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &dest) const
+ bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &dest) const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
@@ -178,7 +182,7 @@ class SparseQR
y.resize((std::max)(cols(),Index(y.rows())),y.cols());
y.topRows(rank) = this->matrixR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(b.topRows(rank));
y.bottomRows(y.rows()-rank).setZero();
-
+
// Apply the column permutation
if (m_perm_c.size()) dest = colsPermutation() * y.topRows(cols());
else dest = y.topRows(cols());
@@ -186,7 +190,6 @@ class SparseQR
m_info = Success;
return true;
}
-
/** Sets the threshold that is used to determine linearly dependent columns during the factorization.
*
@@ -204,18 +207,18 @@ class SparseQR
* \sa compute()
*/
template<typename Rhs>
- inline const internal::solve_retval<SparseQR, Rhs> solve(const MatrixBase<Rhs>& B) const
+ inline const Solve<SparseQR, Rhs> solve(const MatrixBase<Rhs>& B) const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
- return internal::solve_retval<SparseQR, Rhs>(*this, B.derived());
+ return Solve<SparseQR, Rhs>(*this, B.derived());
}
template<typename Rhs>
- inline const internal::sparse_solve_retval<SparseQR, Rhs> solve(const SparseMatrixBase<Rhs>& B) const
+ inline const Solve<SparseQR, Rhs> solve(const SparseMatrixBase<Rhs>& B) const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
- return internal::sparse_solve_retval<SparseQR, Rhs>(*this, B.derived());
+ return Solve<SparseQR, Rhs>(*this, B.derived());
}
/** \brief Reports whether previous computation was successful.
@@ -244,7 +247,6 @@ class SparseQR
protected:
- bool m_isInitialized;
bool m_analysisIsok;
bool m_factorizationIsok;
mutable ComputationInfo m_info;
@@ -282,9 +284,11 @@ template <typename MatrixType, typename OrderingType>
void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
{
eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR");
+ // Copy to a column major matrix if the input is rowmajor
+ typename internal::conditional<MatrixType::IsRowMajor,QRMatrixType,const MatrixType&>::type matCpy(mat);
// Compute the column fill reducing ordering
OrderingType ord;
- ord(mat, m_perm_c);
+ ord(matCpy, m_perm_c);
Index n = mat.cols();
Index m = mat.rows();
Index diagSize = (std::min)(m,n);
@@ -297,7 +301,7 @@ void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
// Compute the column elimination tree of the permuted matrix
m_outputPerm_c = m_perm_c.inverse();
- internal::coletree(mat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
+ internal::coletree(matCpy, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
m_isEtreeOk = true;
m_R.resize(m, n);
@@ -335,21 +339,35 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
m_R.setZero();
m_Q.setZero();
+ m_pmat = mat;
if(!m_isEtreeOk)
{
m_outputPerm_c = m_perm_c.inverse();
- internal::coletree(mat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
+ internal::coletree(m_pmat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
m_isEtreeOk = true;
}
-
- m_pmat = mat;
+
m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
+
// Apply the fill-in reducing permutation lazily:
- for (int i = 0; i < n; i++)
{
- Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i;
- m_pmat.outerIndexPtr()[p] = mat.outerIndexPtr()[i];
- m_pmat.innerNonZeroPtr()[p] = mat.outerIndexPtr()[i+1] - mat.outerIndexPtr()[i];
+ // If the input is row major, copy the original column indices,
+ // otherwise directly use the input matrix
+ //
+ IndexVector originalOuterIndicesCpy;
+ const Index *originalOuterIndices = mat.outerIndexPtr();
+ if(MatrixType::IsRowMajor)
+ {
+ originalOuterIndicesCpy = IndexVector::Map(m_pmat.outerIndexPtr(),n+1);
+ originalOuterIndices = originalOuterIndicesCpy.data();
+ }
+
+ for (int i = 0; i < n; i++)
+ {
+ Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i;
+ m_pmat.outerIndexPtr()[p] = originalOuterIndices[i];
+ m_pmat.innerNonZeroPtr()[p] = originalOuterIndices[i+1] - originalOuterIndices[i];
+ }
}
/* Compute the default threshold as in MatLab, see:
@@ -384,7 +402,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
// all the nodes (with indexes lower than rank) reachable through the column elimination tree (etree) rooted at node k.
// Note: if the diagonal entry does not exist, then its contribution must be explicitly added,
// thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found.
- for (typename MatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
+ for (typename QRMatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
{
Index curIdx = nonzeroCol;
if(itp) curIdx = itp.row();
@@ -542,7 +560,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
if(nonzeroCol<n)
{
// Permute the triangular factor to put the 'dead' columns to the end
- MatrixType tempR(m_R);
+ QRMatrixType tempR(m_R);
m_R = tempR * m_pivotperm;
// Update the column permutation
@@ -554,34 +572,6 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
m_info = Success;
}
-namespace internal {
-
-template<typename _MatrixType, typename OrderingType, typename Rhs>
-struct solve_retval<SparseQR<_MatrixType,OrderingType>, Rhs>
- : solve_retval_base<SparseQR<_MatrixType,OrderingType>, Rhs>
-{
- typedef SparseQR<_MatrixType,OrderingType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-template<typename _MatrixType, typename OrderingType, typename Rhs>
-struct sparse_solve_retval<SparseQR<_MatrixType, OrderingType>, Rhs>
- : sparse_solve_retval_base<SparseQR<_MatrixType, OrderingType>, Rhs>
-{
- typedef SparseQR<_MatrixType, OrderingType> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec, Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- this->defaultEvalTo(dst);
- }
-};
-} // end namespace internal
-
template <typename SparseQRType, typename Derived>
struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived> >
{
diff --git a/Eigen/src/SuperLUSupport/SuperLUSupport.h b/Eigen/src/SuperLUSupport/SuperLUSupport.h
index bcb355760..0137585ca 100644
--- a/Eigen/src/SuperLUSupport/SuperLUSupport.h
+++ b/Eigen/src/SuperLUSupport/SuperLUSupport.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -288,8 +288,12 @@ MappedSparseMatrix<Scalar,Flags,Index> map_superlu(SluMatrix& sluMat)
* \brief The base class for the direct and incomplete LU factorization of SuperLU
*/
template<typename _MatrixType, typename Derived>
-class SuperLUBase : internal::noncopyable
+class SuperLUBase : public SparseSolverBase<Derived>
{
+ protected:
+ typedef SparseSolverBase<Derived> Base;
+ using Base::derived;
+ using Base::m_isInitialized;
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
@@ -309,9 +313,6 @@ class SuperLUBase : internal::noncopyable
clearFactors();
}
- Derived& derived() { return *static_cast<Derived*>(this); }
- const Derived& derived() const { return *static_cast<const Derived*>(this); }
-
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
@@ -335,33 +336,7 @@ class SuperLUBase : internal::noncopyable
derived().analyzePattern(matrix);
derived().factorize(matrix);
}
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<SuperLUBase, Rhs> solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "SuperLU is not initialized.");
- eigen_assert(rows()==b.rows()
- && "SuperLU::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<SuperLUBase, Rhs>(*this, b.derived());
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<SuperLUBase, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "SuperLU is not initialized.");
- eigen_assert(rows()==b.rows()
- && "SuperLU::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<SuperLUBase, Rhs>(*this, b.derived());
- }
-
+
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
@@ -453,7 +428,6 @@ class SuperLUBase : internal::noncopyable
mutable char m_sluEqued;
mutable ComputationInfo m_info;
- bool m_isInitialized;
int m_factorizationIsOk;
int m_analysisIsOk;
mutable bool m_extractedDataAreDirty;
@@ -491,6 +465,7 @@ class SuperLU : public SuperLUBase<_MatrixType,SuperLU<_MatrixType> >
typedef TriangularView<LUMatrixType, Upper> UMatrixType;
public:
+ using Base::_solve_impl;
SuperLU() : Base() { init(); }
@@ -528,7 +503,7 @@ class SuperLU : public SuperLUBase<_MatrixType,SuperLU<_MatrixType> >
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal */
template<typename Rhs,typename Dest>
- void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const;
+ void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const;
#endif // EIGEN_PARSED_BY_DOXYGEN
inline const LMatrixType& matrixL() const
@@ -637,7 +612,7 @@ void SuperLU<MatrixType>::factorize(const MatrixType& a)
template<typename MatrixType>
template<typename Rhs,typename Dest>
-void SuperLU<MatrixType>::_solve(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x) const
+void SuperLU<MatrixType>::_solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()");
@@ -828,6 +803,7 @@ class SuperILU : public SuperLUBase<_MatrixType,SuperILU<_MatrixType> >
typedef typename Base::Index Index;
public:
+ using Base::_solve_impl;
SuperILU() : Base() { init(); }
@@ -863,7 +839,7 @@ class SuperILU : public SuperLUBase<_MatrixType,SuperILU<_MatrixType> >
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal */
template<typename Rhs,typename Dest>
- void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const;
+ void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const;
#endif // EIGEN_PARSED_BY_DOXYGEN
protected:
@@ -948,7 +924,7 @@ void SuperILU<MatrixType>::factorize(const MatrixType& a)
template<typename MatrixType>
template<typename Rhs,typename Dest>
-void SuperILU<MatrixType>::_solve(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x) const
+void SuperILU<MatrixType>::_solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()");
@@ -991,36 +967,6 @@ void SuperILU<MatrixType>::_solve(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x)
}
#endif
-namespace internal {
-
-template<typename _MatrixType, typename Derived, typename Rhs>
-struct solve_retval<SuperLUBase<_MatrixType,Derived>, Rhs>
- : solve_retval_base<SuperLUBase<_MatrixType,Derived>, Rhs>
-{
- typedef SuperLUBase<_MatrixType,Derived> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec().derived()._solve(rhs(),dst);
- }
-};
-
-template<typename _MatrixType, typename Derived, typename Rhs>
-struct sparse_solve_retval<SuperLUBase<_MatrixType,Derived>, Rhs>
- : sparse_solve_retval_base<SuperLUBase<_MatrixType,Derived>, Rhs>
-{
- typedef SuperLUBase<_MatrixType,Derived> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- this->defaultEvalTo(dst);
- }
-};
-
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_SUPERLUSUPPORT_H
diff --git a/Eigen/src/UmfPackSupport/UmfPackSupport.h b/Eigen/src/UmfPackSupport/UmfPackSupport.h
index 3a48cecf7..7fada5567 100644
--- a/Eigen/src/UmfPackSupport/UmfPackSupport.h
+++ b/Eigen/src/UmfPackSupport/UmfPackSupport.h
@@ -121,9 +121,13 @@ inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *N
* \sa \ref TutorialSparseDirectSolvers
*/
template<typename _MatrixType>
-class UmfPackLU : internal::noncopyable
+class UmfPackLU : public SparseSolverBase<UmfPackLU<_MatrixType> >
{
+ protected:
+ typedef SparseSolverBase<UmfPackLU<_MatrixType> > Base;
+ using Base::m_isInitialized;
public:
+ using Base::_solve_impl;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
@@ -198,32 +202,6 @@ class UmfPackLU : internal::noncopyable
factorize(matrix);
}
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::solve_retval<UmfPackLU, Rhs> solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
- eigen_assert(rows()==b.rows()
- && "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<UmfPackLU, Rhs>(*this, b.derived());
- }
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
- *
- * \sa compute()
- */
- template<typename Rhs>
- inline const internal::sparse_solve_retval<UmfPackLU, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "UmfPackLU is not initialized.");
- eigen_assert(rows()==b.rows()
- && "UmfPackLU::solve(): invalid number of rows of the right hand side matrix b");
- return internal::sparse_solve_retval<UmfPackLU, Rhs>(*this, b.derived());
- }
-
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
@@ -274,7 +252,7 @@ class UmfPackLU : internal::noncopyable
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal */
template<typename BDerived,typename XDerived>
- bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
+ bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
#endif
Scalar determinant() const;
@@ -328,7 +306,6 @@ class UmfPackLU : internal::noncopyable
void* m_symbolic;
mutable ComputationInfo m_info;
- bool m_isInitialized;
int m_factorizationIsOk;
int m_analysisIsOk;
mutable bool m_extractedDataAreDirty;
@@ -376,7 +353,7 @@ typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() cons
template<typename MatrixType>
template<typename BDerived,typename XDerived>
-bool UmfPackLU<MatrixType>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
+bool UmfPackLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
{
const int rhsCols = b.cols();
eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet");
@@ -396,37 +373,6 @@ bool UmfPackLU<MatrixType>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDe
return true;
}
-
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<UmfPackLU<_MatrixType>, Rhs>
- : solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
-{
- typedef UmfPackLU<_MatrixType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-template<typename _MatrixType, typename Rhs>
-struct sparse_solve_retval<UmfPackLU<_MatrixType>, Rhs>
- : sparse_solve_retval_base<UmfPackLU<_MatrixType>, Rhs>
-{
- typedef UmfPackLU<_MatrixType> Dec;
- EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- this->defaultEvalTo(dst);
- }
-};
-
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_UMFPACKSUPPORT_H
diff --git a/Eigen/src/misc/Solve.h b/Eigen/src/misc/Solve.h
deleted file mode 100644
index 7f70d60af..000000000
--- a/Eigen/src/misc/Solve.h
+++ /dev/null
@@ -1,76 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_MISC_SOLVE_H
-#define EIGEN_MISC_SOLVE_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \class solve_retval_base
- *
- */
-template<typename DecompositionType, typename Rhs>
-struct traits<solve_retval_base<DecompositionType, Rhs> >
-{
- typedef typename DecompositionType::MatrixType MatrixType;
- typedef Matrix<typename Rhs::Scalar,
- MatrixType::ColsAtCompileTime,
- Rhs::ColsAtCompileTime,
- Rhs::PlainObject::Options,
- MatrixType::MaxColsAtCompileTime,
- Rhs::MaxColsAtCompileTime> ReturnType;
-};
-
-template<typename _DecompositionType, typename Rhs> struct solve_retval_base
- : public ReturnByValue<solve_retval_base<_DecompositionType, Rhs> >
-{
- typedef typename remove_all<typename Rhs::Nested>::type RhsNestedCleaned;
- typedef _DecompositionType DecompositionType;
- typedef ReturnByValue<solve_retval_base> Base;
- typedef typename Base::Index Index;
-
- solve_retval_base(const DecompositionType& dec, const Rhs& rhs)
- : m_dec(dec), m_rhs(rhs)
- {}
-
- inline Index rows() const { return m_dec.cols(); }
- inline Index cols() const { return m_rhs.cols(); }
- inline const DecompositionType& dec() const { return m_dec; }
- inline const RhsNestedCleaned& rhs() const { return m_rhs; }
-
- template<typename Dest> inline void evalTo(Dest& dst) const
- {
- static_cast<const solve_retval<DecompositionType,Rhs>*>(this)->evalTo(dst);
- }
-
- protected:
- const DecompositionType& m_dec;
- typename Rhs::Nested m_rhs;
-};
-
-} // end namespace internal
-
-#define EIGEN_MAKE_SOLVE_HELPERS(DecompositionType,Rhs) \
- typedef typename DecompositionType::MatrixType MatrixType; \
- typedef typename MatrixType::Scalar Scalar; \
- typedef typename MatrixType::RealScalar RealScalar; \
- typedef typename MatrixType::Index Index; \
- typedef Eigen::internal::solve_retval_base<DecompositionType,Rhs> Base; \
- using Base::dec; \
- using Base::rhs; \
- using Base::rows; \
- using Base::cols; \
- solve_retval(const DecompositionType& dec, const Rhs& rhs) \
- : Base(dec, rhs) {}
-
-} // end namespace Eigen
-
-#endif // EIGEN_MISC_SOLVE_H
diff --git a/Eigen/src/misc/SparseSolve.h b/Eigen/src/misc/SparseSolve.h
deleted file mode 100644
index 05caa9266..000000000
--- a/Eigen/src/misc/SparseSolve.h
+++ /dev/null
@@ -1,130 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SPARSE_SOLVE_H
-#define EIGEN_SPARSE_SOLVE_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename _DecompositionType, typename Rhs> struct sparse_solve_retval_base;
-template<typename _DecompositionType, typename Rhs> struct sparse_solve_retval;
-
-template<typename DecompositionType, typename Rhs>
-struct traits<sparse_solve_retval_base<DecompositionType, Rhs> >
-{
- typedef typename DecompositionType::MatrixType MatrixType;
- typedef SparseMatrix<typename Rhs::Scalar, Rhs::Options, typename Rhs::Index> ReturnType;
-};
-
-template<typename _DecompositionType, typename Rhs> struct sparse_solve_retval_base
- : public ReturnByValue<sparse_solve_retval_base<_DecompositionType, Rhs> >
-{
- typedef typename remove_all<typename Rhs::Nested>::type RhsNestedCleaned;
- typedef _DecompositionType DecompositionType;
- typedef ReturnByValue<sparse_solve_retval_base> Base;
- typedef typename Base::Index Index;
-
- sparse_solve_retval_base(const DecompositionType& dec, const Rhs& rhs)
- : m_dec(dec), m_rhs(rhs)
- {}
-
- inline Index rows() const { return m_dec.cols(); }
- inline Index cols() const { return m_rhs.cols(); }
- inline const DecompositionType& dec() const { return m_dec; }
- inline const RhsNestedCleaned& rhs() const { return m_rhs; }
-
- template<typename Dest> inline void evalTo(Dest& dst) const
- {
- static_cast<const sparse_solve_retval<DecompositionType,Rhs>*>(this)->evalTo(dst);
- }
-
- protected:
- template<typename DestScalar, int DestOptions, typename DestIndex>
- inline void defaultEvalTo(SparseMatrix<DestScalar,DestOptions,DestIndex>& dst) const
- {
- // we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix.
- static const int NbColsAtOnce = 4;
- int rhsCols = m_rhs.cols();
- int size = m_rhs.rows();
- // the temporary matrices do not need more columns than NbColsAtOnce:
- int tmpCols = (std::min)(rhsCols, NbColsAtOnce);
- Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmp(size,tmpCols);
- Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmpX(size,tmpCols);
- for(int k=0; k<rhsCols; k+=NbColsAtOnce)
- {
- int actualCols = std::min<int>(rhsCols-k, NbColsAtOnce);
- tmp.leftCols(actualCols) = m_rhs.middleCols(k,actualCols);
- tmpX.leftCols(actualCols) = m_dec.solve(tmp.leftCols(actualCols));
- dst.middleCols(k,actualCols) = tmpX.leftCols(actualCols).sparseView();
- }
- }
- const DecompositionType& m_dec;
- typename Rhs::Nested m_rhs;
-};
-
-#define EIGEN_MAKE_SPARSE_SOLVE_HELPERS(DecompositionType,Rhs) \
- typedef typename DecompositionType::MatrixType MatrixType; \
- typedef typename MatrixType::Scalar Scalar; \
- typedef typename MatrixType::RealScalar RealScalar; \
- typedef typename MatrixType::Index Index; \
- typedef Eigen::internal::sparse_solve_retval_base<DecompositionType,Rhs> Base; \
- using Base::dec; \
- using Base::rhs; \
- using Base::rows; \
- using Base::cols; \
- sparse_solve_retval(const DecompositionType& dec, const Rhs& rhs) \
- : Base(dec, rhs) {}
-
-
-
-template<typename DecompositionType, typename Rhs, typename Guess> struct solve_retval_with_guess;
-
-template<typename DecompositionType, typename Rhs, typename Guess>
-struct traits<solve_retval_with_guess<DecompositionType, Rhs, Guess> >
-{
- typedef typename DecompositionType::MatrixType MatrixType;
- typedef Matrix<typename Rhs::Scalar,
- MatrixType::ColsAtCompileTime,
- Rhs::ColsAtCompileTime,
- Rhs::PlainObject::Options,
- MatrixType::MaxColsAtCompileTime,
- Rhs::MaxColsAtCompileTime> ReturnType;
-};
-
-template<typename DecompositionType, typename Rhs, typename Guess> struct solve_retval_with_guess
- : public ReturnByValue<solve_retval_with_guess<DecompositionType, Rhs, Guess> >
-{
- typedef typename DecompositionType::Index Index;
-
- solve_retval_with_guess(const DecompositionType& dec, const Rhs& rhs, const Guess& guess)
- : m_dec(dec), m_rhs(rhs), m_guess(guess)
- {}
-
- inline Index rows() const { return m_dec.cols(); }
- inline Index cols() const { return m_rhs.cols(); }
-
- template<typename Dest> inline void evalTo(Dest& dst) const
- {
- dst = m_guess;
- m_dec._solveWithGuess(m_rhs,dst);
- }
-
- protected:
- const DecompositionType& m_dec;
- const typename Rhs::Nested m_rhs;
- const typename Guess::Nested m_guess;
-};
-
-} // namepsace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_SPARSE_SOLVE_H
diff --git a/Eigen/src/plugins/ArrayCwiseUnaryOps.h b/Eigen/src/plugins/ArrayCwiseUnaryOps.h
index ce462e951..f6d7d8944 100644
--- a/Eigen/src/plugins/ArrayCwiseUnaryOps.h
+++ b/Eigen/src/plugins/ArrayCwiseUnaryOps.h
@@ -30,6 +30,9 @@ abs2() const
/** \returns an expression of the coefficient-wise exponential of *this.
*
+ * This function computes the coefficient-wise exponential. The function MatrixBase::exp() in the
+ * unsupported module MatrixFunctions computes the matrix exponential.
+ *
* Example: \include Cwise_exp.cpp
* Output: \verbinclude Cwise_exp.out
*
@@ -44,6 +47,9 @@ exp() const
/** \returns an expression of the coefficient-wise logarithm of *this.
*
+ * This function computes the coefficient-wise logarithm. The function MatrixBase::log() in the
+ * unsupported module MatrixFunctions computes the matrix logarithm.
+ *
* Example: \include Cwise_log.cpp
* Output: \verbinclude Cwise_log.out
*
@@ -58,6 +64,9 @@ log() const
/** \returns an expression of the coefficient-wise square root of *this.
*
+ * This function computes the coefficient-wise square root. The function MatrixBase::sqrt() in the
+ * unsupported module MatrixFunctions computes the matrix square root.
+ *
* Example: \include Cwise_sqrt.cpp
* Output: \verbinclude Cwise_sqrt.out
*
@@ -72,6 +81,9 @@ sqrt() const
/** \returns an expression of the coefficient-wise cosine of *this.
*
+ * This function computes the coefficient-wise cosine. The function MatrixBase::cos() in the
+ * unsupported module MatrixFunctions computes the matrix cosine.
+ *
* Example: \include Cwise_cos.cpp
* Output: \verbinclude Cwise_cos.out
*
@@ -87,6 +99,9 @@ cos() const
/** \returns an expression of the coefficient-wise sine of *this.
*
+ * This function computes the coefficient-wise sine. The function MatrixBase::sin() in the
+ * unsupported module MatrixFunctions computes the matrix sine.
+ *
* Example: \include Cwise_sin.cpp
* Output: \verbinclude Cwise_sin.out
*
@@ -156,6 +171,9 @@ atan() const
/** \returns an expression of the coefficient-wise power of *this to the given exponent.
*
+ * This function computes the coefficient-wise power. The function MatrixBase::pow() in the
+ * unsupported module MatrixFunctions computes the matrix power.
+ *
* Example: \include Cwise_pow.cpp
* Output: \verbinclude Cwise_pow.out
*
diff --git a/bench/bench_norm.cpp b/bench/bench_norm.cpp
index 398fef835..129afcfb2 100644
--- a/bench/bench_norm.cpp
+++ b/bench/bench_norm.cpp
@@ -6,19 +6,25 @@ using namespace Eigen;
using namespace std;
template<typename T>
-EIGEN_DONT_INLINE typename T::Scalar sqsumNorm(const T& v)
+EIGEN_DONT_INLINE typename T::Scalar sqsumNorm(T& v)
{
return v.norm();
}
template<typename T>
-EIGEN_DONT_INLINE typename T::Scalar hypotNorm(const T& v)
+EIGEN_DONT_INLINE typename T::Scalar stableNorm(T& v)
+{
+ return v.stableNorm();
+}
+
+template<typename T>
+EIGEN_DONT_INLINE typename T::Scalar hypotNorm(T& v)
{
return v.hypotNorm();
}
template<typename T>
-EIGEN_DONT_INLINE typename T::Scalar blueNorm(const T& v)
+EIGEN_DONT_INLINE typename T::Scalar blueNorm(T& v)
{
return v.blueNorm();
}
@@ -217,20 +223,21 @@ EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v)
}
#define BENCH_PERF(NRM) { \
+ float af = 0; double ad = 0; std::complex<float> ac = 0; \
Eigen::BenchTimer tf, td, tcf; tf.reset(); td.reset(); tcf.reset();\
for (int k=0; k<tries; ++k) { \
tf.start(); \
- for (int i=0; i<iters; ++i) NRM(vf); \
+ for (int i=0; i<iters; ++i) { af += NRM(vf); } \
tf.stop(); \
} \
for (int k=0; k<tries; ++k) { \
td.start(); \
- for (int i=0; i<iters; ++i) NRM(vd); \
+ for (int i=0; i<iters; ++i) { ad += NRM(vd); } \
td.stop(); \
} \
/*for (int k=0; k<std::max(1,tries/3); ++k) { \
tcf.start(); \
- for (int i=0; i<iters; ++i) NRM(vcf); \
+ for (int i=0; i<iters; ++i) { ac += NRM(vcf); } \
tcf.stop(); \
} */\
std::cout << #NRM << "\t" << tf.value() << " " << td.value() << " " << tcf.value() << "\n"; \
@@ -316,14 +323,17 @@ int main(int argc, char** argv)
std::cout << "\n";
}
+ y = 1;
std::cout.precision(4);
- std::cerr << "Performance (out of cache):\n";
+ int s1 = 1024*1024*32;
+ std::cerr << "Performance (out of cache, " << s1 << "):\n";
{
int iters = 1;
- VectorXf vf = VectorXf::Random(1024*1024*32) * y;
- VectorXd vd = VectorXd::Random(1024*1024*32) * y;
- VectorXcf vcf = VectorXcf::Random(1024*1024*32) * y;
+ VectorXf vf = VectorXf::Random(s1) * y;
+ VectorXd vd = VectorXd::Random(s1) * y;
+ VectorXcf vcf = VectorXcf::Random(s1) * y;
BENCH_PERF(sqsumNorm);
+ BENCH_PERF(stableNorm);
BENCH_PERF(blueNorm);
BENCH_PERF(pblueNorm);
BENCH_PERF(lapackNorm);
@@ -332,13 +342,14 @@ int main(int argc, char** argv)
BENCH_PERF(bl2passNorm);
}
- std::cerr << "\nPerformance (in cache):\n";
+ std::cerr << "\nPerformance (in cache, " << 512 << "):\n";
{
int iters = 100000;
VectorXf vf = VectorXf::Random(512) * y;
VectorXd vd = VectorXd::Random(512) * y;
VectorXcf vcf = VectorXcf::Random(512) * y;
BENCH_PERF(sqsumNorm);
+ BENCH_PERF(stableNorm);
BENCH_PERF(blueNorm);
BENCH_PERF(pblueNorm);
BENCH_PERF(lapackNorm);
diff --git a/doc/CMakeLists.txt b/doc/CMakeLists.txt
index 1b8aaf9aa..46e5fc9d7 100644
--- a/doc/CMakeLists.txt
+++ b/doc/CMakeLists.txt
@@ -97,6 +97,7 @@ add_dependencies(doc-unsupported-prerequisites unsupported_snippets unsupported_
add_custom_target(doc ALL
COMMAND doxygen
COMMAND doxygen Doxyfile-unsupported
+ COMMAND ${CMAKE_COMMAND} -E copy ${Eigen_BINARY_DIR}/doc/html/group__TopicUnalignedArrayAssert.html ${Eigen_BINARY_DIR}/doc/html/TopicUnalignedArrayAssert.html
COMMAND ${CMAKE_COMMAND} -E rename html eigen-doc
COMMAND ${CMAKE_COMMAND} -E remove eigen-doc/eigen-doc.tgz
COMMAND ${CMAKE_COMMAND} -E tar cfz eigen-doc/eigen-doc.tgz eigen-doc
diff --git a/doc/snippets/DirectionWise_hnormalized.cpp b/doc/snippets/DirectionWise_hnormalized.cpp
new file mode 100644
index 000000000..3410790a8
--- /dev/null
+++ b/doc/snippets/DirectionWise_hnormalized.cpp
@@ -0,0 +1,7 @@
+typedef Matrix<double,4,Dynamic> Matrix4Xd;
+Matrix4Xd M = Matrix4Xd::Random(4,5);
+Projective3d P(Matrix4d::Random());
+cout << "The matrix M is:" << endl << M << endl << endl;
+cout << "M.colwise().hnormalized():" << endl << M.colwise().hnormalized() << endl << endl;
+cout << "P*M:" << endl << P*M << endl << endl;
+cout << "(P*M).colwise().hnormalized():" << endl << (P*M).colwise().hnormalized() << endl << endl; \ No newline at end of file
diff --git a/doc/snippets/MatrixBase_hnormalized.cpp b/doc/snippets/MatrixBase_hnormalized.cpp
new file mode 100644
index 000000000..652cd77c0
--- /dev/null
+++ b/doc/snippets/MatrixBase_hnormalized.cpp
@@ -0,0 +1,6 @@
+Vector4d v = Vector4d::Random();
+Projective3d P(Matrix4d::Random());
+cout << "v = " << v.transpose() << "]^T" << endl;
+cout << "v.hnormalized() = " << v.hnormalized().transpose() << "]^T" << endl;
+cout << "P*v = " << (P*v).transpose() << "]^T" << endl;
+cout << "(P*v).hnormalized() = " << (P*v).hnormalized().transpose() << "]^T" << endl; \ No newline at end of file
diff --git a/doc/snippets/MatrixBase_homogeneous.cpp b/doc/snippets/MatrixBase_homogeneous.cpp
new file mode 100644
index 000000000..457c28f91
--- /dev/null
+++ b/doc/snippets/MatrixBase_homogeneous.cpp
@@ -0,0 +1,6 @@
+Vector3d v = Vector3d::Random(), w;
+Projective3d P(Matrix4d::Random());
+cout << "v = [" << v.transpose() << "]^T" << endl;
+cout << "h.homogeneous() = [" << v.homogeneous().transpose() << "]^T" << endl;
+cout << "(P * v.homogeneous()) = [" << (P * v.homogeneous()).transpose() << "]^T" << endl;
+cout << "(P * v.homogeneous()).hnormalized() = [" << (P * v.homogeneous()).eval().hnormalized().transpose() << "]^T" << endl; \ No newline at end of file
diff --git a/doc/snippets/VectorwiseOp_homogeneous.cpp b/doc/snippets/VectorwiseOp_homogeneous.cpp
new file mode 100644
index 000000000..aba4fed0e
--- /dev/null
+++ b/doc/snippets/VectorwiseOp_homogeneous.cpp
@@ -0,0 +1,7 @@
+typedef Matrix<double,3,Dynamic> Matrix3Xd;
+Matrix3Xd M = Matrix3Xd::Random(3,5);
+Projective3d P(Matrix4d::Random());
+cout << "The matrix M is:" << endl << M << endl << endl;
+cout << "M.colwise().homogeneous():" << endl << M.colwise().homogeneous() << endl << endl;
+cout << "P * M.colwise().homogeneous():" << endl << P * M.colwise().homogeneous() << endl << endl;
+cout << "P * M.colwise().homogeneous().hnormalized(): " << endl << (P * M.colwise().homogeneous()).colwise().hnormalized() << endl << endl; \ No newline at end of file
diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt
index 47aefddb8..530e9e4e1 100644
--- a/test/CMakeLists.txt
+++ b/test/CMakeLists.txt
@@ -139,17 +139,12 @@ endif(TEST_LIB)
set_property(GLOBAL PROPERTY EIGEN_CURRENT_SUBPROJECT "Official")
add_custom_target(BuildOfficial)
-option(EIGEN_TEST_EVALUATORS "Enable work in progress evaluators" OFF)
-if(EIGEN_TEST_EVALUATORS)
- add_definitions("-DEIGEN_TEST_EVALUATORS=1")
- add_definitions("-DEIGEN_ENABLE_EVALUATORS=1")
-endif(EIGEN_TEST_EVALUATORS)
-
ei_add_test(meta)
ei_add_test(sizeof)
ei_add_test(dynalloc)
ei_add_test(nomalloc)
ei_add_test(first_aligned)
+ei_add_test(nullary)
ei_add_test(mixingtypes)
ei_add_test(packetmath)
ei_add_test(unalignedassert)
@@ -165,6 +160,9 @@ ei_add_test(redux)
ei_add_test(visitor)
ei_add_test(block)
ei_add_test(corners)
+ei_add_test(swap)
+ei_add_test(resize)
+ei_add_test(conservative_resize)
ei_add_test(product_small)
ei_add_test(product_large)
ei_add_test(product_extra)
@@ -193,6 +191,7 @@ ei_add_test(product_trsolve)
ei_add_test(product_mmtr)
ei_add_test(product_notemporary)
ei_add_test(stable_norm)
+ei_add_test(permutationmatrices)
ei_add_test(bandmatrix)
ei_add_test(cholesky)
ei_add_test(lu)
@@ -212,30 +211,30 @@ ei_add_test(real_qz)
ei_add_test(eigensolver_generalized_real)
ei_add_test(jacobi)
ei_add_test(jacobisvd)
+ei_add_test(householder)
ei_add_test(geo_orthomethods)
-ei_add_test(geo_homogeneous)
ei_add_test(geo_quaternion)
-ei_add_test(geo_transformations)
ei_add_test(geo_eulerangles)
-ei_add_test(geo_hyperplane)
ei_add_test(geo_parametrizedline)
ei_add_test(geo_alignedbox)
+ei_add_test(geo_hyperplane)
+ei_add_test(geo_transformations)
+ei_add_test(geo_homogeneous)
ei_add_test(stdvector)
ei_add_test(stdvector_overload)
ei_add_test(stdlist)
ei_add_test(stddeque)
-ei_add_test(resize)
-ei_add_test(sparse_vector)
ei_add_test(sparse_basic)
+ei_add_test(sparse_vector)
ei_add_test(sparse_product)
ei_add_test(sparse_solvers)
-ei_add_test(umeyama)
-ei_add_test(householder)
-ei_add_test(swap)
-ei_add_test(conservative_resize)
-ei_add_test(permutationmatrices)
ei_add_test(sparse_permutations)
-ei_add_test(nullary)
+ei_add_test(simplicial_cholesky)
+ei_add_test(conjugate_gradient)
+ei_add_test(bicgstab)
+ei_add_test(sparselu)
+ei_add_test(sparseqr)
+ei_add_test(umeyama)
ei_add_test(nesting_ops "${CMAKE_CXX_FLAGS_DEBUG}")
ei_add_test(zerosized)
ei_add_test(dontalign)
@@ -249,13 +248,7 @@ ei_add_test(special_numbers)
ei_add_test(rvalue_types)
ei_add_test(dense_storage)
-ei_add_test(simplicial_cholesky)
-ei_add_test(conjugate_gradient)
-ei_add_test(bicgstab)
-ei_add_test(sparselu)
-ei_add_test(sparseqr)
-
-# ei_add_test(denseLM)
+# # ei_add_test(denseLM)
if(QT4_FOUND)
ei_add_test(qtvector "" "${QT_QTCORE_LIBRARY}")
diff --git a/test/array.cpp b/test/array.cpp
index 010fead2d..ac9be097d 100644
--- a/test/array.cpp
+++ b/test/array.cpp
@@ -81,6 +81,31 @@ template<typename ArrayType> void array(const ArrayType& m)
VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
m3 = m1;
VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
+
+ // Conversion from scalar
+ VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows,cols,s1));
+ VERIFY_IS_APPROX((m3 = 1), ArrayType::Constant(rows,cols,1));
+ VERIFY_IS_APPROX((m3.topLeftCorner(rows,cols) = 1), ArrayType::Constant(rows,cols,1));
+ typedef Array<Scalar,
+ ArrayType::RowsAtCompileTime==Dynamic?2:ArrayType::RowsAtCompileTime,
+ ArrayType::ColsAtCompileTime==Dynamic?2:ArrayType::ColsAtCompileTime,
+ ArrayType::Options> FixedArrayType;
+ FixedArrayType f1(s1);
+ VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1));
+ FixedArrayType f2(numext::real(s1));
+ VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1)));
+ FixedArrayType f3((int)100*numext::real(s1));
+ VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1)));
+ f1.setRandom();
+ FixedArrayType f4(f1.data());
+ VERIFY_IS_APPROX(f4, f1);
+
+ // Check possible conflicts with 1D ctor
+ typedef Array<Scalar, Dynamic, 1> OneDArrayType;
+ OneDArrayType o1(rows);
+ VERIFY(o1.size()==rows);
+ OneDArrayType o4((int)rows);
+ VERIFY(o4.size()==rows);
}
template<typename ArrayType> void comparisons(const ArrayType& m)
diff --git a/test/block.cpp b/test/block.cpp
index 269acd28e..3b77b704a 100644
--- a/test/block.cpp
+++ b/test/block.cpp
@@ -130,6 +130,14 @@ template<typename MatrixType> void block(const MatrixType& m)
VERIFY(numext::real(ones.col(c1).dot(ones.col(c2))) == RealScalar(rows));
VERIFY(numext::real(ones.row(r1).dot(ones.row(r2))) == RealScalar(cols));
+
+ // chekc that linear acccessors works on blocks
+ m1 = m1_copy;
+ if((MatrixType::Flags&RowMajorBit)==0)
+ VERIFY_IS_EQUAL(m1.leftCols(c1).coeff(r1+c1*rows), m1(r1,c1));
+ else
+ VERIFY_IS_EQUAL(m1.topRows(r1).coeff(c1+r1*cols), m1(r1,c1));
+
// now test some block-inside-of-block.
diff --git a/test/evaluators.cpp b/test/evaluators.cpp
index e3922c1be..f41968da8 100644
--- a/test/evaluators.cpp
+++ b/test/evaluators.cpp
@@ -1,7 +1,78 @@
-#define EIGEN_ENABLE_EVALUATORS
+
#include "main.h"
-using internal::copy_using_evaluator;
+namespace Eigen {
+
+ template<typename DstXprType, typename SrcXprType>
+ EIGEN_STRONG_INLINE
+ DstXprType& copy_using_evaluator(const EigenBase<DstXprType> &dst, const SrcXprType &src)
+ {
+ call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar>());
+ return dst.const_cast_derived();
+ }
+
+ template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType>
+ EIGEN_STRONG_INLINE
+ const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst, const SrcXprType &src)
+ {
+ call_assignment(dst, src.derived(), internal::assign_op<typename DstXprType::Scalar>());
+ return dst.expression();
+ }
+
+ template<typename DstXprType, typename SrcXprType>
+ EIGEN_STRONG_INLINE
+ DstXprType& copy_using_evaluator(const PlainObjectBase<DstXprType> &dst, const SrcXprType &src)
+ {
+ #ifdef EIGEN_NO_AUTOMATIC_RESIZING
+ eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size())
+ : (dst.rows() == src.rows() && dst.cols() == src.cols())))
+ && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
+ #else
+ dst.const_cast_derived().resizeLike(src.derived());
+ #endif
+
+ call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar>());
+ return dst.const_cast_derived();
+ }
+
+ template<typename DstXprType, typename SrcXprType>
+ void add_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
+ {
+ typedef typename DstXprType::Scalar Scalar;
+ call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::add_assign_op<Scalar>());
+ }
+
+ template<typename DstXprType, typename SrcXprType>
+ void subtract_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
+ {
+ typedef typename DstXprType::Scalar Scalar;
+ call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::sub_assign_op<Scalar>());
+ }
+
+ template<typename DstXprType, typename SrcXprType>
+ void multiply_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
+ {
+ typedef typename DstXprType::Scalar Scalar;
+ call_assignment(dst.const_cast_derived(), src.derived(), internal::mul_assign_op<Scalar>());
+ }
+
+ template<typename DstXprType, typename SrcXprType>
+ void divide_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
+ {
+ typedef typename DstXprType::Scalar Scalar;
+ call_assignment(dst.const_cast_derived(), src.derived(), internal::div_assign_op<Scalar>());
+ }
+
+ template<typename DstXprType, typename SrcXprType>
+ void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src)
+ {
+ typedef typename DstXprType::Scalar Scalar;
+ call_assignment(dst.const_cast_derived(), src.const_cast_derived(), internal::swap_assign_op<Scalar>());
+ }
+
+}
+
+
using namespace std;
#define VERIFY_IS_APPROX_EVALUATOR(DEST,EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (EXPR).eval());
@@ -72,8 +143,19 @@ void test_evaluators()
c = a*a;
copy_using_evaluator(a, prod(a,a));
VERIFY_IS_APPROX(a,c);
+
+ // check compound assignment of products
+ d = c;
+ add_assign_using_evaluator(c.noalias(), prod(a,b));
+ d.noalias() += a*b;
+ VERIFY_IS_APPROX(c, d);
+
+ d = c;
+ subtract_assign_using_evaluator(c.noalias(), prod(a,b));
+ d.noalias() -= a*b;
+ VERIFY_IS_APPROX(c, d);
}
-
+
{
// test product with all possible sizes
int s = internal::random<int>(1,100);
@@ -124,7 +206,7 @@ void test_evaluators()
// this does not work because Random is eval-before-nested:
// copy_using_evaluator(w, Vector2d::Random().transpose());
-
+
// test CwiseUnaryOp
VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v);
VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose());
@@ -327,4 +409,56 @@ void test_evaluators()
arr_ref.row(1) /= (arr_ref.row(2) + 1);
VERIFY_IS_APPROX(arr, arr_ref);
}
+
+ {
+ // test triangular shapes
+ MatrixXd A = MatrixXd::Random(6,6), B(6,6), C(6,6), D(6,6);
+ A.setRandom();B.setRandom();
+ VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<Upper>(), MatrixXd(A.triangularView<Upper>()));
+
+ A.setRandom();B.setRandom();
+ VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitLower>(), MatrixXd(A.triangularView<UnitLower>()));
+
+ A.setRandom();B.setRandom();
+ VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitUpper>(), MatrixXd(A.triangularView<UnitUpper>()));
+
+ A.setRandom();B.setRandom();
+ C = B; C.triangularView<Upper>() = A;
+ copy_using_evaluator(B.triangularView<Upper>(), A);
+ VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Upper>(), A)");
+
+ A.setRandom();B.setRandom();
+ C = B; C.triangularView<Lower>() = A.triangularView<Lower>();
+ copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>());
+ VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>())");
+
+
+ A.setRandom();B.setRandom();
+ C = B; C.triangularView<Lower>() = A.triangularView<Upper>().transpose();
+ copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Upper>().transpose());
+ VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>().transpose())");
+
+
+ A.setRandom();B.setRandom(); C = B; D = A;
+ C.triangularView<Upper>().swap(D.triangularView<Upper>());
+ swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>());
+ VERIFY(B.isApprox(C) && "swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>())");
+
+
+ VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.triangularView<Upper>(),A), MatrixXd(A.triangularView<Upper>()*A));
+
+ VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.selfadjointView<Upper>(),A), MatrixXd(A.selfadjointView<Upper>()*A));
+
+ }
+
+ {
+ // test diagonal shapes
+ VectorXd d = VectorXd::Random(6);
+ MatrixXd A = MatrixXd::Random(6,6), B(6,6);
+ A.setRandom();B.setRandom();
+
+ VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(d.asDiagonal(),A), MatrixXd(d.asDiagonal()*A));
+ VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(A,d.asDiagonal()), MatrixXd(A*d.asDiagonal()));
+
+ }
}
diff --git a/test/geo_homogeneous.cpp b/test/geo_homogeneous.cpp
index c91bde819..2f9d18c0f 100644
--- a/test/geo_homogeneous.cpp
+++ b/test/geo_homogeneous.cpp
@@ -38,6 +38,10 @@ template<typename Scalar,int Size> void homogeneous(void)
hv0 << v0, 1;
VERIFY_IS_APPROX(v0.homogeneous(), hv0);
VERIFY_IS_APPROX(v0, hv0.hnormalized());
+
+ VERIFY_IS_APPROX(v0.homogeneous().sum(), hv0.sum());
+ VERIFY_IS_APPROX(v0.homogeneous().minCoeff(), hv0.minCoeff());
+ VERIFY_IS_APPROX(v0.homogeneous().maxCoeff(), hv0.maxCoeff());
hm0 << m0, ones.transpose();
VERIFY_IS_APPROX(m0.colwise().homogeneous(), hm0);
@@ -57,7 +61,6 @@ template<typename Scalar,int Size> void homogeneous(void)
VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t2,
v0.transpose().rowwise().homogeneous() * t2);
- m0.transpose().rowwise().homogeneous().eval();
VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t2,
m0.transpose().rowwise().homogeneous() * t2);
@@ -82,7 +85,7 @@ template<typename Scalar,int Size> void homogeneous(void)
VERIFY_IS_APPROX(aff * pts.colwise().homogeneous(), (aff * pts1).colwise().hnormalized());
VERIFY_IS_APPROX(caff * pts.colwise().homogeneous(), (caff * pts1).colwise().hnormalized());
VERIFY_IS_APPROX(proj * pts.colwise().homogeneous(), (proj * pts1));
-
+
VERIFY_IS_APPROX((aff * pts1).colwise().hnormalized(), aff * pts);
VERIFY_IS_APPROX((caff * pts1).colwise().hnormalized(), caff * pts);
diff --git a/test/geo_orthomethods.cpp b/test/geo_orthomethods.cpp
index c836dae40..7f8beb205 100644
--- a/test/geo_orthomethods.cpp
+++ b/test/geo_orthomethods.cpp
@@ -33,6 +33,7 @@ template<typename Scalar> void orthomethods_3()
VERIFY_IS_MUCH_SMALLER_THAN(v1.dot(v1.cross(v2)), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v2), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN(v2.dot(v1.cross(v2)), Scalar(1));
+ VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(Vector3::Random()).dot(v1), Scalar(1));
Matrix3 mat3;
mat3 << v0.normalized(),
(v0.cross(v1)).normalized(),
@@ -47,6 +48,13 @@ template<typename Scalar> void orthomethods_3()
int i = internal::random<int>(0,2);
mcross = mat3.colwise().cross(vec3);
VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3));
+
+ VERIFY_IS_MUCH_SMALLER_THAN((mat3.adjoint() * mat3.colwise().cross(vec3)).diagonal().cwiseAbs().sum(), Scalar(1));
+ VERIFY_IS_MUCH_SMALLER_THAN((mat3.adjoint() * mat3.colwise().cross(Vector3::Random())).diagonal().cwiseAbs().sum(), Scalar(1));
+
+ VERIFY_IS_MUCH_SMALLER_THAN((vec3.adjoint() * mat3.colwise().cross(vec3)).cwiseAbs().sum(), Scalar(1));
+ VERIFY_IS_MUCH_SMALLER_THAN((vec3.adjoint() * Matrix3::Random().colwise().cross(vec3)).cwiseAbs().sum(), Scalar(1));
+
mcross = mat3.rowwise().cross(vec3);
VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3));
@@ -57,6 +65,7 @@ template<typename Scalar> void orthomethods_3()
v40.w() = v41.w() = v42.w() = 0;
v42.template head<3>() = v40.template head<3>().cross(v41.template head<3>());
VERIFY_IS_APPROX(v40.cross3(v41), v42);
+ VERIFY_IS_MUCH_SMALLER_THAN(v40.cross3(Vector4::Random()).dot(v40), Scalar(1));
// check mixed product
typedef Matrix<RealScalar, 3, 1> RealVector3;
diff --git a/test/inverse.cpp b/test/inverse.cpp
index 8187b088d..1e7b20958 100644
--- a/test/inverse.cpp
+++ b/test/inverse.cpp
@@ -68,6 +68,15 @@ template<typename MatrixType> void inverse(const MatrixType& m)
VERIFY_IS_MUCH_SMALLER_THAN(abs(det-m3.determinant()), RealScalar(1));
m3.computeInverseWithCheck(m4, invertible);
VERIFY( rows==1 ? invertible : !invertible );
+
+ // check with submatrices
+ {
+ Matrix<Scalar, MatrixType::RowsAtCompileTime+1, MatrixType::RowsAtCompileTime+1, MatrixType::Options> m3;
+ m3.setRandom();
+ m3.topLeftCorner(rows,rows) = m1;
+ m2 = m3.template topLeftCorner<MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime>().inverse();
+ VERIFY_IS_APPROX( (m3.template topLeftCorner<MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime>()), m2.inverse() );
+ }
#endif
// check in-place inversion
diff --git a/test/jacobisvd.cpp b/test/jacobisvd.cpp
index 36721b496..bfcadce95 100644
--- a/test/jacobisvd.cpp
+++ b/test/jacobisvd.cpp
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
@@ -14,273 +14,47 @@
#include "main.h"
#include <Eigen/SVD>
-template<typename MatrixType, int QRPreconditioner>
-void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd)
-{
- typedef typename MatrixType::Index Index;
- Index rows = m.rows();
- Index cols = m.cols();
-
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime
- };
-
- typedef typename MatrixType::Scalar Scalar;
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
- typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
-
- MatrixType sigma = MatrixType::Zero(rows,cols);
- sigma.diagonal() = svd.singularValues().template cast<Scalar>();
- MatrixUType u = svd.matrixU();
- MatrixVType v = svd.matrixV();
-
- VERIFY_IS_APPROX(m, u * sigma * v.adjoint());
- VERIFY_IS_UNITARY(u);
- VERIFY_IS_UNITARY(v);
-}
-
-template<typename MatrixType, int QRPreconditioner>
-void jacobisvd_compare_to_full(const MatrixType& m,
- unsigned int computationOptions,
- const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd)
-{
- typedef typename MatrixType::Index Index;
- Index rows = m.rows();
- Index cols = m.cols();
- Index diagSize = (std::min)(rows, cols);
-
- JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
-
- VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
- if(computationOptions & ComputeFullU)
- VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
- if(computationOptions & ComputeThinU)
- VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
- if(computationOptions & ComputeFullV)
- VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV());
- if(computationOptions & ComputeThinV)
- VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
-}
-
-template<typename MatrixType, int QRPreconditioner>
-void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions)
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- Index rows = m.rows();
- Index cols = m.cols();
-
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime
- };
-
- typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
- typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
-
- RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
- JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
-
- if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8);
- else if(internal::is_same<RealScalar,float>::value) svd.setThreshold(1e-4);
-
- SolutionType x = svd.solve(rhs);
-
- RealScalar residual = (m*x-rhs).norm();
- // Check that there is no significantly better solution in the neighborhood of x
- if(!test_isMuchSmallerThan(residual,rhs.norm()))
- {
- // If the residual is very small, then we have an exact solution, so we are already good.
- for(int k=0;k<x.rows();++k)
- {
- SolutionType y(x);
- y.row(k).array() += 2*NumTraits<RealScalar>::epsilon();
- RealScalar residual_y = (m*y-rhs).norm();
- VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
-
- y.row(k) = x.row(k).array() - 2*NumTraits<RealScalar>::epsilon();
- residual_y = (m*y-rhs).norm();
- VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
- }
- }
-
- // evaluate normal equation which works also for least-squares solutions
- if(internal::is_same<RealScalar,double>::value)
- {
- // This test is not stable with single precision.
- // This is probably because squaring m signicantly affects the precision.
- VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
- }
-
- // check minimal norm solutions
- {
- // generate a full-rank m x n problem with m<n
- enum {
- RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1,
- RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1
- };
- typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2;
- typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2;
- typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T;
- Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2);
- MatrixType2 m2(rank,cols);
- int guard = 0;
- do {
- m2.setRandom();
- } while(m2.jacobiSvd().setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10);
- VERIFY(guard<10);
- RhsType2 rhs2 = RhsType2::Random(rank);
- // use QR to find a reference minimal norm solution
- HouseholderQR<MatrixType2T> qr(m2.adjoint());
- Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2);
- tmp.conservativeResize(cols);
- tmp.tail(cols-rank).setZero();
- SolutionType x21 = qr.householderQ() * tmp;
- // now check with SVD
- JacobiSVD<MatrixType2, ColPivHouseholderQRPreconditioner> svd2(m2, computationOptions);
- SolutionType x22 = svd2.solve(rhs2);
- VERIFY_IS_APPROX(m2*x21, rhs2);
- VERIFY_IS_APPROX(m2*x22, rhs2);
- VERIFY_IS_APPROX(x21, x22);
-
- // Now check with a rank deficient matrix
- typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3;
- typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3;
- Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3);
- Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank);
- MatrixType3 m3 = C * m2;
- RhsType3 rhs3 = C * rhs2;
- JacobiSVD<MatrixType3, ColPivHouseholderQRPreconditioner> svd3(m3, computationOptions);
- SolutionType x3 = svd3.solve(rhs3);
- VERIFY_IS_APPROX(m3*x3, rhs3);
- VERIFY_IS_APPROX(m3*x21, rhs3);
- VERIFY_IS_APPROX(m2*x3, rhs2);
-
- VERIFY_IS_APPROX(x21, x3);
- }
-}
-
-template<typename MatrixType, int QRPreconditioner>
-void jacobisvd_test_all_computation_options(const MatrixType& m)
-{
- if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
- return;
- JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV);
- CALL_SUBTEST(( jacobisvd_check_full(m, fullSvd) ));
- CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV) ));
-
- #if defined __INTEL_COMPILER
- // remark #111: statement is unreachable
- #pragma warning disable 111
- #endif
- if(QRPreconditioner == FullPivHouseholderQRPreconditioner)
- return;
-
- CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullU, fullSvd) ));
- CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullV, fullSvd) ));
- CALL_SUBTEST(( jacobisvd_compare_to_full(m, 0, fullSvd) ));
-
- if (MatrixType::ColsAtCompileTime == Dynamic) {
- // thin U/V are only available with dynamic number of columns
- CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) ));
- CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinV, fullSvd) ));
- CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) ));
- CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU , fullSvd) ));
- CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) ));
- CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV) ));
- CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV) ));
- CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV) ));
-
- // test reconstruction
- typedef typename MatrixType::Index Index;
- Index diagSize = (std::min)(m.rows(), m.cols());
- JacobiSVD<MatrixType, QRPreconditioner> svd(m, ComputeThinU | ComputeThinV);
- VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
- }
-}
+#define SVD_DEFAULT(M) JacobiSVD<M>
+#define SVD_FOR_MIN_NORM(M) JacobiSVD<M,ColPivHouseholderQRPreconditioner>
+#include "svd_common.h"
+// Check all variants of JacobiSVD
template<typename MatrixType>
void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
{
MatrixType m = a;
if(pickrandom)
- {
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
- Index diagSize = (std::min)(a.rows(), a.cols());
- RealScalar s = std::numeric_limits<RealScalar>::max_exponent10/4;
- s = internal::random<RealScalar>(1,s);
- Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(diagSize);
- for(Index k=0; k<diagSize; ++k)
- d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
- m = Matrix<Scalar,Dynamic,Dynamic>::Random(a.rows(),diagSize) * d.asDiagonal() * Matrix<Scalar,Dynamic,Dynamic>::Random(diagSize,a.cols());
- // cancel some coeffs
- Index n = internal::random<Index>(0,m.size()-1);
- for(Index i=0; i<n; ++i)
- m(internal::random<Index>(0,m.rows()-1), internal::random<Index>(0,m.cols()-1)) = Scalar(0);
- }
+ svd_fill_random(m);
- CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m) ));
- CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m) ));
- CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m) ));
- CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m) ));
+ CALL_SUBTEST(( svd_test_all_computation_options<JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> >(m, true) )); // check full only
+ CALL_SUBTEST(( svd_test_all_computation_options<JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner> >(m, false) ));
+ CALL_SUBTEST(( svd_test_all_computation_options<JacobiSVD<MatrixType, HouseholderQRPreconditioner> >(m, false) ));
+ if(m.rows()==m.cols())
+ CALL_SUBTEST(( svd_test_all_computation_options<JacobiSVD<MatrixType, NoQRPreconditioner> >(m, false) ));
}
template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m)
{
- typedef typename MatrixType::Scalar Scalar;
+ svd_verify_assert<JacobiSVD<MatrixType> >(m);
typedef typename MatrixType::Index Index;
Index rows = m.rows();
Index cols = m.cols();
enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
- typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
-
- RhsType rhs(rows);
-
- JacobiSVD<MatrixType> svd;
- VERIFY_RAISES_ASSERT(svd.matrixU())
- VERIFY_RAISES_ASSERT(svd.singularValues())
- VERIFY_RAISES_ASSERT(svd.matrixV())
- VERIFY_RAISES_ASSERT(svd.solve(rhs))
MatrixType a = MatrixType::Zero(rows, cols);
a.setZero();
- svd.compute(a, 0);
- VERIFY_RAISES_ASSERT(svd.matrixU())
- VERIFY_RAISES_ASSERT(svd.matrixV())
- svd.singularValues();
- VERIFY_RAISES_ASSERT(svd.solve(rhs))
if (ColsAtCompileTime == Dynamic)
{
- svd.compute(a, ComputeThinU);
- svd.matrixU();
- VERIFY_RAISES_ASSERT(svd.matrixV())
- VERIFY_RAISES_ASSERT(svd.solve(rhs))
-
- svd.compute(a, ComputeThinV);
- svd.matrixV();
- VERIFY_RAISES_ASSERT(svd.matrixU())
- VERIFY_RAISES_ASSERT(svd.solve(rhs))
-
JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr;
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV))
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV))
VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV))
}
- else
- {
- VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
- VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
- }
}
template<typename MatrixType>
@@ -296,128 +70,17 @@ void jacobisvd_method()
VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m);
}
-// work around stupid msvc error when constructing at compile time an expression that involves
-// a division by zero, even if the numeric type has floating point
-template<typename Scalar>
-EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
-
-// workaround aggressive optimization in ICC
-template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
-
-template<typename MatrixType>
-void jacobisvd_inf_nan()
-{
- // all this function does is verify we don't iterate infinitely on nan/inf values
-
- JacobiSVD<MatrixType> svd;
- typedef typename MatrixType::Scalar Scalar;
- Scalar some_inf = Scalar(1) / zero<Scalar>();
- VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
- svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
-
- Scalar some_nan = zero<Scalar>() / zero<Scalar>();
- VERIFY(some_nan != some_nan);
- svd.compute(MatrixType::Constant(10,10,some_nan), ComputeFullU | ComputeFullV);
-
- MatrixType m = MatrixType::Zero(10,10);
- m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
- svd.compute(m, ComputeFullU | ComputeFullV);
-
- m = MatrixType::Zero(10,10);
- m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_nan;
- svd.compute(m, ComputeFullU | ComputeFullV);
-}
-
-// Regression test for bug 286: JacobiSVD loops indefinitely with some
-// matrices containing denormal numbers.
-void jacobisvd_underoverflow()
-{
-#if defined __INTEL_COMPILER
-// shut up warning #239: floating point underflow
-#pragma warning push
-#pragma warning disable 239
-#endif
- Matrix2d M;
- M << -7.90884e-313, -4.94e-324,
- 0, 5.60844e-313;
-#if defined __INTEL_COMPILER
-#pragma warning pop
-#endif
- JacobiSVD<Matrix2d> svd;
- svd.compute(M); // just check we don't loop indefinitely
-
- // Check for overflow:
- Matrix3d M3;
- M3 << 4.4331978442502944e+307, -5.8585363752028680e+307, 6.4527017443412964e+307,
- 3.7841695601406358e+307, 2.4331702789740617e+306, -3.5235707140272905e+307,
- -8.7190887618028355e+307, -7.3453213709232193e+307, -2.4367363684472105e+307;
-
- JacobiSVD<Matrix3d> svd3;
- svd3.compute(M3); // just check we don't loop indefinitely
-}
-
-void jacobisvd_preallocate()
-{
- Vector3f v(3.f, 2.f, 1.f);
- MatrixXf m = v.asDiagonal();
-
- internal::set_is_malloc_allowed(false);
- VERIFY_RAISES_ASSERT(VectorXf tmp(10);)
- JacobiSVD<MatrixXf> svd;
- internal::set_is_malloc_allowed(true);
- svd.compute(m);
- VERIFY_IS_APPROX(svd.singularValues(), v);
-
- JacobiSVD<MatrixXf> svd2(3,3);
- internal::set_is_malloc_allowed(false);
- svd2.compute(m);
- internal::set_is_malloc_allowed(true);
- VERIFY_IS_APPROX(svd2.singularValues(), v);
- VERIFY_RAISES_ASSERT(svd2.matrixU());
- VERIFY_RAISES_ASSERT(svd2.matrixV());
- svd2.compute(m, ComputeFullU | ComputeFullV);
- VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
- VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
- internal::set_is_malloc_allowed(false);
- svd2.compute(m);
- internal::set_is_malloc_allowed(true);
-
- JacobiSVD<MatrixXf> svd3(3,3,ComputeFullU|ComputeFullV);
- internal::set_is_malloc_allowed(false);
- svd2.compute(m);
- internal::set_is_malloc_allowed(true);
- VERIFY_IS_APPROX(svd2.singularValues(), v);
- VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
- VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
- internal::set_is_malloc_allowed(false);
- svd2.compute(m, ComputeFullU|ComputeFullV);
- internal::set_is_malloc_allowed(true);
-}
-
void test_jacobisvd()
{
CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) ));
CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) ));
CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) ));
CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) ));
+
+ svd_all_trivial_2x2(jacobisvd<Matrix2cd>);
+ svd_all_trivial_2x2(jacobisvd<Matrix2d>);
for(int i = 0; i < g_repeat; i++) {
- Matrix2cd m;
- m << 0, 1,
- 0, 1;
- CALL_SUBTEST_1(( jacobisvd(m, false) ));
- m << 1, 0,
- 1, 0;
- CALL_SUBTEST_1(( jacobisvd(m, false) ));
-
- Matrix2d n;
- n << 0, 0,
- 0, 0;
- CALL_SUBTEST_2(( jacobisvd(n, false) ));
- n << 0, 0,
- 0, 1;
- CALL_SUBTEST_2(( jacobisvd(n, false) ));
-
CALL_SUBTEST_3(( jacobisvd<Matrix3f>() ));
CALL_SUBTEST_4(( jacobisvd<Matrix4d>() ));
CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() ));
@@ -436,7 +99,8 @@ void test_jacobisvd()
(void) c;
// Test on inf/nan matrix
- CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() );
+ CALL_SUBTEST_7( (svd_inf_nan<JacobiSVD<MatrixXf>, MatrixXf>()) );
+ CALL_SUBTEST_10( (svd_inf_nan<JacobiSVD<MatrixXd>, MatrixXd>()) );
}
CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
@@ -450,8 +114,7 @@ void test_jacobisvd()
CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) );
// Check that preallocation avoids subsequent mallocs
- CALL_SUBTEST_9( jacobisvd_preallocate() );
+ CALL_SUBTEST_9( svd_preallocate() );
- // Regression check for bug 286
- CALL_SUBTEST_2( jacobisvd_underoverflow() );
+ CALL_SUBTEST_2( svd_underoverflow() );
}
diff --git a/test/linearstructure.cpp b/test/linearstructure.cpp
index 618984d5c..87dfa1b6b 100644
--- a/test/linearstructure.cpp
+++ b/test/linearstructure.cpp
@@ -2,11 +2,15 @@
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+static bool g_called;
+#define EIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN { g_called = true; }
+
#include "main.h"
template<typename MatrixType> void linearStructure(const MatrixType& m)
@@ -68,6 +72,24 @@ template<typename MatrixType> void linearStructure(const MatrixType& m)
VERIFY_IS_APPROX(m1.block(0,0,rows,cols) * s1, m1 * s1);
}
+// Make sure that complex * real and real * complex are properly optimized
+template<typename MatrixType> void real_complex(DenseIndex rows = MatrixType::RowsAtCompileTime, DenseIndex cols = MatrixType::ColsAtCompileTime)
+{
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+
+ RealScalar s = internal::random<RealScalar>();
+ MatrixType m1 = MatrixType::Random(rows, cols);
+
+ g_called = false;
+ VERIFY_IS_APPROX(s*m1, Scalar(s)*m1);
+ VERIFY(g_called && "real * matrix<complex> not properly optimized");
+
+ g_called = false;
+ VERIFY_IS_APPROX(m1*s, m1*Scalar(s));
+ VERIFY(g_called && "matrix<complex> * real not properly optimized");
+}
+
void test_linearstructure()
{
for(int i = 0; i < g_repeat; i++) {
@@ -80,5 +102,23 @@ void test_linearstructure()
CALL_SUBTEST_7( linearStructure(MatrixXi (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_8( linearStructure(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
CALL_SUBTEST_9( linearStructure(ArrayXXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+
+ CALL_SUBTEST_10( real_complex<Matrix4cd>() );
+ CALL_SUBTEST_10( real_complex<MatrixXcf>(10,10) );
+ }
+
+#ifdef EIGEN_TEST_PART_4
+ {
+ // make sure that /=scalar and /scalar do not overflow
+ // rational: 1.0/4.94e-320 overflow, but m/4.94e-320 should not
+ Matrix4d m2, m3;
+ m3 = m2 = Matrix4d::Random()*1e-20;
+ m2 = m2 / 4.9e-320;
+ VERIFY_IS_APPROX(m2.cwiseQuotient(m2), Matrix4d::Ones());
+ m3 /= 4.9e-320;
+ VERIFY_IS_APPROX(m3.cwiseQuotient(m3), Matrix4d::Ones());
+
+
}
+#endif
}
diff --git a/test/main.h b/test/main.h
index 7667eaa18..371c7e602 100644
--- a/test/main.h
+++ b/test/main.h
@@ -94,6 +94,9 @@ namespace Eigen
static bool g_has_set_repeat, g_has_set_seed;
}
+#define TRACK std::cerr << __FILE__ << " " << __LINE__ << std::endl
+// #define TRACK while()
+
#define EI_PP_MAKE_STRING2(S) #S
#define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S)
@@ -311,13 +314,7 @@ inline bool test_isApproxOrLessThan(const long double& a, const long double& b)
template<typename Type1, typename Type2>
inline bool test_isApprox(const Type1& a, const Type2& b)
{
-#ifdef EIGEN_TEST_EVALUATORS
- typename internal::eval<Type1>::type a_eval(a);
- typename internal::eval<Type2>::type b_eval(b);
- return a_eval.isApprox(b_eval, test_precision<typename Type1::Scalar>());
-#else
return a.isApprox(b, test_precision<typename Type1::Scalar>());
-#endif
}
// The idea behind this function is to compare the two scalars a and b where
diff --git a/test/mixingtypes.cpp b/test/mixingtypes.cpp
index 1e0e2d4c1..048f7255a 100644
--- a/test/mixingtypes.cpp
+++ b/test/mixingtypes.cpp
@@ -53,10 +53,11 @@ template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
mf+mf;
VERIFY_RAISES_ASSERT(mf+md);
VERIFY_RAISES_ASSERT(mf+mcf);
- VERIFY_RAISES_ASSERT(vf=vd);
- VERIFY_RAISES_ASSERT(vf+=vd);
- VERIFY_RAISES_ASSERT(mcd=md);
-
+ // the following do not even compile since the introduction of evaluators
+// VERIFY_RAISES_ASSERT(vf=vd);
+// VERIFY_RAISES_ASSERT(vf+=vd);
+// VERIFY_RAISES_ASSERT(mcd=md);
+
// check scalar products
VERIFY_IS_APPROX(vcf * sf , vcf * complex<float>(sf));
VERIFY_IS_APPROX(sd * vcd, complex<double>(sd) * vcd);
diff --git a/test/nesting_ops.cpp b/test/nesting_ops.cpp
index 1e8523283..6e772c70f 100644
--- a/test/nesting_ops.cpp
+++ b/test/nesting_ops.cpp
@@ -11,7 +11,7 @@
template <typename MatrixType> void run_nesting_ops(const MatrixType& _m)
{
- typename MatrixType::Nested m(_m);
+ typename internal::nested_eval<MatrixType,2>::type m(_m);
// Make really sure that we are in debug mode!
VERIFY_RAISES_ASSERT(eigen_assert(false));
diff --git a/test/product.h b/test/product.h
index 856b234ac..0b3abe402 100644
--- a/test/product.h
+++ b/test/product.h
@@ -139,4 +139,12 @@ template<typename MatrixType> void product(const MatrixType& m)
// inner product
Scalar x = square2.row(c) * square2.col(c2);
VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum());
+
+ // outer product
+ VERIFY_IS_APPROX(m1.col(c) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
+ VERIFY_IS_APPROX(m1.row(r).transpose() * m1.col(c).transpose(), m1.block(r,0,1,cols).transpose() * m1.block(0,c,rows,1).transpose());
+ VERIFY_IS_APPROX(m1.block(0,c,rows,1) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
+ VERIFY_IS_APPROX(m1.col(c) * m1.block(r,0,1,cols), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
+ VERIFY_IS_APPROX(m1.leftCols(1) * m1.row(r), m1.block(0,0,rows,1) * m1.block(r,0,1,cols));
+ VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0,c,rows,1) * m1.block(0,0,1,cols));
}
diff --git a/test/product_mmtr.cpp b/test/product_mmtr.cpp
index 7d6746800..92e6b668f 100644
--- a/test/product_mmtr.cpp
+++ b/test/product_mmtr.cpp
@@ -13,7 +13,8 @@
ref2 = ref1 = DEST; \
DEST.template triangularView<TRI>() OP; \
ref1 OP; \
- ref2.template triangularView<TRI>() = ref1; \
+ ref2.template triangularView<TRI>() \
+ = ref1.template triangularView<TRI>(); \
VERIFY_IS_APPROX(DEST,ref2); \
}
diff --git a/test/product_notemporary.cpp b/test/product_notemporary.cpp
index 3a9df618b..805cc8939 100644
--- a/test/product_notemporary.cpp
+++ b/test/product_notemporary.cpp
@@ -113,8 +113,7 @@ template<typename MatrixType> void product_notemporary(const MatrixType& m)
VERIFY_EVALUATION_COUNT( Scalar tmp = 0; tmp += Scalar(RealScalar(1)) / (m3.transpose() * m3).diagonal().array().abs().sum(), 0 );
// Zero temporaries for ... CoeffBasedProductMode
- // - does not work with GCC because of the <..>, we'ld need variadic macros ...
- //VERIFY_EVALUATION_COUNT( m3.col(0).head<5>() * m3.col(0).transpose() + m3.col(0).head<5>() * m3.col(0).transpose(), 0 );
+ VERIFY_EVALUATION_COUNT( m3.col(0).template head<5>() * m3.col(0).transpose() + m3.col(0).template head<5>() * m3.col(0).transpose(), 0 );
// Check matrix * vectors
VERIFY_EVALUATION_COUNT( cvres.noalias() = m1 * cv1, 0 );
diff --git a/test/qr_fullpivoting.cpp b/test/qr_fullpivoting.cpp
index 511f2473f..601773404 100644
--- a/test/qr_fullpivoting.cpp
+++ b/test/qr_fullpivoting.cpp
@@ -40,7 +40,11 @@ template<typename MatrixType> void qr()
MatrixType c = qr.matrixQ() * r * qr.colsPermutation().inverse();
VERIFY_IS_APPROX(m1, c);
-
+
+ // stress the ReturnByValue mechanism
+ MatrixType tmp;
+ VERIFY_IS_APPROX(tmp.noalias() = qr.matrixQ() * r, (qr.matrixQ() * r).eval());
+
MatrixType m2 = MatrixType::Random(cols,cols2);
MatrixType m3 = m1*m2;
m2 = MatrixType::Random(cols,cols2);
diff --git a/test/sparse_basic.cpp b/test/sparse_basic.cpp
index 4c9b9111e..c86534bad 100644
--- a/test/sparse_basic.cpp
+++ b/test/sparse_basic.cpp
@@ -201,9 +201,9 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
VERIFY(m3.innerVector(j0).nonZeros() == m3.transpose().innerVector(j0).nonZeros());
- //m2.innerVector(j0) = 2*m2.innerVector(j1);
- //refMat2.col(j0) = 2*refMat2.col(j1);
- //VERIFY_IS_APPROX(m2, refMat2);
+// m2.innerVector(j0) = 2*m2.innerVector(j1);
+// refMat2.col(j0) = 2*refMat2.col(j1);
+// VERIFY_IS_APPROX(m2, refMat2);
}
// test innerVectors()
@@ -239,7 +239,7 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
VERIFY_IS_APPROX(m2, refMat2);
}
-
+
// test basic computations
{
DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
@@ -255,6 +255,7 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
initSparse<Scalar>(density, refM3, m3);
initSparse<Scalar>(density, refM4, m4);
+ VERIFY_IS_APPROX(m1*s1, refM1*s1);
VERIFY_IS_APPROX(m1+m2, refM1+refM2);
VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
diff --git a/test/sparse_product.cpp b/test/sparse_product.cpp
index 0f52164c8..fa9be5440 100644
--- a/test/sparse_product.cpp
+++ b/test/sparse_product.cpp
@@ -19,7 +19,7 @@ template<typename SparseMatrixType> void sparse_product()
typedef typename SparseMatrixType::Scalar Scalar;
enum { Flags = SparseMatrixType::Flags };
- double density = (std::max)(8./(rows*cols), 0.1);
+ double density = (std::max)(8./(rows*cols), 0.2);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
typedef Matrix<Scalar,1,Dynamic> RowDenseVector;
@@ -77,17 +77,27 @@ template<typename SparseMatrixType> void sparse_product()
m4 = m2; refMat4 = refMat2;
VERIFY_IS_APPROX(m4=m4*m3, refMat4=refMat4*refMat3);
- // sparse * dense
+ // sparse * dense matrix
VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
VERIFY_IS_APPROX(dm4=m2*refMat3t.transpose(), refMat4=refMat2*refMat3t.transpose());
VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3, refMat4=refMat2t.transpose()*refMat3);
VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
+ VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
+ VERIFY_IS_APPROX(dm4=dm4+m2*refMat3, refMat4=refMat4+refMat2*refMat3);
VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3));
VERIFY_IS_APPROX(dm4=m2t.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2t.transpose()*(refMat3+refMat5)*0.5);
+
+ // sparse * dense vector
+ VERIFY_IS_APPROX(dm4.col(0)=m2*refMat3.col(0), refMat4.col(0)=refMat2*refMat3.col(0));
+ VERIFY_IS_APPROX(dm4.col(0)=m2*refMat3t.transpose().col(0), refMat4.col(0)=refMat2*refMat3t.transpose().col(0));
+ VERIFY_IS_APPROX(dm4.col(0)=m2t.transpose()*refMat3.col(0), refMat4.col(0)=refMat2t.transpose()*refMat3.col(0));
+ VERIFY_IS_APPROX(dm4.col(0)=m2t.transpose()*refMat3t.transpose().col(0), refMat4.col(0)=refMat2t.transpose()*refMat3t.transpose().col(0));
// dense * sparse
VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3);
+ VERIFY_IS_APPROX(dm4=dm4+refMat2*m3, refMat4=refMat4+refMat2*refMat3);
+ VERIFY_IS_APPROX(dm4+=refMat2*m3, refMat4+=refMat2*refMat3);
VERIFY_IS_APPROX(dm4=refMat2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose());
VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3);
VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
@@ -99,7 +109,7 @@ template<typename SparseMatrixType> void sparse_product()
Index c1 = internal::random<Index>(0,cols-1);
Index r1 = internal::random<Index>(0,depth-1);
DenseMatrix dm5 = DenseMatrix::Random(depth, cols);
-
+
VERIFY_IS_APPROX( m4=m2.col(c)*dm5.col(c1).transpose(), refMat4=refMat2.col(c)*dm5.col(c1).transpose());
VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
VERIFY_IS_APPROX( m4=m2.middleCols(c,1)*dm5.col(c1).transpose(), refMat4=refMat2.col(c)*dm5.col(c1).transpose());
@@ -143,11 +153,11 @@ template<typename SparseMatrixType> void sparse_product()
RowSpVector rv0(depth), rv1;
RowDenseVector drv0(depth), drv1(rv1);
initSparse(2*density,drv0, rv0);
-
- VERIFY_IS_APPROX(cv1=rv0*m3, dcv1=drv0*refMat3);
+
+ VERIFY_IS_APPROX(cv1=m3*cv0, dcv1=refMat3*dcv0);
VERIFY_IS_APPROX(rv1=rv0*m3, drv1=drv0*refMat3);
- VERIFY_IS_APPROX(cv1=m3*cv0, dcv1=refMat3*dcv0);
VERIFY_IS_APPROX(cv1=m3t.adjoint()*cv0, dcv1=refMat3t.adjoint()*dcv0);
+ VERIFY_IS_APPROX(cv1=rv0*m3, dcv1=drv0*refMat3);
VERIFY_IS_APPROX(rv1=m3*cv0, drv1=refMat3*dcv0);
}
diff --git a/test/sparse_vector.cpp b/test/sparse_vector.cpp
index 0c9476803..5eea9edfd 100644
--- a/test/sparse_vector.cpp
+++ b/test/sparse_vector.cpp
@@ -71,6 +71,7 @@ template<typename Scalar,typename Index> void sparse_vector(int rows, int cols)
VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2));
VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2));
+ VERIFY_IS_APPROX(m1*v2, refM1*refV2);
VERIFY_IS_APPROX(v1.dot(m1*v2), refV1.dot(refM1*refV2));
int i = internal::random<int>(0,rows-1);
VERIFY_IS_APPROX(v1.dot(m1.col(i)), refV1.dot(refM1.col(i)));
diff --git a/test/stable_norm.cpp b/test/stable_norm.cpp
index 549f91fbf..6cd65c64a 100644
--- a/test/stable_norm.cpp
+++ b/test/stable_norm.cpp
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -14,6 +14,21 @@ template<typename T> bool isNotNaN(const T& x)
return x==x;
}
+template<typename T> bool isNaN(const T& x)
+{
+ return x!=x;
+}
+
+template<typename T> bool isInf(const T& x)
+{
+ return x > NumTraits<T>::highest();
+}
+
+template<typename T> bool isMinusInf(const T& x)
+{
+ return x < NumTraits<T>::lowest();
+}
+
// workaround aggressive optimization in ICC
template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
@@ -106,6 +121,58 @@ template<typename MatrixType> void stable_norm(const MatrixType& m)
VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm());
VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm());
VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm());
+
+ // test NaN, +inf, -inf
+ MatrixType v;
+ Index i = internal::random<Index>(0,rows-1);
+ Index j = internal::random<Index>(0,cols-1);
+
+ // NaN
+ {
+ v = vrand;
+ v(i,j) = std::numeric_limits<RealScalar>::quiet_NaN();
+ VERIFY(!isFinite(v.squaredNorm())); VERIFY(isNaN(v.squaredNorm()));
+ VERIFY(!isFinite(v.norm())); VERIFY(isNaN(v.norm()));
+ VERIFY(!isFinite(v.stableNorm())); VERIFY(isNaN(v.stableNorm()));
+ VERIFY(!isFinite(v.blueNorm())); VERIFY(isNaN(v.blueNorm()));
+ VERIFY(!isFinite(v.hypotNorm())); VERIFY(isNaN(v.hypotNorm()));
+ }
+
+ // +inf
+ {
+ v = vrand;
+ v(i,j) = std::numeric_limits<RealScalar>::infinity();
+ VERIFY(!isFinite(v.squaredNorm())); VERIFY(isInf(v.squaredNorm()));
+ VERIFY(!isFinite(v.norm())); VERIFY(isInf(v.norm()));
+ VERIFY(!isFinite(v.stableNorm())); VERIFY(isInf(v.stableNorm()));
+ VERIFY(!isFinite(v.blueNorm())); VERIFY(isInf(v.blueNorm()));
+ VERIFY(!isFinite(v.hypotNorm())); VERIFY(isInf(v.hypotNorm()));
+ }
+
+ // -inf
+ {
+ v = vrand;
+ v(i,j) = -std::numeric_limits<RealScalar>::infinity();
+ VERIFY(!isFinite(v.squaredNorm())); VERIFY(isInf(v.squaredNorm()));
+ VERIFY(!isFinite(v.norm())); VERIFY(isInf(v.norm()));
+ VERIFY(!isFinite(v.stableNorm())); VERIFY(isInf(v.stableNorm()));
+ VERIFY(!isFinite(v.blueNorm())); VERIFY(isInf(v.blueNorm()));
+ VERIFY(!isFinite(v.hypotNorm())); VERIFY(isInf(v.hypotNorm()));
+ }
+
+ // mix
+ {
+ Index i2 = internal::random<Index>(0,rows-1);
+ Index j2 = internal::random<Index>(0,cols-1);
+ v = vrand;
+ v(i,j) = -std::numeric_limits<RealScalar>::infinity();
+ v(i2,j2) = std::numeric_limits<RealScalar>::quiet_NaN();
+ VERIFY(!isFinite(v.squaredNorm())); VERIFY(isNaN(v.squaredNorm()));
+ VERIFY(!isFinite(v.norm())); VERIFY(isNaN(v.norm()));
+ VERIFY(!isFinite(v.stableNorm())); VERIFY(isNaN(v.stableNorm()));
+ VERIFY(!isFinite(v.blueNorm())); VERIFY(isNaN(v.blueNorm()));
+ VERIFY(!isFinite(v.hypotNorm())); VERIFY(isNaN(v.hypotNorm()));
+ }
}
void test_stable_norm()
diff --git a/test/svd_common.h b/test/svd_common.h
new file mode 100644
index 000000000..4631939e5
--- /dev/null
+++ b/test/svd_common.h
@@ -0,0 +1,454 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef SVD_DEFAULT
+#error a macro SVD_DEFAULT(MatrixType) must be defined prior to including svd_common.h
+#endif
+
+#ifndef SVD_FOR_MIN_NORM
+#error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h
+#endif
+
+// Check that the matrix m is properly reconstructed and that the U and V factors are unitary
+// The SVD must have already been computed.
+template<typename SvdType, typename MatrixType>
+void svd_check_full(const MatrixType& m, const SvdType& svd)
+{
+ typedef typename MatrixType::Index Index;
+ Index rows = m.rows();
+ Index cols = m.cols();
+
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime
+ };
+
+ typedef typename MatrixType::Scalar Scalar;
+ typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
+ typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
+
+ MatrixType sigma = MatrixType::Zero(rows,cols);
+ sigma.diagonal() = svd.singularValues().template cast<Scalar>();
+ MatrixUType u = svd.matrixU();
+ MatrixVType v = svd.matrixV();
+
+ VERIFY_IS_APPROX(m, u * sigma * v.adjoint());
+ VERIFY_IS_UNITARY(u);
+ VERIFY_IS_UNITARY(v);
+}
+
+// Compare partial SVD defined by computationOptions to a full SVD referenceSvd
+template<typename SvdType, typename MatrixType>
+void svd_compare_to_full(const MatrixType& m,
+ unsigned int computationOptions,
+ const SvdType& referenceSvd)
+{
+ typedef typename MatrixType::Index Index;
+ Index rows = m.rows();
+ Index cols = m.cols();
+ Index diagSize = (std::min)(rows, cols);
+
+ SvdType svd(m, computationOptions);
+
+ VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
+ if(computationOptions & ComputeFullU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
+ if(computationOptions & ComputeThinU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
+ if(computationOptions & ComputeFullV) VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV());
+ if(computationOptions & ComputeThinV) VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
+}
+
+//
+template<typename SvdType, typename MatrixType>
+void svd_least_square(const MatrixType& m, unsigned int computationOptions)
+{
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef typename MatrixType::Index Index;
+ Index rows = m.rows();
+ Index cols = m.cols();
+
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime
+ };
+
+ typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
+ typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
+
+ RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
+ SvdType svd(m, computationOptions);
+
+ if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8);
+ else if(internal::is_same<RealScalar,float>::value) svd.setThreshold(1e-4);
+
+ SolutionType x = svd.solve(rhs);
+
+ RealScalar residual = (m*x-rhs).norm();
+ // Check that there is no significantly better solution in the neighborhood of x
+ if(!test_isMuchSmallerThan(residual,rhs.norm()))
+ {
+ // If the residual is very small, then we have an exact solution, so we are already good.
+ for(int k=0;k<x.rows();++k)
+ {
+ SolutionType y(x);
+ y.row(k).array() += 2*NumTraits<RealScalar>::epsilon();
+ RealScalar residual_y = (m*y-rhs).norm();
+ VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
+
+ y.row(k) = x.row(k).array() - 2*NumTraits<RealScalar>::epsilon();
+ residual_y = (m*y-rhs).norm();
+ VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
+ }
+ }
+
+ // evaluate normal equation which works also for least-squares solutions
+ if(internal::is_same<RealScalar,double>::value)
+ {
+ // This test is not stable with single precision.
+ // This is probably because squaring m signicantly affects the precision.
+ VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
+ }
+}
+
+// check minimal norm solutions, the inoput matrix m is only used to recover problem size
+template<typename MatrixType>
+void svd_min_norm(const MatrixType& m, unsigned int computationOptions)
+{
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Index Index;
+ Index cols = m.cols();
+
+ enum {
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime
+ };
+
+ typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
+
+ // generate a full-rank m x n problem with m<n
+ enum {
+ RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1,
+ RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1
+ };
+ typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2;
+ typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2;
+ typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T;
+ Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2);
+ MatrixType2 m2(rank,cols);
+ int guard = 0;
+ do {
+ m2.setRandom();
+ } while(SVD_FOR_MIN_NORM(MatrixType2)(m2).setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10);
+ VERIFY(guard<10);
+ RhsType2 rhs2 = RhsType2::Random(rank);
+ // use QR to find a reference minimal norm solution
+ HouseholderQR<MatrixType2T> qr(m2.adjoint());
+ Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2);
+ tmp.conservativeResize(cols);
+ tmp.tail(cols-rank).setZero();
+ SolutionType x21 = qr.householderQ() * tmp;
+ // now check with SVD
+ SVD_FOR_MIN_NORM(MatrixType2) svd2(m2, computationOptions);
+ SolutionType x22 = svd2.solve(rhs2);
+ VERIFY_IS_APPROX(m2*x21, rhs2);
+ VERIFY_IS_APPROX(m2*x22, rhs2);
+ VERIFY_IS_APPROX(x21, x22);
+
+ // Now check with a rank deficient matrix
+ typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3;
+ typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3;
+ Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3);
+ Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank);
+ MatrixType3 m3 = C * m2;
+ RhsType3 rhs3 = C * rhs2;
+ SVD_FOR_MIN_NORM(MatrixType3) svd3(m3, computationOptions);
+ SolutionType x3 = svd3.solve(rhs3);
+ VERIFY_IS_APPROX(m3*x3, rhs3);
+ VERIFY_IS_APPROX(m3*x21, rhs3);
+ VERIFY_IS_APPROX(m2*x3, rhs2);
+
+ VERIFY_IS_APPROX(x21, x3);
+}
+
+// Check full, compare_to_full, least_square, and min_norm for all possible compute-options
+template<typename SvdType, typename MatrixType>
+void svd_test_all_computation_options(const MatrixType& m, bool full_only)
+{
+// if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
+// return;
+ SvdType fullSvd(m, ComputeFullU|ComputeFullV);
+ CALL_SUBTEST(( svd_check_full(m, fullSvd) ));
+ CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeFullV) ));
+ CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeFullV) ));
+
+ #if defined __INTEL_COMPILER
+ // remark #111: statement is unreachable
+ #pragma warning disable 111
+ #endif
+ if(full_only)
+ return;
+
+ CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU, fullSvd) ));
+ CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullV, fullSvd) ));
+ CALL_SUBTEST(( svd_compare_to_full(m, 0, fullSvd) ));
+
+ if (MatrixType::ColsAtCompileTime == Dynamic) {
+ // thin U/V are only available with dynamic number of columns
+ CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) ));
+ CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinV, fullSvd) ));
+ CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) ));
+ CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU , fullSvd) ));
+ CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) ));
+
+ CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeThinV) ));
+ CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeFullV) ));
+ CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeThinV) ));
+
+ CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeThinV) ));
+ CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeFullV) ));
+ CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeThinV) ));
+
+ // test reconstruction
+ typedef typename MatrixType::Index Index;
+ Index diagSize = (std::min)(m.rows(), m.cols());
+ SvdType svd(m, ComputeThinU | ComputeThinV);
+ VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
+ }
+}
+
+template<typename MatrixType>
+void svd_fill_random(MatrixType &m)
+{
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef typename MatrixType::Index Index;
+ Index diagSize = (std::min)(m.rows(), m.cols());
+ RealScalar s = std::numeric_limits<RealScalar>::max_exponent10/4;
+ s = internal::random<RealScalar>(1,s);
+ Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(diagSize);
+ for(Index k=0; k<diagSize; ++k)
+ d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
+ m = Matrix<Scalar,Dynamic,Dynamic>::Random(m.rows(),diagSize) * d.asDiagonal() * Matrix<Scalar,Dynamic,Dynamic>::Random(diagSize,m.cols());
+ // cancel some coeffs
+ Index n = internal::random<Index>(0,m.size()-1);
+ for(Index i=0; i<n; ++i)
+ m(internal::random<Index>(0,m.rows()-1), internal::random<Index>(0,m.cols()-1)) = Scalar(0);
+}
+
+
+// work around stupid msvc error when constructing at compile time an expression that involves
+// a division by zero, even if the numeric type has floating point
+template<typename Scalar>
+EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
+
+// workaround aggressive optimization in ICC
+template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
+
+// all this function does is verify we don't iterate infinitely on nan/inf values
+template<typename SvdType, typename MatrixType>
+void svd_inf_nan()
+{
+ SvdType svd;
+ typedef typename MatrixType::Scalar Scalar;
+ Scalar some_inf = Scalar(1) / zero<Scalar>();
+ VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
+ svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
+
+ Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
+ VERIFY(nan != nan);
+ svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV);
+
+ MatrixType m = MatrixType::Zero(10,10);
+ m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
+ svd.compute(m, ComputeFullU | ComputeFullV);
+
+ m = MatrixType::Zero(10,10);
+ m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan;
+ svd.compute(m, ComputeFullU | ComputeFullV);
+
+ // regression test for bug 791
+ m.resize(3,3);
+ m << 0, 2*NumTraits<Scalar>::epsilon(), 0.5,
+ 0, -0.5, 0,
+ nan, 0, 0;
+ svd.compute(m, ComputeFullU | ComputeFullV);
+
+ m.resize(4,4);
+ m << 1, 0, 0, 0,
+ 0, 3, 1, 2e-308,
+ 1, 0, 1, nan,
+ 0, nan, nan, 0;
+ svd.compute(m, ComputeFullU | ComputeFullV);
+}
+
+// Regression test for bug 286: JacobiSVD loops indefinitely with some
+// matrices containing denormal numbers.
+void svd_underoverflow()
+{
+#if defined __INTEL_COMPILER
+// shut up warning #239: floating point underflow
+#pragma warning push
+#pragma warning disable 239
+#endif
+ Matrix2d M;
+ M << -7.90884e-313, -4.94e-324,
+ 0, 5.60844e-313;
+ SVD_DEFAULT(Matrix2d) svd;
+ svd.compute(M,ComputeFullU|ComputeFullV);
+ svd_check_full(M,svd);
+
+ // Check all 2x2 matrices made with the following coefficients:
+ VectorXd value_set(9);
+ value_set << 0, 1, -1, 5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324, -4.94e-223, 4.94e-223;
+ Array4i id(0,0,0,0);
+ int k = 0;
+ do
+ {
+ M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
+ svd.compute(M,ComputeFullU|ComputeFullV);
+ svd_check_full(M,svd);
+
+ id(k)++;
+ if(id(k)>=value_set.size())
+ {
+ while(k<3 && id(k)>=value_set.size()) id(++k)++;
+ id.head(k).setZero();
+ k=0;
+ }
+
+ } while((id<int(value_set.size())).all());
+
+#if defined __INTEL_COMPILER
+#pragma warning pop
+#endif
+
+ // Check for overflow:
+ Matrix3d M3;
+ M3 << 4.4331978442502944e+307, -5.8585363752028680e+307, 6.4527017443412964e+307,
+ 3.7841695601406358e+307, 2.4331702789740617e+306, -3.5235707140272905e+307,
+ -8.7190887618028355e+307, -7.3453213709232193e+307, -2.4367363684472105e+307;
+
+ SVD_DEFAULT(Matrix3d) svd3;
+ svd3.compute(M3,ComputeFullU|ComputeFullV); // just check we don't loop indefinitely
+ svd_check_full(M3,svd3);
+}
+
+// void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
+
+template<typename MatrixType>
+void svd_all_trivial_2x2( void (*cb)(const MatrixType&,bool) )
+{
+ MatrixType M;
+ VectorXd value_set(3);
+ value_set << 0, 1, -1;
+ Array4i id(0,0,0,0);
+ int k = 0;
+ do
+ {
+ M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
+
+ cb(M,false);
+
+ id(k)++;
+ if(id(k)>=value_set.size())
+ {
+ while(k<3 && id(k)>=value_set.size()) id(++k)++;
+ id.head(k).setZero();
+ k=0;
+ }
+
+ } while((id<int(value_set.size())).all());
+}
+
+void svd_preallocate()
+{
+ Vector3f v(3.f, 2.f, 1.f);
+ MatrixXf m = v.asDiagonal();
+
+ internal::set_is_malloc_allowed(false);
+ VERIFY_RAISES_ASSERT(VectorXf tmp(10);)
+ SVD_DEFAULT(MatrixXf) svd;
+ internal::set_is_malloc_allowed(true);
+ svd.compute(m);
+ VERIFY_IS_APPROX(svd.singularValues(), v);
+
+ SVD_DEFAULT(MatrixXf) svd2(3,3);
+ internal::set_is_malloc_allowed(false);
+ svd2.compute(m);
+ internal::set_is_malloc_allowed(true);
+ VERIFY_IS_APPROX(svd2.singularValues(), v);
+ VERIFY_RAISES_ASSERT(svd2.matrixU());
+ VERIFY_RAISES_ASSERT(svd2.matrixV());
+ svd2.compute(m, ComputeFullU | ComputeFullV);
+ VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
+ VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
+ internal::set_is_malloc_allowed(false);
+ svd2.compute(m);
+ internal::set_is_malloc_allowed(true);
+
+ SVD_DEFAULT(MatrixXf) svd3(3,3,ComputeFullU|ComputeFullV);
+ internal::set_is_malloc_allowed(false);
+ svd2.compute(m);
+ internal::set_is_malloc_allowed(true);
+ VERIFY_IS_APPROX(svd2.singularValues(), v);
+ VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
+ VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
+ internal::set_is_malloc_allowed(false);
+ svd2.compute(m, ComputeFullU|ComputeFullV);
+ internal::set_is_malloc_allowed(true);
+}
+
+template<typename SvdType,typename MatrixType>
+void svd_verify_assert(const MatrixType& m)
+{
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Index Index;
+ Index rows = m.rows();
+ Index cols = m.cols();
+
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime
+ };
+
+ typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
+ RhsType rhs(rows);
+ SvdType svd;
+ VERIFY_RAISES_ASSERT(svd.matrixU())
+ VERIFY_RAISES_ASSERT(svd.singularValues())
+ VERIFY_RAISES_ASSERT(svd.matrixV())
+ VERIFY_RAISES_ASSERT(svd.solve(rhs))
+ MatrixType a = MatrixType::Zero(rows, cols);
+ a.setZero();
+ svd.compute(a, 0);
+ VERIFY_RAISES_ASSERT(svd.matrixU())
+ VERIFY_RAISES_ASSERT(svd.matrixV())
+ svd.singularValues();
+ VERIFY_RAISES_ASSERT(svd.solve(rhs))
+
+ if (ColsAtCompileTime == Dynamic)
+ {
+ svd.compute(a, ComputeThinU);
+ svd.matrixU();
+ VERIFY_RAISES_ASSERT(svd.matrixV())
+ VERIFY_RAISES_ASSERT(svd.solve(rhs))
+ svd.compute(a, ComputeThinV);
+ svd.matrixV();
+ VERIFY_RAISES_ASSERT(svd.matrixU())
+ VERIFY_RAISES_ASSERT(svd.solve(rhs))
+ }
+ else
+ {
+ VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
+ VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
+ }
+}
+
+#undef SVD_DEFAULT
+#undef SVD_FOR_MIN_NORM
diff --git a/test/upperbidiagonalization.cpp b/test/upperbidiagonalization.cpp
index d15bf588b..847b34b55 100644
--- a/test/upperbidiagonalization.cpp
+++ b/test/upperbidiagonalization.cpp
@@ -35,7 +35,7 @@ void test_upperbidiagonalization()
CALL_SUBTEST_1( upperbidiag(MatrixXf(3,3)) );
CALL_SUBTEST_2( upperbidiag(MatrixXd(17,12)) );
CALL_SUBTEST_3( upperbidiag(MatrixXcf(20,20)) );
- CALL_SUBTEST_4( upperbidiag(MatrixXcd(16,15)) );
+ CALL_SUBTEST_4( upperbidiag(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(16,15)) );
CALL_SUBTEST_5( upperbidiag(Matrix<float,6,4>()) );
CALL_SUBTEST_6( upperbidiag(Matrix<float,5,5>()) );
CALL_SUBTEST_7( upperbidiag(Matrix<double,4,3>()) );
diff --git a/test/vectorization_logic.cpp b/test/vectorization_logic.cpp
index b069f0771..2f839cf51 100644
--- a/test/vectorization_logic.cpp
+++ b/test/vectorization_logic.cpp
@@ -27,19 +27,37 @@ std::string demangle_unrolling(int t)
if(t==CompleteUnrolling) return "CompleteUnrolling";
return "?";
}
+std::string demangle_flags(int f)
+{
+ std::string res;
+ if(f&RowMajorBit) res += " | RowMajor";
+ if(f&PacketAccessBit) res += " | Packet";
+ if(f&LinearAccessBit) res += " | Linear";
+ if(f&LvalueBit) res += " | Lvalue";
+ if(f&DirectAccessBit) res += " | Direct";
+ if(f&AlignedBit) res += " | Aligned";
+ if(f&NestByRefBit) res += " | NestByRef";
+ if(f&NoPreferredStorageOrderBit) res += " | NoPreferredStorageOrderBit";
+
+ return res;
+}
template<typename Dst, typename Src>
bool test_assign(const Dst&, const Src&, int traversal, int unrolling)
{
- internal::assign_traits<Dst,Src>::debug();
- bool res = internal::assign_traits<Dst,Src>::Traversal==traversal
- && internal::assign_traits<Dst,Src>::Unrolling==unrolling;
+ typedef internal::copy_using_evaluator_traits<internal::evaluator<Dst>,internal::evaluator<Src>, internal::assign_op<typename Dst::Scalar> > traits;
+ bool res = traits::Traversal==traversal && traits::Unrolling==unrolling;
if(!res)
{
+ std::cerr << "Src: " << demangle_flags(Src::Flags) << std::endl;
+ std::cerr << " " << demangle_flags(internal::evaluator<Src>::Flags) << std::endl;
+ std::cerr << "Dst: " << demangle_flags(Dst::Flags) << std::endl;
+ std::cerr << " " << demangle_flags(internal::evaluator<Dst>::Flags) << std::endl;
+ traits::debug();
std::cerr << " Expected Traversal == " << demangle_traversal(traversal)
- << " got " << demangle_traversal(internal::assign_traits<Dst,Src>::Traversal) << "\n";
+ << " got " << demangle_traversal(traits::Traversal) << "\n";
std::cerr << " Expected Unrolling == " << demangle_unrolling(unrolling)
- << " got " << demangle_unrolling(internal::assign_traits<Dst,Src>::Unrolling) << "\n";
+ << " got " << demangle_unrolling(traits::Unrolling) << "\n";
}
return res;
}
@@ -47,15 +65,19 @@ bool test_assign(const Dst&, const Src&, int traversal, int unrolling)
template<typename Dst, typename Src>
bool test_assign(int traversal, int unrolling)
{
- internal::assign_traits<Dst,Src>::debug();
- bool res = internal::assign_traits<Dst,Src>::Traversal==traversal
- && internal::assign_traits<Dst,Src>::Unrolling==unrolling;
+ typedef internal::copy_using_evaluator_traits<internal::evaluator<Dst>,internal::evaluator<Src>, internal::assign_op<typename Dst::Scalar> > traits;
+ bool res = traits::Traversal==traversal && traits::Unrolling==unrolling;
if(!res)
{
+ std::cerr << "Src: " << demangle_flags(Src::Flags) << std::endl;
+ std::cerr << " " << demangle_flags(internal::evaluator<Src>::Flags) << std::endl;
+ std::cerr << "Dst: " << demangle_flags(Dst::Flags) << std::endl;
+ std::cerr << " " << demangle_flags(internal::evaluator<Dst>::Flags) << std::endl;
+ traits::debug();
std::cerr << " Expected Traversal == " << demangle_traversal(traversal)
- << " got " << demangle_traversal(internal::assign_traits<Dst,Src>::Traversal) << "\n";
+ << " got " << demangle_traversal(traits::Traversal) << "\n";
std::cerr << " Expected Unrolling == " << demangle_unrolling(unrolling)
- << " got " << demangle_unrolling(internal::assign_traits<Dst,Src>::Unrolling) << "\n";
+ << " got " << demangle_unrolling(traits::Unrolling) << "\n";
}
return res;
}
@@ -63,10 +85,15 @@ bool test_assign(int traversal, int unrolling)
template<typename Xpr>
bool test_redux(const Xpr&, int traversal, int unrolling)
{
- typedef internal::redux_traits<internal::scalar_sum_op<typename Xpr::Scalar>,Xpr> traits;
+ typedef internal::redux_traits<internal::scalar_sum_op<typename Xpr::Scalar>,internal::redux_evaluator<Xpr> > traits;
+
bool res = traits::Traversal==traversal && traits::Unrolling==unrolling;
if(!res)
{
+ std::cerr << demangle_flags(Xpr::Flags) << std::endl;
+ std::cerr << demangle_flags(internal::evaluator<Xpr>::Flags) << std::endl;
+ traits::debug();
+
std::cerr << " Expected Traversal == " << demangle_traversal(traversal)
<< " got " << demangle_traversal(traits::Traversal) << "\n";
std::cerr << " Expected Unrolling == " << demangle_unrolling(unrolling)
diff --git a/test/vectorwiseop.cpp b/test/vectorwiseop.cpp
index 6cd1acdda..1631d54c4 100644
--- a/test/vectorwiseop.cpp
+++ b/test/vectorwiseop.cpp
@@ -104,8 +104,8 @@ template<typename ArrayType> void vectorwiseop_array(const ArrayType& m)
m2 = m1;
// yes, there might be an aliasing issue there but ".rowwise() /="
- // is suppposed to evaluate " m2.colwise().sum()" into to temporary to avoid
- // evaluating the reducions multiple times
+ // is supposed to evaluate " m2.colwise().sum()" into a temporary to avoid
+ // evaluating the reduction multiple times
if(ArrayType::RowsAtCompileTime>2 || ArrayType::RowsAtCompileTime==Dynamic)
{
m2.rowwise() /= m2.colwise().sum();
diff --git a/unsupported/Eigen/AlignedVector3 b/unsupported/Eigen/AlignedVector3
index 7b45e6cce..35493e87b 100644
--- a/unsupported/Eigen/AlignedVector3
+++ b/unsupported/Eigen/AlignedVector3
@@ -57,6 +57,10 @@ template<typename _Scalar> class AlignedVector3
inline Index rows() const { return 3; }
inline Index cols() const { return 1; }
+
+ Scalar* data() { return m_coeffs.data(); }
+ const Scalar* data() const { return m_coeffs.data(); }
+ Index innerStride() const { return 1; }
inline const Scalar& coeff(Index row, Index col) const
{ return m_coeffs.coeff(row, col); }
@@ -181,8 +185,28 @@ template<typename _Scalar> class AlignedVector3
{
return m_coeffs.template head<3>().isApprox(other,eps);
}
+
+ CoeffType& coeffs() { return m_coeffs; }
+ const CoeffType& coeffs() const { return m_coeffs; }
};
+namespace internal {
+
+template<typename Scalar>
+struct evaluator<AlignedVector3<Scalar> >
+ : evaluator<Matrix<Scalar,4,1> >::type
+{
+ typedef AlignedVector3<Scalar> XprType;
+ typedef typename evaluator<Matrix<Scalar,4,1> >::type Base;
+
+ typedef evaluator type;
+ typedef evaluator nestedType;
+
+ evaluator(const XprType &m) : Base(m.coeffs()) {}
+};
+
+}
+
//@}
}
diff --git a/unsupported/Eigen/BDCSVD b/unsupported/Eigen/BDCSVD
new file mode 100644
index 000000000..44649dbd0
--- /dev/null
+++ b/unsupported/Eigen/BDCSVD
@@ -0,0 +1,26 @@
+#ifndef EIGEN_BDCSVD_MODULE_H
+#define EIGEN_BDCSVD_MODULE_H
+
+#include <Eigen/SVD>
+
+#include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
+
+/** \defgroup BDCSVD_Module BDCSVD module
+ *
+ *
+ *
+ * This module provides Divide & Conquer SVD decomposition for matrices (both real and complex).
+ * This decomposition is accessible via the following MatrixBase method:
+ * - MatrixBase::bdcSvd()
+ *
+ * \code
+ * #include <Eigen/BDCSVD>
+ * \endcode
+ */
+
+#include "src/BDCSVD/BDCSVD.h"
+
+#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
+
+#endif // EIGEN_BDCSVD_MODULE_H
+/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/unsupported/Eigen/IterativeSolvers b/unsupported/Eigen/IterativeSolvers
index aa15403db..ff0d59b6e 100644
--- a/unsupported/Eigen/IterativeSolvers
+++ b/unsupported/Eigen/IterativeSolvers
@@ -24,9 +24,6 @@
*/
//@{
-#include "../../Eigen/src/misc/Solve.h"
-#include "../../Eigen/src/misc/SparseSolve.h"
-
#ifndef EIGEN_MPL2_ONLY
#include "src/IterativeSolvers/IterationController.h"
#include "src/IterativeSolvers/ConstrainedConjGrad.h"
diff --git a/unsupported/Eigen/MPRealSupport b/unsupported/Eigen/MPRealSupport
index 632de3854..8e42965a3 100644
--- a/unsupported/Eigen/MPRealSupport
+++ b/unsupported/Eigen/MPRealSupport
@@ -159,10 +159,10 @@ int main()
{
if(rows==0 || cols==0 || depth==0)
return;
-
+
mpreal acc1(0,mpfr_get_prec(blockA[0].mpfr_srcptr())),
tmp (0,mpfr_get_prec(blockA[0].mpfr_srcptr()));
-
+
if(strideA==-1) strideA = depth;
if(strideB==-1) strideB = depth;
diff --git a/unsupported/Eigen/MatrixFunctions b/unsupported/Eigen/MatrixFunctions
index 0b12aaffb..0320606c1 100644
--- a/unsupported/Eigen/MatrixFunctions
+++ b/unsupported/Eigen/MatrixFunctions
@@ -82,7 +82,9 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
\param[in] M a square matrix.
\returns expression representing \f$ \cos(M) \f$.
-This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cos().
+This function computes the matrix cosine. Use ArrayBase::cos() for computing the entry-wise cosine.
+
+The implementation calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cos().
\sa \ref matrixbase_sin "sin()" for an example.
@@ -123,6 +125,9 @@ differential equations: the solution of \f$ y' = My \f$ with the
initial condition \f$ y(0) = y_0 \f$ is given by
\f$ y(t) = \exp(M) y_0 \f$.
+The matrix exponential is different from applying the exp function to all the entries in the matrix.
+Use ArrayBase::exp() if you want to do the latter.
+
The cost of the computation is approximately \f$ 20 n^3 \f$ for
matrices of size \f$ n \f$. The number 20 depends weakly on the
norm of the matrix.
@@ -177,6 +182,9 @@ the scalar logarithm, the equation \f$ \exp(X) = M \f$ may have
multiple solutions; this function returns a matrix whose eigenvalues
have imaginary part in the interval \f$ (-\pi,\pi] \f$.
+The matrix logarithm is different from applying the log function to all the entries in the matrix.
+Use ArrayBase::log() if you want to do the latter.
+
In the real case, the matrix \f$ M \f$ should be invertible and
it should have no eigenvalues which are real and negative (pairs of
complex conjugate eigenvalues are allowed). In the complex case, it
@@ -232,7 +240,8 @@ const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(RealScalar p) con
The matrix power \f$ M^p \f$ is defined as \f$ \exp(p \log(M)) \f$,
where exp denotes the matrix exponential, and log denotes the matrix
-logarithm.
+logarithm. This is different from raising all the entries in the matrix
+to the p-th power. Use ArrayBase::pow() if you want to do the latter.
If \p p is complex, the scalar type of \p M should be the type of \p
p . \f$ M^p \f$ simply evaluates into \f$ \exp(p \log(M)) \f$.
@@ -391,7 +400,9 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
\param[in] M a square matrix.
\returns expression representing \f$ \sin(M) \f$.
-This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sin().
+This function computes the matrix sine. Use ArrayBase::sin() for computing the entry-wise sine.
+
+The implementation calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sin().
Example: \include MatrixSine.cpp
Output: \verbinclude MatrixSine.out
@@ -428,7 +439,9 @@ const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
The matrix square root of \f$ M \f$ is the matrix \f$ M^{1/2} \f$
whose square is the original matrix; so if \f$ S = M^{1/2} \f$ then
-\f$ S^2 = M \f$.
+\f$ S^2 = M \f$. This is different from taking the square root of all
+the entries in the matrix; use ArrayBase::sqrt() if you want to do the
+latter.
In the <b>real case</b>, the matrix \f$ M \f$ should be invertible and
it should have no eigenvalues which are real and negative (pairs of
diff --git a/unsupported/Eigen/SVD b/unsupported/Eigen/SVD
deleted file mode 100644
index 900a8aa60..000000000
--- a/unsupported/Eigen/SVD
+++ /dev/null
@@ -1,35 +0,0 @@
-#ifndef EIGEN_SVD_MODULE_H
-#define EIGEN_SVD_MODULE_H
-
-#include <Eigen/QR>
-#include <Eigen/Householder>
-#include <Eigen/Jacobi>
-
-#include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
-
-/** \defgroup SVD_Module SVD module
- *
- *
- *
- * This module provides SVD decomposition for matrices (both real and complex).
- * This decomposition is accessible via the following MatrixBase method:
- * - MatrixBase::jacobiSvd()
- *
- * \code
- * #include <Eigen/SVD>
- * \endcode
- */
-
-#include "../../Eigen/src/misc/Solve.h"
-#include "../../Eigen/src/SVD/UpperBidiagonalization.h"
-#include "src/SVD/SVDBase.h"
-#include "src/SVD/JacobiSVD.h"
-#include "src/SVD/BDCSVD.h"
-#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT)
-#include "../../Eigen/src/SVD/JacobiSVD_MKL.h"
-#endif
-
-#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
-
-#endif // EIGEN_SVD_MODULE_H
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/unsupported/Eigen/SparseExtra b/unsupported/Eigen/SparseExtra
index b5597902a..819cffa27 100644
--- a/unsupported/Eigen/SparseExtra
+++ b/unsupported/Eigen/SparseExtra
@@ -37,9 +37,6 @@
*/
-#include "../../Eigen/src/misc/Solve.h"
-#include "../../Eigen/src/misc/SparseSolve.h"
-
#include "src/SparseExtra/DynamicSparseMatrix.h"
#include "src/SparseExtra/BlockOfDynamicSparseMatrix.h"
#include "src/SparseExtra/RandomSetter.h"
diff --git a/unsupported/Eigen/src/SVD/BDCSVD.h b/unsupported/Eigen/src/BDCSVD/BDCSVD.h
index 80006fd60..0167872af 100644
--- a/unsupported/Eigen/src/SVD/BDCSVD.h
+++ b/unsupported/Eigen/src/BDCSVD/BDCSVD.h
@@ -19,11 +19,21 @@
#ifndef EIGEN_BDCSVD_H
#define EIGEN_BDCSVD_H
-#define EPSILON 0.0000000000000001
+namespace Eigen {
-#define ALGOSWAP 16
+template<typename _MatrixType> class BDCSVD;
-namespace Eigen {
+namespace internal {
+
+template<typename _MatrixType>
+struct traits<BDCSVD<_MatrixType> >
+{
+ typedef _MatrixType MatrixType;
+};
+
+} // end namespace internal
+
+
/** \ingroup SVD_Module
*
*
@@ -36,13 +46,15 @@ namespace Eigen {
* It should be used to speed up the calcul of SVD for big matrices.
*/
template<typename _MatrixType>
-class BDCSVD : public SVDBase<_MatrixType>
+class BDCSVD : public SVDBase<BDCSVD<_MatrixType> >
{
- typedef SVDBase<_MatrixType> Base;
+ typedef SVDBase<BDCSVD> Base;
public:
using Base::rows;
using Base::cols;
+ using Base::computeU;
+ using Base::computeV;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
@@ -58,15 +70,10 @@ public:
MatrixOptions = MatrixType::Options
};
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
- MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
- MatrixUType;
- typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
- MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
- MatrixVType;
- typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
- typedef typename internal::plain_row_type<MatrixType>::type RowType;
- typedef typename internal::plain_col_type<MatrixType>::type ColType;
+ typedef typename Base::MatrixUType MatrixUType;
+ typedef typename Base::MatrixVType MatrixVType;
+ typedef typename Base::SingularValuesType SingularValuesType;
+
typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
typedef Matrix<RealScalar, Dynamic, Dynamic> MatrixXr;
typedef Matrix<RealScalar, Dynamic, 1> VectorType;
@@ -77,9 +84,7 @@ public:
* The default constructor is useful in cases in which the user intends to
* perform decompositions via BDCSVD::compute(const MatrixType&).
*/
- BDCSVD()
- : SVDBase<_MatrixType>::SVDBase(),
- algoswap(ALGOSWAP), m_numIters(0)
+ BDCSVD() : m_algoswap(16), m_numIters(0)
{}
@@ -90,8 +95,7 @@ public:
* \sa BDCSVD()
*/
BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
- : SVDBase<_MatrixType>::SVDBase(),
- algoswap(ALGOSWAP), m_numIters(0)
+ : m_algoswap(16), m_numIters(0)
{
allocate(rows, cols, computationOptions);
}
@@ -107,8 +111,7 @@ public:
* available with the (non - default) FullPivHouseholderQR preconditioner.
*/
BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
- : SVDBase<_MatrixType>::SVDBase(),
- algoswap(ALGOSWAP), m_numIters(0)
+ : m_algoswap(16), m_numIters(0)
{
compute(matrix, computationOptions);
}
@@ -116,6 +119,7 @@ public:
~BDCSVD()
{
}
+
/** \brief Method performing the decomposition of given matrix using custom options.
*
* \param matrix the matrix to decompose
@@ -126,7 +130,7 @@ public:
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
* available with the (non - default) FullPivHouseholderQR preconditioner.
*/
- SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions);
+ BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
/** \brief Method performing the decomposition of given matrix using current options.
*
@@ -134,7 +138,7 @@ public:
*
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
*/
- SVDBase<MatrixType>& compute(const MatrixType& matrix)
+ BDCSVD& compute(const MatrixType& matrix)
{
return compute(matrix, this->m_computationOptions);
}
@@ -142,58 +146,7 @@ public:
void setSwitchSize(int s)
{
eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3");
- algoswap = s;
- }
-
-
- /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
- *
- * \param b the right - hand - side of the equation to solve.
- *
- * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
- *
- * \note SVD solving is implicitly least - squares. Thus, this method serves both purposes of exact solving and least - squares solving.
- * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
- */
- template<typename Rhs>
- inline const internal::solve_retval<BDCSVD, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(this->m_isInitialized && "BDCSVD is not initialized.");
- eigen_assert(SVDBase<_MatrixType>::computeU() && SVDBase<_MatrixType>::computeV() &&
- "BDCSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
- return internal::solve_retval<BDCSVD, Rhs>(*this, b.derived());
- }
-
-
- const MatrixUType& matrixU() const
- {
- eigen_assert(this->m_isInitialized && "SVD is not initialized.");
- if (isTranspose){
- eigen_assert(this->computeV() && "This SVD decomposition didn't compute U. Did you ask for it?");
- return this->m_matrixV;
- }
- else
- {
- eigen_assert(this->computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
- return this->m_matrixU;
- }
-
- }
-
-
- const MatrixVType& matrixV() const
- {
- eigen_assert(this->m_isInitialized && "SVD is not initialized.");
- if (isTranspose){
- eigen_assert(this->computeU() && "This SVD decomposition didn't compute V. Did you ask for it?");
- return this->m_matrixU;
- }
- else
- {
- eigen_assert(this->computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
- return this->m_matrixV;
- }
+ m_algoswap = s;
}
private:
@@ -209,15 +162,27 @@ private:
void deflation43(Index firstCol, Index shift, Index i, Index size);
void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
- void copyUV(const typename internal::UpperBidiagonalization<MatrixX>::HouseholderUSequenceType& householderU,
- const typename internal::UpperBidiagonalization<MatrixX>::HouseholderVSequenceType& householderV);
+ template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
+ void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev);
+ static void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1);
protected:
MatrixXr m_naiveU, m_naiveV;
MatrixXr m_computed;
- Index nRec;
- int algoswap;
- bool isTranspose, compU, compV;
+ Index m_nRec;
+ int m_algoswap;
+ bool m_isTranspose, m_compU, m_compV;
+
+ using Base::m_singularValues;
+ using Base::m_diagSize;
+ using Base::m_computeFullU;
+ using Base::m_computeFullV;
+ using Base::m_computeThinU;
+ using Base::m_computeThinV;
+ using Base::m_matrixU;
+ using Base::m_matrixV;
+ using Base::m_isInitialized;
+ using Base::m_nonzeroSingularValues;
public:
int m_numIters;
@@ -228,117 +193,147 @@ public:
template<typename MatrixType>
void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
{
- isTranspose = (cols > rows);
- if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return;
- m_computed = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize );
- if (isTranspose){
- compU = this->computeU();
- compV = this->computeV();
- }
- else
- {
- compV = this->computeU();
- compU = this->computeV();
- }
- if (compU) m_naiveU = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize + 1 );
- else m_naiveU = MatrixXr::Zero(2, this->m_diagSize + 1 );
+ m_isTranspose = (cols > rows);
+ if (Base::allocate(rows, cols, computationOptions))
+ return;
- if (compV) m_naiveV = MatrixXr::Zero(this->m_diagSize, this->m_diagSize);
+ m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize );
+ m_compU = computeV();
+ m_compV = computeU();
+ if (m_isTranspose)
+ std::swap(m_compU, m_compV);
-
- //should be changed for a cleaner implementation
- if (isTranspose){
- bool aux;
- if (this->computeU()||this->computeV()){
- aux = this->m_computeFullU;
- this->m_computeFullU = this->m_computeFullV;
- this->m_computeFullV = aux;
- aux = this->m_computeThinU;
- this->m_computeThinU = this->m_computeThinV;
- this->m_computeThinV = aux;
- }
- }
+ if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 );
+ else m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 );
+
+ if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize);
}// end allocate
// Methode which compute the BDCSVD for the int
template<>
-SVDBase<Matrix<int, Dynamic, Dynamic> >&
-BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(const MatrixType& matrix, unsigned int computationOptions) {
+BDCSVD<Matrix<int, Dynamic, Dynamic> >& BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(const MatrixType& matrix, unsigned int computationOptions)
+{
allocate(matrix.rows(), matrix.cols(), computationOptions);
- this->m_nonzeroSingularValues = 0;
+ m_nonzeroSingularValues = 0;
m_computed = Matrix<int, Dynamic, Dynamic>::Zero(rows(), cols());
- for (int i=0; i<this->m_diagSize; i++) {
- this->m_singularValues.coeffRef(i) = 0;
- }
- if (this->m_computeFullU) this->m_matrixU = Matrix<int, Dynamic, Dynamic>::Zero(rows(), rows());
- if (this->m_computeFullV) this->m_matrixV = Matrix<int, Dynamic, Dynamic>::Zero(cols(), cols());
- this->m_isInitialized = true;
+
+ m_singularValues.head(m_diagSize).setZero();
+
+ if (m_computeFullU) m_matrixU.setZero(rows(), rows());
+ if (m_computeFullV) m_matrixV.setZero(cols(), cols());
+ m_isInitialized = true;
return *this;
}
// Methode which compute the BDCSVD
template<typename MatrixType>
-SVDBase<MatrixType>&
-BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
+BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
{
allocate(matrix.rows(), matrix.cols(), computationOptions);
using std::abs;
- //**** step 1 Bidiagonalization isTranspose = (matrix.cols()>matrix.rows()) ;
+ //**** step 1 Bidiagonalization m_isTranspose = (matrix.cols()>matrix.rows()) ;
MatrixType copy;
- if (isTranspose) copy = matrix.adjoint();
- else copy = matrix;
+ if (m_isTranspose) copy = matrix.adjoint();
+ else copy = matrix;
internal::UpperBidiagonalization<MatrixX> bid(copy);
//**** step 2 Divide
- m_computed.topRows(this->m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
+ m_naiveU.setZero();
+ m_naiveV.setZero();
+ m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
m_computed.template bottomRows<1>().setZero();
- divide(0, this->m_diagSize - 1, 0, 0, 0);
+ divide(0, m_diagSize - 1, 0, 0, 0);
//**** step 3 copy
- for (int i=0; i<this->m_diagSize; i++) {
+ for (int i=0; i<m_diagSize; i++)
+ {
RealScalar a = abs(m_computed.coeff(i, i));
- this->m_singularValues.coeffRef(i) = a;
- if (a == 0){
- this->m_nonzeroSingularValues = i;
- this->m_singularValues.tail(this->m_diagSize - i - 1).setZero();
+ m_singularValues.coeffRef(i) = a;
+ if (a == 0)
+ {
+ m_nonzeroSingularValues = i;
+ m_singularValues.tail(m_diagSize - i - 1).setZero();
break;
}
- else if (i == this->m_diagSize - 1)
+ else if (i == m_diagSize - 1)
{
- this->m_nonzeroSingularValues = i + 1;
+ m_nonzeroSingularValues = i + 1;
break;
}
}
- copyUV(bid.householderU(), bid.householderV());
- this->m_isInitialized = true;
+ if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU);
+ else copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV);
+ m_isInitialized = true;
return *this;
}// end compute
template<typename MatrixType>
-void BDCSVD<MatrixType>::copyUV(const typename internal::UpperBidiagonalization<MatrixX>::HouseholderUSequenceType& householderU,
- const typename internal::UpperBidiagonalization<MatrixX>::HouseholderVSequenceType& householderV)
+template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
+void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
{
// Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa
- if (this->computeU()){
- Index Ucols = this->m_computeThinU ? this->m_nonzeroSingularValues : householderU.cols();
- this->m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
- Index blockCols = this->m_computeThinU ? this->m_nonzeroSingularValues : this->m_diagSize;
- this->m_matrixU.block(0, 0, this->m_diagSize, blockCols) =
- m_naiveV.template cast<Scalar>().block(0, 0, this->m_diagSize, blockCols);
- this->m_matrixU = householderU * this->m_matrixU;
+ if (computeU())
+ {
+ Index Ucols = m_computeThinU ? m_nonzeroSingularValues : householderU.cols();
+ m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
+ Index blockCols = m_computeThinU ? m_nonzeroSingularValues : m_diagSize;
+ m_matrixU.topLeftCorner(m_diagSize, blockCols) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, blockCols);
+ householderU.applyThisOnTheLeft(m_matrixU);
+ }
+ if (computeV())
+ {
+ Index Vcols = m_computeThinV ? m_nonzeroSingularValues : householderV.cols();
+ m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
+ Index blockCols = m_computeThinV ? m_nonzeroSingularValues : m_diagSize;
+ m_matrixV.topLeftCorner(m_diagSize, blockCols) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, blockCols);
+ householderV.applyThisOnTheLeft(m_matrixV);
}
- if (this->computeV()){
- Index Vcols = this->m_computeThinV ? this->m_nonzeroSingularValues : householderV.cols();
- this->m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
- Index blockCols = this->m_computeThinV ? this->m_nonzeroSingularValues : this->m_diagSize;
- this->m_matrixV.block(0, 0, this->m_diagSize, blockCols) =
- m_naiveU.template cast<Scalar>().block(0, 0, this->m_diagSize, blockCols);
- this->m_matrixV = householderV * this->m_matrixV;
+}
+
+/** \internal
+ * Performs A = A * B exploiting the special structure of the matrix A. Splitting A as:
+ * A = [A1]
+ * [A2]
+ * such that A1.rows()==n1, then we assume that at least half of the columns of A1 and A2 are zeros.
+ * We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large
+ * enough.
+ */
+template<typename MatrixType>
+void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1)
+{
+ Index n = A.rows();
+ if(n>100)
+ {
+ // If the matrices are large enough, let's exploit the sparse strucure of A by
+ // splitting it in half (wrt n1), and packing the non-zero columns.
+ DenseIndex n2 = n - n1;
+ MatrixXr A1(n1,n), A2(n2,n), B1(n,n), B2(n,n);
+ Index k1=0, k2=0;
+ for(Index j=0; j<n; ++j)
+ {
+ if( (A.col(j).head(n1).array()!=0).any() )
+ {
+ A1.col(k1) = A.col(j).head(n1);
+ B1.row(k1) = B.row(j);
+ ++k1;
+ }
+ if( (A.col(j).tail(n2).array()!=0).any() )
+ {
+ A2.col(k2) = A.col(j).tail(n2);
+ B2.row(k2) = B.row(j);
+ ++k2;
+ }
+ }
+
+ A.topRows(n1).noalias() = A1.leftCols(k1) * B1.topRows(k1);
+ A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2);
}
+ else
+ A *= B; // FIXME this requires a temporary
}
// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
@@ -352,8 +347,7 @@ void BDCSVD<MatrixType>::copyUV(const typename internal::UpperBidiagonalization<
//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
template<typename MatrixType>
-void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
- Index firstColW, Index shift)
+void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift)
{
// requires nbRows = nbCols + 1;
using std::pow;
@@ -365,24 +359,22 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
RealScalar betaK;
RealScalar r0;
RealScalar lambda, phi, c0, s0;
- MatrixXr l, f;
+ VectorType l, f;
// We use the other algorithm which is more efficient for small
// matrices.
- if (n < algoswap){
- JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n),
- ComputeFullU | (ComputeFullV * compV)) ;
- if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() << b.matrixU();
+ if (n < m_algoswap)
+ {
+ JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0)) ;
+ if (m_compU)
+ m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
else
{
- m_naiveU.row(0).segment(firstCol, n + 1).real() << b.matrixU().row(0);
- m_naiveU.row(1).segment(firstCol, n + 1).real() << b.matrixU().row(n);
+ m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0);
+ m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n);
}
- if (compV) m_naiveV.block(firstRowW, firstColW, n, n).real() << b.matrixV();
+ if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV();
m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
- for (int i=0; i<n; i++)
- {
- m_computed(firstCol + shift + i, firstCol + shift +i) = b.singularValues().coeffRef(i);
- }
+ m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n);
return;
}
// We use the divide and conquer algorithm
@@ -393,7 +385,7 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
// right submatrix before the left one.
divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
- if (compU)
+ if (m_compU)
{
lambda = m_naiveU(firstCol + k, firstCol + k);
phi = m_naiveU(firstCol + k + 1, lastCol + 1);
@@ -403,9 +395,8 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
lambda = m_naiveU(1, firstCol + k);
phi = m_naiveU(0, lastCol + 1);
}
- r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda))
- + abs(betaK * phi) * abs(betaK * phi));
- if (compU)
+ r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi));
+ if (m_compU)
{
l = m_naiveU.row(firstCol + k).segment(firstCol, k);
f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
@@ -415,7 +406,7 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
l = m_naiveU.row(1).segment(firstCol, k);
f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
}
- if (compV) m_naiveV(firstRowW+k, firstColW) = 1;
+ if (m_compV) m_naiveV(firstRowW+k, firstColW) = 1;
if (r0 == 0)
{
c0 = 1;
@@ -426,32 +417,27 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
c0 = alphaK * lambda / r0;
s0 = betaK * phi / r0;
}
- if (compU)
+ if (m_compU)
{
MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
// we shiftW Q1 to the right
for (Index i = firstCol + k - 1; i >= firstCol; i--)
- {
- m_naiveU.col(i + 1).segment(firstCol, k + 1) << m_naiveU.col(i).segment(firstCol, k + 1);
- }
+ m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1);
// we shift q1 at the left with a factor c0
- m_naiveU.col(firstCol).segment( firstCol, k + 1) << (q1 * c0);
+ m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0);
// last column = q1 * - s0
- m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) << (q1 * ( - s0));
+ m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0));
// first column = q2 * s0
- m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) <<
- m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *s0;
+ m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0;
// q2 *= c0
- m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
+ m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
}
else
{
RealScalar q1 = (m_naiveU(0, firstCol + k));
// we shift Q1 to the right
for (Index i = firstCol + k - 1; i >= firstCol; i--)
- {
m_naiveU(0, i + 1) = m_naiveU(0, i);
- }
// we shift q1 at the left with a factor c0
m_naiveU(0, firstCol) = (q1 * c0);
// last column = q1 * - s0
@@ -464,9 +450,8 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
}
m_computed(firstCol + shift, firstCol + shift) = r0;
- m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) << alphaK * l.transpose().real();
- m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) << betaK * f.transpose().real();
-
+ m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real();
+ m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real();
// Second part: try to deflate singular values in combined matrix
deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
@@ -475,9 +460,12 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
MatrixXr UofSVD, VofSVD;
VectorType singVals;
computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD);
- if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1) *= UofSVD;
- else m_naiveU.block(0, firstCol, 2, n + 1) *= UofSVD;
- if (compV) m_naiveV.block(firstRowW, firstColW, n, n) *= VofSVD;
+
+ if (m_compU) structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2);
+ else m_naiveU.middleCols(firstCol, n + 1) *= UofSVD; // FIXME this requires a temporary, and exploit that there are 2 rows at compile time
+
+ if (m_compV) structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2);
+
m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero();
m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals;
}// end divide
@@ -485,7 +473,7 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
// Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in
// the first column and on the diagonal and has undergone deflation, so diagonal is in increasing
// order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except
-// that if compV is false, then V is not computed. Singular values are sorted in decreasing order.
+// that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order.
//
// TODO Opportunities for optimization: better root finding algo, better stopping criterion, better
// handling of round-off errors, be consistent in ordering
@@ -493,26 +481,28 @@ template <typename MatrixType>
void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
{
// TODO Get rid of these copies (?)
- ArrayXr col0 = m_computed.block(firstCol, firstCol, n, 1);
+ // FIXME at least preallocate them
+ ArrayXr col0 = m_computed.col(firstCol).segment(firstCol, n);
ArrayXr diag = m_computed.block(firstCol, firstCol, n, n).diagonal();
diag(0) = 0;
// compute singular values and vectors (in decreasing order)
singVals.resize(n);
U.resize(n+1, n+1);
- if (compV) V.resize(n, n);
+ if (m_compV) V.resize(n, n);
if (col0.hasNaN() || diag.hasNaN()) return;
ArrayXr shifts(n), mus(n), zhat(n);
+
computeSingVals(col0, diag, singVals, shifts, mus);
perturbCol0(col0, diag, singVals, shifts, mus, zhat);
computeSingVecs(zhat, diag, singVals, shifts, mus, U, V);
// Reverse order so that singular values in increased order
singVals.reverseInPlace();
- U.leftCols(n) = U.leftCols(n).rowwise().reverse().eval();
- if (compV) V = V.rowwise().reverse().eval();
+ U.leftCols(n) = U.leftCols(n).rowwise().reverse().eval(); // FIXME this requires a temporary
+ if (m_compV) V = V.rowwise().reverse().eval(); // FIXME this requires a temporary
}
template <typename MatrixType>
@@ -521,10 +511,13 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayXr& col0, const ArrayXr& dia
{
using std::abs;
using std::swap;
+ using std::max;
Index n = col0.size();
- for (Index k = 0; k < n; ++k) {
- if (col0(k) == 0) {
+ for (Index k = 0; k < n; ++k)
+ {
+ if (col0(k) == 0)
+ {
// entry is deflated, so singular value is on diagonal
singVals(k) = diag(k);
mus(k) = 0;
@@ -540,27 +533,29 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayXr& col0, const ArrayXr& dia
RealScalar mid = left + (right-left) / 2;
RealScalar fMid = 1 + (col0.square() / ((diag + mid) * (diag - mid))).sum();
- RealScalar shift;
- if (k == n-1 || fMid > 0) shift = left;
- else shift = right;
+ RealScalar shift = (k == n-1 || fMid > 0) ? left : right;
// measure everything relative to shift
ArrayXr diagShifted = diag - shift;
// initial guess
RealScalar muPrev, muCur;
- if (shift == left) {
+ if (shift == left)
+ {
muPrev = (right - left) * 0.1;
if (k == n-1) muCur = right - left;
- else muCur = (right - left) * 0.5;
- } else {
+ else muCur = (right - left) * 0.5;
+ }
+ else
+ {
muPrev = -(right - left) * 0.1;
muCur = -(right - left) * 0.5;
}
RealScalar fPrev = 1 + (col0.square() / ((diagShifted - muPrev) * (diag + shift + muPrev))).sum();
RealScalar fCur = 1 + (col0.square() / ((diagShifted - muCur) * (diag + shift + muCur))).sum();
- if (abs(fPrev) < abs(fCur)) {
+ if (abs(fPrev) < abs(fCur))
+ {
swap(fPrev, fCur);
swap(muPrev, muCur);
}
@@ -568,7 +563,8 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayXr& col0, const ArrayXr& dia
// rational interpolation: fit a function of the form a / mu + b through the two previous
// iterates and use its zero to compute the next iterate
bool useBisection = false;
- while (abs(muCur - muPrev) > 8 * NumTraits<RealScalar>::epsilon() * (std::max)(abs(muCur), abs(muPrev)) && fCur != fPrev && !useBisection) {
+ while (abs(muCur - muPrev) > 8 * NumTraits<RealScalar>::epsilon() * (max)(abs(muCur), abs(muPrev)) && fCur != fPrev && !useBisection)
+ {
++m_numIters;
RealScalar a = (fCur - fPrev) / (1/muCur - 1/muPrev);
@@ -584,13 +580,17 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayXr& col0, const ArrayXr& dia
}
// fall back on bisection method if rational interpolation did not work
- if (useBisection) {
+ if (useBisection)
+ {
RealScalar leftShifted, rightShifted;
- if (shift == left) {
+ if (shift == left)
+ {
leftShifted = 1e-30;
if (k == 0) rightShifted = right - left;
- else rightShifted = (right - left) * 0.6; // theoretically we can take 0.5, but let's be safe
- } else {
+ else rightShifted = (right - left) * 0.6; // theoretically we can take 0.5, but let's be safe
+ }
+ else
+ {
leftShifted = -(right - left) * 0.6;
rightShifted = -1e-30;
}
@@ -599,13 +599,17 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayXr& col0, const ArrayXr& dia
RealScalar fRight = 1 + (col0.square() / ((diagShifted - rightShifted) * (diag + shift + rightShifted))).sum();
assert(fLeft * fRight < 0);
- while (rightShifted - leftShifted > 2 * NumTraits<RealScalar>::epsilon() * (std::max)(abs(leftShifted), abs(rightShifted))) {
+ while (rightShifted - leftShifted > 2 * NumTraits<RealScalar>::epsilon() * (max)(abs(leftShifted), abs(rightShifted)))
+ {
RealScalar midShifted = (leftShifted + rightShifted) / 2;
RealScalar fMid = 1 + (col0.square() / ((diagShifted - midShifted) * (diag + shift + midShifted))).sum();
- if (fLeft * fMid < 0) {
+ if (fLeft * fMid < 0)
+ {
rightShifted = midShifted;
fRight = fMid;
- } else {
+ }
+ else
+ {
leftShifted = midShifted;
fLeft = fMid;
}
@@ -632,13 +636,15 @@ void BDCSVD<MatrixType>::perturbCol0
(const ArrayXr& col0, const ArrayXr& diag, const VectorType& singVals,
const ArrayXr& shifts, const ArrayXr& mus, ArrayXr& zhat)
{
+ using std::sqrt;
Index n = col0.size();
- for (Index k = 0; k < n; ++k) {
+ for (Index k = 0; k < n; ++k)
+ {
if (col0(k) == 0)
zhat(k) = 0;
- else {
+ else
+ {
// see equation (3.6)
- using std::sqrt;
RealScalar tmp =
sqrt(
(singVals(n-1) + diag(k)) * (mus(n-1) + (shifts(n-1) - diag(k)))
@@ -664,16 +670,21 @@ void BDCSVD<MatrixType>::computeSingVecs
const ArrayXr& shifts, const ArrayXr& mus, MatrixXr& U, MatrixXr& V)
{
Index n = zhat.size();
- for (Index k = 0; k < n; ++k) {
- if (zhat(k) == 0) {
+ for (Index k = 0; k < n; ++k)
+ {
+ if (zhat(k) == 0)
+ {
U.col(k) = VectorType::Unit(n+1, k);
- if (compV) V.col(k) = VectorType::Unit(n, k);
- } else {
+ if (m_compV) V.col(k) = VectorType::Unit(n, k);
+ }
+ else
+ {
U.col(k).head(n) = zhat / (((diag - shifts(k)) - mus(k)) * (diag + singVals[k]));
U(n,k) = 0;
U.col(k).normalize();
- if (compV) {
+ if (m_compV)
+ {
V.col(k).tail(n-1) = (diag * zhat / (((diag - shifts(k)) - mus(k)) * (diag + singVals[k]))).tail(n-1);
V(0,k) = -1;
V.col(k).normalize();
@@ -688,15 +699,17 @@ void BDCSVD<MatrixType>::computeSingVecs
// i >= 1, di almost null and zi non null.
// We use a rotation to zero out zi applied to the left of M
template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size){
+void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size)
+{
using std::abs;
using std::sqrt;
using std::pow;
RealScalar c = m_computed(firstCol + shift, firstCol + shift);
RealScalar s = m_computed(i, firstCol + shift);
RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
- if (r == 0){
- m_computed(i, i)=0;
+ if (r == 0)
+ {
+ m_computed(i, i) = 0;
return;
}
c/=r;
@@ -704,7 +717,8 @@ void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index
m_computed(firstCol + shift, firstCol + shift) = r;
m_computed(i, firstCol + shift) = 0;
m_computed(i, i) = 0;
- if (compU){
+ if (m_compU)
+ {
m_naiveU.col(firstCol).segment(firstCol,size) =
c * m_naiveU.col(firstCol).segment(firstCol, size) -
s * m_naiveU.col(i).segment(firstCol, size) ;
@@ -720,7 +734,8 @@ void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index
// i,j >= 1, i != j and |di - dj| < epsilon * norm2(M)
// We apply two rotations to have zj = 0;
template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size){
+void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size)
+{
using std::abs;
using std::sqrt;
using std::conj;
@@ -728,7 +743,8 @@ void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index fi
RealScalar c = m_computed(firstColm, firstColm + j - 1);
RealScalar s = m_computed(firstColm, firstColm + i - 1);
RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
- if (r==0){
+ if (r==0)
+ {
m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
return;
}
@@ -737,7 +753,8 @@ void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index fi
m_computed(firstColm + i, firstColm) = r;
m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
m_computed(firstColm + j, firstColm) = 0;
- if (compU){
+ if (m_compU)
+ {
m_naiveU.col(firstColu + i).segment(firstColu, size) =
c * m_naiveU.col(firstColu + i).segment(firstColu, size) -
s * m_naiveU.col(firstColu + j).segment(firstColu, size) ;
@@ -746,7 +763,8 @@ void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index fi
(c + s*s/c) * m_naiveU.col(firstColu + j).segment(firstColu, size) +
(s/c) * m_naiveU.col(firstColu + i).segment(firstColu, size);
}
- if (compV){
+ if (m_compV)
+ {
m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) =
c * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) +
s * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) ;
@@ -760,72 +778,56 @@ void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index fi
// acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift){
+void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift)
+{
//condition 4.1
using std::sqrt;
+ using std::abs;
const Index length = lastCol + 1 - firstCol;
RealScalar norm1 = m_computed.block(firstCol+shift, firstCol+shift, length, 1).squaredNorm();
RealScalar norm2 = m_computed.block(firstCol+shift, firstCol+shift, length, length).diagonal().squaredNorm();
- RealScalar EPS = 10 * NumTraits<RealScalar>::epsilon() * sqrt(norm1 + norm2);
- if (m_computed(firstCol + shift, firstCol + shift) < EPS){
- m_computed(firstCol + shift, firstCol + shift) = EPS;
- }
+ RealScalar epsilon = 10 * NumTraits<RealScalar>::epsilon() * sqrt(norm1 + norm2);
+ if (m_computed(firstCol + shift, firstCol + shift) < epsilon)
+ m_computed(firstCol + shift, firstCol + shift) = epsilon;
//condition 4.2
- for (Index i=firstCol + shift + 1;i<=lastCol + shift;i++){
- if (std::abs(m_computed(i, firstCol + shift)) < EPS){
+ for (Index i=firstCol + shift + 1;i<=lastCol + shift;i++)
+ if (abs(m_computed(i, firstCol + shift)) < epsilon)
m_computed(i, firstCol + shift) = 0;
- }
- }
//condition 4.3
- for (Index i=firstCol + shift + 1;i<=lastCol + shift; i++){
- if (m_computed(i, i) < EPS){
+ for (Index i=firstCol + shift + 1;i<=lastCol + shift; i++)
+ if (m_computed(i, i) < epsilon)
deflation43(firstCol, shift, i, length);
- }
- }
//condition 4.4
Index i=firstCol + shift + 1, j=firstCol + shift + k + 1;
//we stock the final place of each line
- Index *permutation = new Index[length];
+ Index *permutation = new Index[length]; // FIXME avoid repeated dynamic memory allocation
- for (Index p =1; p < length; p++) {
- if (i> firstCol + shift + k){
- permutation[p] = j;
- j++;
- } else if (j> lastCol + shift)
- {
- permutation[p] = i;
- i++;
- }
- else
- {
- if (m_computed(i, i) < m_computed(j, j)){
- permutation[p] = j;
- j++;
- }
- else
- {
- permutation[p] = i;
- i++;
- }
- }
+ for (Index p =1; p < length; p++)
+ {
+ if (i> firstCol + shift + k) permutation[p] = j++;
+ else if (j> lastCol + shift) permutation[p] = i++;
+ else if (m_computed(i, i) < m_computed(j, j)) permutation[p] = j++;
+ else permutation[p] = i++;
}
//we do the permutation
RealScalar aux;
//we stock the current index of each col
//and the column of each index
- Index *realInd = new Index[length];
- Index *realCol = new Index[length];
- for (int pos = 0; pos< length; pos++){
+ Index *realInd = new Index[length]; // FIXME avoid repeated dynamic memory allocation
+ Index *realCol = new Index[length]; // FIXME avoid repeated dynamic memory allocation
+ for (int pos = 0; pos< length; pos++)
+ {
realCol[pos] = pos + firstCol + shift;
realInd[pos] = pos;
}
const Index Zero = firstCol + shift;
VectorType temp;
- for (int i = 1; i < length - 1; i++){
+ for (int i = 1; i < length - 1; i++)
+ {
const Index I = i + Zero;
const Index realI = realInd[i];
const Index j = permutation[length - i] - Zero;
@@ -842,25 +844,25 @@ void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index
m_computed(J, Zero) = aux;
// change columns
- if (compU) {
+ if (m_compU)
+ {
temp = m_naiveU.col(I - shift).segment(firstCol, length + 1);
- m_naiveU.col(I - shift).segment(firstCol, length + 1) <<
- m_naiveU.col(J - shift).segment(firstCol, length + 1);
- m_naiveU.col(J - shift).segment(firstCol, length + 1) << temp;
+ m_naiveU.col(I - shift).segment(firstCol, length + 1) = m_naiveU.col(J - shift).segment(firstCol, length + 1);
+ m_naiveU.col(J - shift).segment(firstCol, length + 1) = temp;
}
else
{
temp = m_naiveU.col(I - shift).segment(0, 2);
- m_naiveU.col(I - shift).segment(0, 2) <<
- m_naiveU.col(J - shift).segment(0, 2);
- m_naiveU.col(J - shift).segment(0, 2) << temp;
+ m_naiveU.col(I - shift).template head<2>() = m_naiveU.col(J - shift).segment(0, 2);
+ m_naiveU.col(J - shift).template head<2>() = temp;
}
- if (compV) {
+ if (m_compV)
+ {
const Index CWI = I + firstColW - Zero;
const Index CWJ = J + firstColW - Zero;
temp = m_naiveV.col(CWI).segment(firstRowW, length);
- m_naiveV.col(CWI).segment(firstRowW, length) << m_naiveV.col(CWJ).segment(firstRowW, length);
- m_naiveV.col(CWJ).segment(firstRowW, length) << temp;
+ m_naiveV.col(CWI).segment(firstRowW, length) = m_naiveV.col(CWJ).segment(firstRowW, length);
+ m_naiveV.col(CWJ).segment(firstRowW, length) = temp;
}
//update real pos
@@ -869,53 +871,16 @@ void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index
realInd[J - Zero] = realI;
realInd[I - Zero] = j;
}
- for (Index i = firstCol + shift + 1; i<lastCol + shift;i++){
- if ((m_computed(i + 1, i + 1) - m_computed(i, i)) < EPS){
- deflation44(firstCol ,
- firstCol + shift,
- firstRowW,
- firstColW,
- i - Zero,
- i + 1 - Zero,
- length);
- }
- }
- delete [] permutation;
- delete [] realInd;
- delete [] realCol;
+ for (Index i = firstCol + shift + 1; i<lastCol + shift;i++)
+ if ((m_computed(i + 1, i + 1) - m_computed(i, i)) < epsilon)
+ deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i - Zero, i + 1 - Zero, length);
+
+ delete[] permutation;
+ delete[] realInd;
+ delete[] realCol;
}//end deflation
-namespace internal{
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<BDCSVD<_MatrixType>, Rhs>
- : solve_retval_base<BDCSVD<_MatrixType>, Rhs>
-{
- typedef BDCSVD<_MatrixType> BDCSVDType;
- EIGEN_MAKE_SOLVE_HELPERS(BDCSVDType, Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- eigen_assert(rhs().rows() == dec().rows());
- // A = U S V^*
- // So A^{ - 1} = V S^{ - 1} U^*
- Index diagSize = (std::min)(dec().rows(), dec().cols());
- typename BDCSVDType::SingularValuesType invertedSingVals(diagSize);
- Index nonzeroSingVals = dec().nonzeroSingularValues();
- invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
- invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
-
- dst = dec().matrixV().leftCols(diagSize)
- * invertedSingVals.asDiagonal()
- * dec().matrixU().leftCols(diagSize).adjoint()
- * rhs();
- return;
- }
-};
-
-} //end namespace internal
-
/** \svd_module
*
* \return the singular value decomposition of \c *this computed by
diff --git a/unsupported/Eigen/src/BDCSVD/CMakeLists.txt b/unsupported/Eigen/src/BDCSVD/CMakeLists.txt
new file mode 100644
index 000000000..73b89ea18
--- /dev/null
+++ b/unsupported/Eigen/src/BDCSVD/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_BDCSVD_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_BDCSVD_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}unsupported/Eigen/src/BDCSVD COMPONENT Devel
+ )
diff --git a/unsupported/Eigen/src/SVD/TODOBdcsvd.txt b/unsupported/Eigen/src/BDCSVD/TODOBdcsvd.txt
index 0bc9a46e6..0bc9a46e6 100644
--- a/unsupported/Eigen/src/SVD/TODOBdcsvd.txt
+++ b/unsupported/Eigen/src/BDCSVD/TODOBdcsvd.txt
diff --git a/unsupported/Eigen/src/SVD/doneInBDCSVD.txt b/unsupported/Eigen/src/BDCSVD/doneInBDCSVD.txt
index 8563ddab8..8563ddab8 100644
--- a/unsupported/Eigen/src/SVD/doneInBDCSVD.txt
+++ b/unsupported/Eigen/src/BDCSVD/doneInBDCSVD.txt
diff --git a/unsupported/Eigen/src/CMakeLists.txt b/unsupported/Eigen/src/CMakeLists.txt
index 8eb2808e3..654a2327f 100644
--- a/unsupported/Eigen/src/CMakeLists.txt
+++ b/unsupported/Eigen/src/CMakeLists.txt
@@ -12,3 +12,4 @@ ADD_SUBDIRECTORY(Skyline)
ADD_SUBDIRECTORY(SparseExtra)
ADD_SUBDIRECTORY(KroneckerProduct)
ADD_SUBDIRECTORY(Splines)
+ADD_SUBDIRECTORY(BDCSVD)
diff --git a/unsupported/Eigen/src/IterativeSolvers/DGMRES.h b/unsupported/Eigen/src/IterativeSolvers/DGMRES.h
index 9fcc8a8d9..0e1b7d977 100644
--- a/unsupported/Eigen/src/IterativeSolvers/DGMRES.h
+++ b/unsupported/Eigen/src/IterativeSolvers/DGMRES.h
@@ -108,6 +108,7 @@ class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
using Base::m_isInitialized;
using Base::m_tolerance;
public:
+ using Base::_solve_impl;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
@@ -138,25 +139,9 @@ class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
~DGMRES() {}
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
- * \a x0 as an initial solution.
- *
- * \sa compute()
- */
- template<typename Rhs,typename Guess>
- inline const internal::solve_retval_with_guess<DGMRES, Rhs, Guess>
- solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
- {
- eigen_assert(m_isInitialized && "DGMRES is not initialized.");
- eigen_assert(Base::rows()==b.rows()
- && "DGMRES::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval_with_guess
- <DGMRES, Rhs, Guess>(*this, b.derived(), x0);
- }
-
/** \internal */
template<typename Rhs,typename Dest>
- void _solveWithGuess(const Rhs& b, Dest& x) const
+ void _solve_with_guess_impl(const Rhs& b, Dest& x) const
{
bool failed = false;
for(int j=0; j<b.cols(); ++j)
@@ -175,10 +160,10 @@ class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
/** \internal */
template<typename Rhs,typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const Rhs& b, MatrixBase<Dest>& x) const
{
x = b;
- _solveWithGuess(b,x);
+ _solve_with_guess_impl(b,x.derived());
}
/**
* Get the restart value
@@ -522,21 +507,5 @@ int DGMRES<_MatrixType, _Preconditioner>::dgmresApplyDeflation(const RhsType &x,
return 0;
}
-namespace internal {
-
- template<typename _MatrixType, typename _Preconditioner, typename Rhs>
-struct solve_retval<DGMRES<_MatrixType, _Preconditioner>, Rhs>
- : solve_retval_base<DGMRES<_MatrixType, _Preconditioner>, Rhs>
-{
- typedef DGMRES<_MatrixType, _Preconditioner> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-} // end namespace internal
-
} // end namespace Eigen
#endif
diff --git a/unsupported/Eigen/src/IterativeSolvers/GMRES.h b/unsupported/Eigen/src/IterativeSolvers/GMRES.h
index 67498705b..cd15ce0bf 100644
--- a/unsupported/Eigen/src/IterativeSolvers/GMRES.h
+++ b/unsupported/Eigen/src/IterativeSolvers/GMRES.h
@@ -281,6 +281,7 @@ private:
int m_restart;
public:
+ using Base::_solve_impl;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
@@ -315,25 +316,9 @@ public:
*/
void set_restart(const int restart) { m_restart=restart; }
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
- * \a x0 as an initial solution.
- *
- * \sa compute()
- */
- template<typename Rhs,typename Guess>
- inline const internal::solve_retval_with_guess<GMRES, Rhs, Guess>
- solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
- {
- eigen_assert(m_isInitialized && "GMRES is not initialized.");
- eigen_assert(Base::rows()==b.rows()
- && "GMRES::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval_with_guess
- <GMRES, Rhs, Guess>(*this, b.derived(), x0);
- }
-
/** \internal */
template<typename Rhs,typename Dest>
- void _solveWithGuess(const Rhs& b, Dest& x) const
+ void _solve_with_guess_impl(const Rhs& b, Dest& x) const
{
bool failed = false;
for(int j=0; j<b.cols(); ++j)
@@ -353,35 +338,17 @@ public:
/** \internal */
template<typename Rhs,typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const Rhs& b, MatrixBase<Dest> &x) const
{
x = b;
if(x.squaredNorm() == 0) return; // Check Zero right hand side
- _solveWithGuess(b,x);
+ _solve_with_guess_impl(b,x.derived());
}
protected:
};
-
-namespace internal {
-
- template<typename _MatrixType, typename _Preconditioner, typename Rhs>
-struct solve_retval<GMRES<_MatrixType, _Preconditioner>, Rhs>
- : solve_retval_base<GMRES<_MatrixType, _Preconditioner>, Rhs>
-{
- typedef GMRES<_MatrixType, _Preconditioner> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_GMRES_H
diff --git a/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h b/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
index 661c1f2e0..dd43de6b3 100644
--- a/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
+++ b/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
@@ -27,8 +27,11 @@ namespace Eigen {
*/
template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> >
-class IncompleteCholesky : internal::noncopyable
+class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> >
{
+ protected:
+ typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base;
+ using Base::m_isInitialized;
public:
typedef SparseMatrix<Scalar,ColMajor> MatrixType;
typedef _OrderingType OrderingType;
@@ -89,7 +92,7 @@ class IncompleteCholesky : internal::noncopyable
}
template<typename Rhs, typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const Rhs& b, Dest& x) const
{
eigen_assert(m_factorizationIsOk && "factorize() should be called first");
if (m_perm.rows() == b.rows())
@@ -103,22 +106,13 @@ class IncompleteCholesky : internal::noncopyable
x = m_perm * x;
x = m_scal.asDiagonal() * x;
}
- template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_factorizationIsOk && "IncompleteLLT did not succeed");
- eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
- eigen_assert(cols()==b.rows()
- && "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived());
- }
+
protected:
SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC
ScalarType m_scal; // The vector for scaling the matrix
Scalar m_shift; //The initial shift parameter
bool m_analysisIsOk;
bool m_factorizationIsOk;
- bool m_isInitialized;
ComputationInfo m_info;
PermutationType m_perm;
@@ -256,22 +250,6 @@ inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const Idx
listCol[rowIdx(jk)].push_back(col);
}
}
-namespace internal {
-
-template<typename _Scalar, int _UpLo, typename OrderingType, typename Rhs>
-struct solve_retval<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
- : solve_retval_base<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
-{
- typedef IncompleteCholesky<_Scalar, _UpLo, OrderingType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
-};
-
-} // end namespace internal
} // end namespace Eigen
diff --git a/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h b/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h
index 67e780181..7d08c3515 100644
--- a/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h
+++ b/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h
@@ -13,8 +13,12 @@
namespace Eigen {
template <typename _Scalar>
-class IncompleteLU
+class IncompleteLU : public SparseSolverBase<IncompleteLU<_Scalar> >
{
+ protected:
+ typedef SparseSolverBase<IncompleteLU<_Scalar> > Base;
+ using Base::m_isInitialized;
+
typedef _Scalar Scalar;
typedef Matrix<Scalar,Dynamic,1> Vector;
typedef typename Vector::Index Index;
@@ -23,10 +27,10 @@ class IncompleteLU
public:
typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
- IncompleteLU() : m_isInitialized(false) {}
+ IncompleteLU() {}
template<typename MatrixType>
- IncompleteLU(const MatrixType& mat) : m_isInitialized(false)
+ IncompleteLU(const MatrixType& mat)
{
compute(mat);
}
@@ -71,43 +75,16 @@ class IncompleteLU
}
template<typename Rhs, typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const Rhs& b, Dest& x) const
{
x = m_lu.template triangularView<UnitLower>().solve(b);
x = m_lu.template triangularView<Upper>().solve(x);
}
- template<typename Rhs> inline const internal::solve_retval<IncompleteLU, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "IncompleteLU is not initialized.");
- eigen_assert(cols()==b.rows()
- && "IncompleteLU::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval<IncompleteLU, Rhs>(*this, b.derived());
- }
-
protected:
FactorType m_lu;
- bool m_isInitialized;
-};
-
-namespace internal {
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<IncompleteLU<_MatrixType>, Rhs>
- : solve_retval_base<IncompleteLU<_MatrixType>, Rhs>
-{
- typedef IncompleteLU<_MatrixType> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
};
-} // end namespace internal
-
} // end namespace Eigen
#endif // EIGEN_INCOMPLETE_LU_H
diff --git a/unsupported/Eigen/src/IterativeSolvers/MINRES.h b/unsupported/Eigen/src/IterativeSolvers/MINRES.h
index 98f9ecc17..aaf42c78a 100644
--- a/unsupported/Eigen/src/IterativeSolvers/MINRES.h
+++ b/unsupported/Eigen/src/IterativeSolvers/MINRES.h
@@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2012 Giacomo Po <gpo@ucla.edu>
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -217,6 +217,7 @@ namespace Eigen {
using Base::m_info;
using Base::m_isInitialized;
public:
+ using Base::_solve_impl;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
@@ -244,26 +245,10 @@ namespace Eigen {
/** Destructor. */
~MINRES(){}
-
- /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
- * \a x0 as an initial solution.
- *
- * \sa compute()
- */
- template<typename Rhs,typename Guess>
- inline const internal::solve_retval_with_guess<MINRES, Rhs, Guess>
- solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
- {
- eigen_assert(m_isInitialized && "MINRES is not initialized.");
- eigen_assert(Base::rows()==b.rows()
- && "MINRES::solve(): invalid number of rows of the right hand side matrix b");
- return internal::solve_retval_with_guess
- <MINRES, Rhs, Guess>(*this, b.derived(), x0);
- }
-
+
/** \internal */
template<typename Rhs,typename Dest>
- void _solveWithGuess(const Rhs& b, Dest& x) const
+ void _solve_with_guess_impl(const Rhs& b, Dest& x) const
{
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
@@ -284,33 +269,16 @@ namespace Eigen {
/** \internal */
template<typename Rhs,typename Dest>
- void _solve(const Rhs& b, Dest& x) const
+ void _solve_impl(const Rhs& b, MatrixBase<Dest> &x) const
{
x.setZero();
- _solveWithGuess(b,x);
+ _solve_with_guess_impl(b,x.derived());
}
protected:
};
-
- namespace internal {
-
- template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
- struct solve_retval<MINRES<_MatrixType,_UpLo,_Preconditioner>, Rhs>
- : solve_retval_base<MINRES<_MatrixType,_UpLo,_Preconditioner>, Rhs>
- {
- typedef MINRES<_MatrixType,_UpLo,_Preconditioner> Dec;
- EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- dec()._solve(rhs(),dst);
- }
- };
-
- } // end namespace internal
-
+
} // end namespace Eigen
#endif // EIGEN_MINRES_H
diff --git a/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h b/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h
index b8f2cba17..72e25db19 100644
--- a/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h
+++ b/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h
@@ -154,16 +154,41 @@ void KroneckerProductSparse<Lhs,Rhs>::evalTo(Dest& dst) const
dst.resize(this->rows(), this->cols());
dst.resizeNonZeros(0);
+ // 1 - evaluate the operands if needed:
+ typedef typename internal::nested_eval<Lhs,10>::type Lhs1;
+ typedef typename internal::remove_all<Lhs1>::type Lhs1Cleaned;
+ const Lhs1 lhs1(m_A);
+ typedef typename internal::nested_eval<Rhs,10>::type Rhs1;
+ typedef typename internal::remove_all<Rhs1>::type Rhs1Cleaned;
+ const Rhs1 rhs1(m_B);
+
+ // 2 - construct a SparseView for dense operands
+ typedef typename internal::conditional<internal::is_same<typename internal::traits<Lhs1Cleaned>::StorageKind,Sparse>::value, Lhs1, SparseView<const Lhs1Cleaned> >::type Lhs2;
+ typedef typename internal::remove_all<Lhs2>::type Lhs2Cleaned;
+ const Lhs2 lhs2(lhs1);
+ typedef typename internal::conditional<internal::is_same<typename internal::traits<Rhs1Cleaned>::StorageKind,Sparse>::value, Rhs1, SparseView<const Rhs1Cleaned> >::type Rhs2;
+ typedef typename internal::remove_all<Rhs2>::type Rhs2Cleaned;
+ const Rhs2 rhs2(rhs1);
+
+ // 3 - construct respective evaluators
+ typedef typename internal::evaluator<Lhs2Cleaned>::type LhsEval;
+ LhsEval lhsEval(lhs2);
+ typedef typename internal::evaluator<Rhs2Cleaned>::type RhsEval;
+ RhsEval rhsEval(rhs2);
+
+ typedef typename LhsEval::InnerIterator LhsInnerIterator;
+ typedef typename RhsEval::InnerIterator RhsInnerIterator;
+
// compute number of non-zeros per innervectors of dst
{
VectorXi nnzA = VectorXi::Zero(Dest::IsRowMajor ? m_A.rows() : m_A.cols());
for (Index kA=0; kA < m_A.outerSize(); ++kA)
- for (typename Lhs::InnerIterator itA(m_A,kA); itA; ++itA)
+ for (LhsInnerIterator itA(lhsEval,kA); itA; ++itA)
nnzA(Dest::IsRowMajor ? itA.row() : itA.col())++;
VectorXi nnzB = VectorXi::Zero(Dest::IsRowMajor ? m_B.rows() : m_B.cols());
for (Index kB=0; kB < m_B.outerSize(); ++kB)
- for (typename Rhs::InnerIterator itB(m_B,kB); itB; ++itB)
+ for (RhsInnerIterator itB(rhsEval,kB); itB; ++itB)
nnzB(Dest::IsRowMajor ? itB.row() : itB.col())++;
Matrix<int,Dynamic,Dynamic,ColMajor> nnzAB = nnzB * nnzA.transpose();
@@ -174,9 +199,9 @@ void KroneckerProductSparse<Lhs,Rhs>::evalTo(Dest& dst) const
{
for (Index kB=0; kB < m_B.outerSize(); ++kB)
{
- for (typename Lhs::InnerIterator itA(m_A,kA); itA; ++itA)
+ for (LhsInnerIterator itA(lhsEval,kA); itA; ++itA)
{
- for (typename Rhs::InnerIterator itB(m_B,kB); itB; ++itB)
+ for (RhsInnerIterator itB(rhsEval,kB); itB; ++itB)
{
const Index i = itA.row() * Br + itB.row(),
j = itA.col() * Bc + itB.col();
@@ -201,8 +226,7 @@ struct traits<KroneckerProduct<_Lhs,_Rhs> >
Rows = size_at_compile_time<traits<Lhs>::RowsAtCompileTime, traits<Rhs>::RowsAtCompileTime>::ret,
Cols = size_at_compile_time<traits<Lhs>::ColsAtCompileTime, traits<Rhs>::ColsAtCompileTime>::ret,
MaxRows = size_at_compile_time<traits<Lhs>::MaxRowsAtCompileTime, traits<Rhs>::MaxRowsAtCompileTime>::ret,
- MaxCols = size_at_compile_time<traits<Lhs>::MaxColsAtCompileTime, traits<Rhs>::MaxColsAtCompileTime>::ret,
- CoeffReadCost = Lhs::CoeffReadCost + Rhs::CoeffReadCost + NumTraits<Scalar>::MulCost
+ MaxCols = size_at_compile_time<traits<Lhs>::MaxColsAtCompileTime, traits<Rhs>::MaxColsAtCompileTime>::ret
};
typedef Matrix<Scalar,Rows,Cols> ReturnType;
@@ -215,7 +239,7 @@ struct traits<KroneckerProductSparse<_Lhs,_Rhs> >
typedef typename remove_all<_Lhs>::type Lhs;
typedef typename remove_all<_Rhs>::type Rhs;
typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
- typedef typename promote_storage_type<typename traits<Lhs>::StorageKind, typename traits<Rhs>::StorageKind>::ret StorageKind;
+ typedef typename cwise_promote_storage_type<typename traits<Lhs>::StorageKind, typename traits<Rhs>::StorageKind, scalar_product_op<typename Lhs::Scalar, typename Rhs::Scalar> >::ret StorageKind;
typedef typename promote_index_type<typename Lhs::Index, typename Rhs::Index>::type Index;
enum {
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h b/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
index 160120d03..9e0545660 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
@@ -392,14 +392,15 @@ template<typename Derived> struct MatrixExponentialReturnValue
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
- internal::matrix_exp_compute(m_src, result);
+ const typename internal::nested_eval<Derived, 10>::type tmp(m_src);
+ internal::matrix_exp_compute(tmp, result);
}
Index rows() const { return m_src.rows(); }
Index cols() const { return m_src.cols(); }
protected:
- const typename internal::nested<Derived, 10>::type m_src;
+ const typename internal::nested<Derived>::type m_src;
};
namespace internal {
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h b/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
index a35c11be5..b68aae5e8 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
@@ -485,7 +485,7 @@ template<typename Derived> class MatrixFunctionReturnValue
typedef typename internal::stem_function<Scalar>::type StemFunction;
protected:
- typedef typename internal::nested<Derived, 10>::type DerivedNested;
+ typedef typename internal::nested<Derived>::type DerivedNested;
public:
@@ -503,18 +503,19 @@ template<typename Derived> class MatrixFunctionReturnValue
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
- typedef typename internal::remove_all<DerivedNested>::type DerivedNestedClean;
- typedef internal::traits<DerivedNestedClean> Traits;
+ typedef typename internal::nested_eval<Derived, 10>::type NestedEvalType;
+ typedef typename internal::remove_all<NestedEvalType>::type NestedEvalTypeClean;
+ typedef internal::traits<NestedEvalTypeClean> Traits;
static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
- static const int Options = DerivedNestedClean::Options;
+ static const int Options = NestedEvalTypeClean::Options;
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
typedef internal::MatrixFunctionAtomic<DynMatrixType> AtomicType;
AtomicType atomic(m_f);
- internal::matrix_function_compute<DerivedNestedClean>::run(m_A, atomic, result);
+ internal::matrix_function_compute<NestedEvalTypeClean>::run(m_A, atomic, result);
}
Index rows() const { return m_A.rows(); }
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h b/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
index d46ccc145..42b60b9b1 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
@@ -310,7 +310,7 @@ public:
typedef typename Derived::Index Index;
protected:
- typedef typename internal::nested<Derived, 10>::type DerivedNested;
+ typedef typename internal::nested<Derived>::type DerivedNested;
public:
@@ -327,17 +327,18 @@ public:
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
- typedef typename internal::remove_all<DerivedNested>::type DerivedNestedClean;
- typedef internal::traits<DerivedNestedClean> Traits;
+ typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
+ typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
+ typedef internal::traits<DerivedEvalTypeClean> Traits;
static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
- static const int Options = DerivedNestedClean::Options;
+ static const int Options = DerivedEvalTypeClean::Options;
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType;
AtomicType atomic;
- internal::matrix_function_compute<DerivedNestedClean>::run(m_A, atomic, result);
+ internal::matrix_function_compute<DerivedEvalTypeClean>::run(m_A, atomic, result);
}
Index rows() const { return m_A.rows(); }
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h b/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
index 8ca4f4864..3a4d6eb3f 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
@@ -320,7 +320,7 @@ template<typename Derived> class MatrixSquareRootReturnValue
{
protected:
typedef typename Derived::Index Index;
- typedef typename internal::nested<Derived, 10>::type DerivedNested;
+ typedef typename internal::nested<Derived>::type DerivedNested;
public:
/** \brief Constructor.
@@ -338,8 +338,10 @@ template<typename Derived> class MatrixSquareRootReturnValue
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
- typedef typename internal::remove_all<DerivedNested>::type DerivedNestedClean;
- internal::matrix_sqrt_compute<DerivedNestedClean>::run(m_src, result);
+ typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
+ typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
+ DerivedEvalType tmp(m_src);
+ internal::matrix_sqrt_compute<DerivedEvalTypeClean>::run(tmp, result);
}
Index rows() const { return m_src.rows(); }
diff --git a/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h b/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
index ecb8dccf4..69106ddc5 100644
--- a/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
+++ b/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
@@ -45,18 +45,24 @@ namespace LevenbergMarquardtSpace {
template<typename FunctorType, typename Scalar=double>
class LevenbergMarquardt
{
+ static Scalar sqrt_epsilon()
+ {
+ using std::sqrt;
+ return sqrt(NumTraits<Scalar>::epsilon());
+ }
+
public:
LevenbergMarquardt(FunctorType &_functor)
: functor(_functor) { nfev = njev = iter = 0; fnorm = gnorm = 0.; useExternalScaling=false; }
typedef DenseIndex Index;
-
+
struct Parameters {
Parameters()
: factor(Scalar(100.))
, maxfev(400)
- , ftol(sqrt_(NumTraits<Scalar>::epsilon()))
- , xtol(sqrt_(NumTraits<Scalar>::epsilon()))
+ , ftol(sqrt_epsilon())
+ , xtol(sqrt_epsilon())
, gtol(Scalar(0.))
, epsfcn(Scalar(0.)) {}
Scalar factor;
@@ -72,7 +78,7 @@ public:
LevenbergMarquardtSpace::Status lmder1(
FVectorType &x,
- const Scalar tol = sqrt_(NumTraits<Scalar>::epsilon())
+ const Scalar tol = sqrt_epsilon()
);
LevenbergMarquardtSpace::Status minimize(FVectorType &x);
@@ -83,12 +89,12 @@ public:
FunctorType &functor,
FVectorType &x,
Index *nfev,
- const Scalar tol = sqrt_(NumTraits<Scalar>::epsilon())
+ const Scalar tol = sqrt_epsilon()
);
LevenbergMarquardtSpace::Status lmstr1(
FVectorType &x,
- const Scalar tol = sqrt_(NumTraits<Scalar>::epsilon())
+ const Scalar tol = sqrt_epsilon()
);
LevenbergMarquardtSpace::Status minimizeOptimumStorage(FVectorType &x);
@@ -109,7 +115,6 @@ public:
Scalar lm_param(void) { return par; }
private:
- static Scalar sqrt_(const Scalar& x) { using std::sqrt; return sqrt(x); }
FunctorType &functor;
Index n;
diff --git a/unsupported/Eigen/src/SVD/CMakeLists.txt b/unsupported/Eigen/src/SVD/CMakeLists.txt
deleted file mode 100644
index b40baf092..000000000
--- a/unsupported/Eigen/src/SVD/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_SVD_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_SVD_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}unsupported/Eigen/src/SVD COMPONENT Devel
- )
diff --git a/unsupported/Eigen/src/SVD/JacobiSVD.h b/unsupported/Eigen/src/SVD/JacobiSVD.h
deleted file mode 100644
index 02fac409e..000000000
--- a/unsupported/Eigen/src/SVD/JacobiSVD.h
+++ /dev/null
@@ -1,782 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_JACOBISVD_H
-#define EIGEN_JACOBISVD_H
-
-namespace Eigen {
-
-namespace internal {
-// forward declaration (needed by ICC)
-// the empty body is required by MSVC
-template<typename MatrixType, int QRPreconditioner,
- bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
-struct svd_precondition_2x2_block_to_be_real {};
-
-/*** QR preconditioners (R-SVD)
- ***
- *** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
- *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
- *** JacobiSVD which by itself is only able to work on square matrices.
- ***/
-
-enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
-
-template<typename MatrixType, int QRPreconditioner, int Case>
-struct qr_preconditioner_should_do_anything
-{
- enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
- MatrixType::ColsAtCompileTime != Dynamic &&
- MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
- b = MatrixType::RowsAtCompileTime != Dynamic &&
- MatrixType::ColsAtCompileTime != Dynamic &&
- MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
- ret = !( (QRPreconditioner == NoQRPreconditioner) ||
- (Case == PreconditionIfMoreColsThanRows && bool(a)) ||
- (Case == PreconditionIfMoreRowsThanCols && bool(b)) )
- };
-};
-
-template<typename MatrixType, int QRPreconditioner, int Case,
- bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
-> struct qr_preconditioner_impl {};
-
-template<typename MatrixType, int QRPreconditioner, int Case>
-class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
-{
-public:
- typedef typename MatrixType::Index Index;
- void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
- bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
- {
- return false;
- }
-};
-
-/*** preconditioner using FullPivHouseholderQR ***/
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
-{
-public:
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
- enum
- {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
- };
- typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
-
- void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
- {
- if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.rows(), svd.cols());
- }
- if (svd.m_computeFullU) m_workspace.resize(svd.rows());
- }
-
- bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.rows() > matrix.cols())
- {
- m_qr.compute(matrix);
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
- if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
- if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
- return true;
- }
- return false;
- }
-private:
- typedef FullPivHouseholderQR<MatrixType> QRType;
- QRType m_qr;
- WorkspaceType m_workspace;
-};
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
-{
-public:
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
- enum
- {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- Options = MatrixType::Options
- };
- typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
- TransposeTypeWithSameStorageOrder;
-
- void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
- {
- if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.cols(), svd.rows());
- }
- m_adjoint.resize(svd.cols(), svd.rows());
- if (svd.m_computeFullV) m_workspace.resize(svd.cols());
- }
-
- bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.cols() > matrix.rows())
- {
- m_adjoint = matrix.adjoint();
- m_qr.compute(m_adjoint);
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
- if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
- if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
- return true;
- }
- else return false;
- }
-private:
- typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
- QRType m_qr;
- TransposeTypeWithSameStorageOrder m_adjoint;
- typename internal::plain_row_type<MatrixType>::type m_workspace;
-};
-
-/*** preconditioner using ColPivHouseholderQR ***/
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
-{
-public:
- typedef typename MatrixType::Index Index;
-
- void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
- {
- if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.rows(), svd.cols());
- }
- if (svd.m_computeFullU) m_workspace.resize(svd.rows());
- else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
- }
-
- bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.rows() > matrix.cols())
- {
- m_qr.compute(matrix);
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
- if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
- else if(svd.m_computeThinU)
- {
- svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
- m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
- }
- if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
- return true;
- }
- return false;
- }
-
-private:
- typedef ColPivHouseholderQR<MatrixType> QRType;
- QRType m_qr;
- typename internal::plain_col_type<MatrixType>::type m_workspace;
-};
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
-{
-public:
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
- enum
- {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- Options = MatrixType::Options
- };
-
- typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
- TransposeTypeWithSameStorageOrder;
-
- void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
- {
- if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.cols(), svd.rows());
- }
- if (svd.m_computeFullV) m_workspace.resize(svd.cols());
- else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
- m_adjoint.resize(svd.cols(), svd.rows());
- }
-
- bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.cols() > matrix.rows())
- {
- m_adjoint = matrix.adjoint();
- m_qr.compute(m_adjoint);
-
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
- if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
- else if(svd.m_computeThinV)
- {
- svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
- m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
- }
- if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
- return true;
- }
- else return false;
- }
-
-private:
- typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
- QRType m_qr;
- TransposeTypeWithSameStorageOrder m_adjoint;
- typename internal::plain_row_type<MatrixType>::type m_workspace;
-};
-
-/*** preconditioner using HouseholderQR ***/
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
-{
-public:
- typedef typename MatrixType::Index Index;
-
- void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
- {
- if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.rows(), svd.cols());
- }
- if (svd.m_computeFullU) m_workspace.resize(svd.rows());
- else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
- }
-
- bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.rows() > matrix.cols())
- {
- m_qr.compute(matrix);
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
- if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
- else if(svd.m_computeThinU)
- {
- svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
- m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
- }
- if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
- return true;
- }
- return false;
- }
-private:
- typedef HouseholderQR<MatrixType> QRType;
- QRType m_qr;
- typename internal::plain_col_type<MatrixType>::type m_workspace;
-};
-
-template<typename MatrixType>
-class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
-{
-public:
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
- enum
- {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- Options = MatrixType::Options
- };
-
- typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
- TransposeTypeWithSameStorageOrder;
-
- void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
- {
- if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
- {
- m_qr.~QRType();
- ::new (&m_qr) QRType(svd.cols(), svd.rows());
- }
- if (svd.m_computeFullV) m_workspace.resize(svd.cols());
- else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
- m_adjoint.resize(svd.cols(), svd.rows());
- }
-
- bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
- {
- if(matrix.cols() > matrix.rows())
- {
- m_adjoint = matrix.adjoint();
- m_qr.compute(m_adjoint);
-
- svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
- if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
- else if(svd.m_computeThinV)
- {
- svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
- m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
- }
- if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
- return true;
- }
- else return false;
- }
-
-private:
- typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
- QRType m_qr;
- TransposeTypeWithSameStorageOrder m_adjoint;
- typename internal::plain_row_type<MatrixType>::type m_workspace;
-};
-
-/*** 2x2 SVD implementation
- ***
- *** JacobiSVD consists in performing a series of 2x2 SVD subproblems
- ***/
-
-template<typename MatrixType, int QRPreconditioner>
-struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
-{
- typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
- typedef typename SVD::Index Index;
- static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
-};
-
-template<typename MatrixType, int QRPreconditioner>
-struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
-{
- typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename SVD::Index Index;
- static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
- {
- using std::sqrt;
- Scalar z;
- JacobiRotation<Scalar> rot;
- RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
- if(n==0)
- {
- z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
- work_matrix.row(p) *= z;
- if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
- z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
- work_matrix.row(q) *= z;
- if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
- }
- else
- {
- rot.c() = conj(work_matrix.coeff(p,p)) / n;
- rot.s() = work_matrix.coeff(q,p) / n;
- work_matrix.applyOnTheLeft(p,q,rot);
- if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
- if(work_matrix.coeff(p,q) != Scalar(0))
- {
- Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
- work_matrix.col(q) *= z;
- if(svd.computeV()) svd.m_matrixV.col(q) *= z;
- }
- if(work_matrix.coeff(q,q) != Scalar(0))
- {
- z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
- work_matrix.row(q) *= z;
- if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
- }
- }
- }
-};
-
-template<typename MatrixType, typename RealScalar, typename Index>
-void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
- JacobiRotation<RealScalar> *j_left,
- JacobiRotation<RealScalar> *j_right)
-{
- using std::sqrt;
- Matrix<RealScalar,2,2> m;
- m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
- numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
- JacobiRotation<RealScalar> rot1;
- RealScalar t = m.coeff(0,0) + m.coeff(1,1);
- RealScalar d = m.coeff(1,0) - m.coeff(0,1);
- if(t == RealScalar(0))
- {
- rot1.c() = RealScalar(0);
- rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
- }
- else
- {
- RealScalar u = d / t;
- rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u));
- rot1.s() = rot1.c() * u;
- }
- m.applyOnTheLeft(0,1,rot1);
- j_right->makeJacobi(m,0,1);
- *j_left = rot1 * j_right->transpose();
-}
-
-} // end namespace internal
-
-/** \ingroup SVD_Module
- *
- *
- * \class JacobiSVD
- *
- * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
- *
- * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
- * \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
- * for the R-SVD step for non-square matrices. See discussion of possible values below.
- *
- * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
- * \f[ A = U S V^* \f]
- * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
- * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
- * and right \em singular \em vectors of \a A respectively.
- *
- * Singular values are always sorted in decreasing order.
- *
- * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
- *
- * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
- * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
- * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
- * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
- *
- * Here's an example demonstrating basic usage:
- * \include JacobiSVD_basic.cpp
- * Output: \verbinclude JacobiSVD_basic.out
- *
- * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
- * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
- * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
- * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
- *
- * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
- * terminate in finite (and reasonable) time.
- *
- * The possible values for QRPreconditioner are:
- * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
- * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
- * Contrary to other QRs, it doesn't allow computing thin unitaries.
- * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
- * This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
- * is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
- * process is more reliable than the optimized bidiagonal SVD iterations.
- * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
- * JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
- * faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
- * if QR preconditioning is needed before applying it anyway.
- *
- * \sa MatrixBase::jacobiSvd()
- */
-template<typename _MatrixType, int QRPreconditioner>
-class JacobiSVD : public SVDBase<_MatrixType>
-{
- public:
-
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
- MatrixOptions = MatrixType::Options
- };
-
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
- MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
- MatrixUType;
- typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
- MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
- MatrixVType;
- typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
- typedef typename internal::plain_row_type<MatrixType>::type RowType;
- typedef typename internal::plain_col_type<MatrixType>::type ColType;
- typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
- MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
- WorkMatrixType;
-
- /** \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via JacobiSVD::compute(const MatrixType&).
- */
- JacobiSVD()
- : SVDBase<_MatrixType>::SVDBase()
- {}
-
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem size.
- * \sa JacobiSVD()
- */
- JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
- : SVDBase<_MatrixType>::SVDBase()
- {
- allocate(rows, cols, computationOptions);
- }
-
- /** \brief Constructor performing the decomposition of given matrix.
- *
- * \param matrix the matrix to decompose
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
- * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
- * #ComputeFullV, #ComputeThinV.
- *
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
- * available with the (non-default) FullPivHouseholderQR preconditioner.
- */
- JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
- : SVDBase<_MatrixType>::SVDBase()
- {
- compute(matrix, computationOptions);
- }
-
- /** \brief Method performing the decomposition of given matrix using custom options.
- *
- * \param matrix the matrix to decompose
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
- * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
- * #ComputeFullV, #ComputeThinV.
- *
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
- * available with the (non-default) FullPivHouseholderQR preconditioner.
- */
- SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions);
-
- /** \brief Method performing the decomposition of given matrix using current options.
- *
- * \param matrix the matrix to decompose
- *
- * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
- */
- SVDBase<MatrixType>& compute(const MatrixType& matrix)
- {
- return compute(matrix, this->m_computationOptions);
- }
-
- /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
- *
- * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
- * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
- */
- template<typename Rhs>
- inline const internal::solve_retval<JacobiSVD, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(this->m_isInitialized && "JacobiSVD is not initialized.");
- eigen_assert(SVDBase<MatrixType>::computeU() && SVDBase<MatrixType>::computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
- return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
- }
-
-
-
- private:
- void allocate(Index rows, Index cols, unsigned int computationOptions);
-
- protected:
- WorkMatrixType m_workMatrix;
-
- template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
- friend struct internal::svd_precondition_2x2_block_to_be_real;
- template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
- friend struct internal::qr_preconditioner_impl;
-
- internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
- internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
-};
-
-template<typename MatrixType, int QRPreconditioner>
-void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
-{
- if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return;
-
- if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
- {
- eigen_assert(!(this->m_computeThinU || this->m_computeThinV) &&
- "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
- "Use the ColPivHouseholderQR preconditioner instead.");
- }
-
- m_workMatrix.resize(this->m_diagSize, this->m_diagSize);
-
- if(this->m_cols>this->m_rows) m_qr_precond_morecols.allocate(*this);
- if(this->m_rows>this->m_cols) m_qr_precond_morerows.allocate(*this);
-}
-
-template<typename MatrixType, int QRPreconditioner>
-SVDBase<MatrixType>&
-JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
-{
- using std::abs;
- allocate(matrix.rows(), matrix.cols(), computationOptions);
-
- // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
- // only worsening the precision of U and V as we accumulate more rotations
- const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
-
- // limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
- const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min();
-
- /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
-
- if(!m_qr_precond_morecols.run(*this, matrix) && !m_qr_precond_morerows.run(*this, matrix))
- {
- m_workMatrix = matrix.block(0,0,this->m_diagSize,this->m_diagSize);
- if(this->m_computeFullU) this->m_matrixU.setIdentity(this->m_rows,this->m_rows);
- if(this->m_computeThinU) this->m_matrixU.setIdentity(this->m_rows,this->m_diagSize);
- if(this->m_computeFullV) this->m_matrixV.setIdentity(this->m_cols,this->m_cols);
- if(this->m_computeThinV) this->m_matrixV.setIdentity(this->m_cols, this->m_diagSize);
- }
-
- /*** step 2. The main Jacobi SVD iteration. ***/
-
- bool finished = false;
- while(!finished)
- {
- finished = true;
-
- // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix
-
- for(Index p = 1; p < this->m_diagSize; ++p)
- {
- for(Index q = 0; q < p; ++q)
- {
- // if this 2x2 sub-matrix is not diagonal already...
- // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
- // keep us iterating forever. Similarly, small denormal numbers are considered zero.
- using std::max;
- RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
- abs(m_workMatrix.coeff(q,q))));
- if((max)(abs(m_workMatrix.coeff(p,q)),abs(m_workMatrix.coeff(q,p))) > threshold)
- {
- finished = false;
-
- // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
- internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
- JacobiRotation<RealScalar> j_left, j_right;
- internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
-
- // accumulate resulting Jacobi rotations
- m_workMatrix.applyOnTheLeft(p,q,j_left);
- if(SVDBase<MatrixType>::computeU()) this->m_matrixU.applyOnTheRight(p,q,j_left.transpose());
-
- m_workMatrix.applyOnTheRight(p,q,j_right);
- if(SVDBase<MatrixType>::computeV()) this->m_matrixV.applyOnTheRight(p,q,j_right);
- }
- }
- }
- }
-
- /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/
-
- for(Index i = 0; i < this->m_diagSize; ++i)
- {
- RealScalar a = abs(m_workMatrix.coeff(i,i));
- this->m_singularValues.coeffRef(i) = a;
- if(SVDBase<MatrixType>::computeU() && (a!=RealScalar(0))) this->m_matrixU.col(i) *= this->m_workMatrix.coeff(i,i)/a;
- }
-
- /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/
-
- this->m_nonzeroSingularValues = this->m_diagSize;
- for(Index i = 0; i < this->m_diagSize; i++)
- {
- Index pos;
- RealScalar maxRemainingSingularValue = this->m_singularValues.tail(this->m_diagSize-i).maxCoeff(&pos);
- if(maxRemainingSingularValue == RealScalar(0))
- {
- this->m_nonzeroSingularValues = i;
- break;
- }
- if(pos)
- {
- pos += i;
- std::swap(this->m_singularValues.coeffRef(i), this->m_singularValues.coeffRef(pos));
- if(SVDBase<MatrixType>::computeU()) this->m_matrixU.col(pos).swap(this->m_matrixU.col(i));
- if(SVDBase<MatrixType>::computeV()) this->m_matrixV.col(pos).swap(this->m_matrixV.col(i));
- }
- }
-
- this->m_isInitialized = true;
- return *this;
-}
-
-namespace internal {
-template<typename _MatrixType, int QRPreconditioner, typename Rhs>
-struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
- : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
-{
- typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
- EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- eigen_assert(rhs().rows() == dec().rows());
-
- // A = U S V^*
- // So A^{-1} = V S^{-1} U^*
-
- Index diagSize = (std::min)(dec().rows(), dec().cols());
- typename JacobiSVDType::SingularValuesType invertedSingVals(diagSize);
-
- Index nonzeroSingVals = dec().nonzeroSingularValues();
- invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
- invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
-
- dst = dec().matrixV().leftCols(diagSize)
- * invertedSingVals.asDiagonal()
- * dec().matrixU().leftCols(diagSize).adjoint()
- * rhs();
- }
-};
-} // end namespace internal
-
-/** \svd_module
- *
- * \return the singular value decomposition of \c *this computed by two-sided
- * Jacobi transformations.
- *
- * \sa class JacobiSVD
- */
-template<typename Derived>
-JacobiSVD<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
-{
- return JacobiSVD<PlainObject>(*this, computationOptions);
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_JACOBISVD_H
diff --git a/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h b/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h
index dec16df28..e4dc1c1de 100644
--- a/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h
+++ b/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h
@@ -352,6 +352,36 @@ class DynamicSparseMatrix<Scalar,_Options,_Index>::ReverseInnerIterator : public
const Index m_outer;
};
+namespace internal {
+
+template<typename _Scalar, int _Options, typename _Index>
+struct evaluator<DynamicSparseMatrix<_Scalar,_Options,_Index> >
+ : evaluator_base<DynamicSparseMatrix<_Scalar,_Options,_Index> >
+{
+ typedef _Scalar Scalar;
+ typedef _Index Index;
+ typedef DynamicSparseMatrix<_Scalar,_Options,_Index> SparseMatrixType;
+ typedef typename SparseMatrixType::InnerIterator InnerIterator;
+ typedef typename SparseMatrixType::ReverseInnerIterator ReverseInnerIterator;
+
+ enum {
+ CoeffReadCost = NumTraits<_Scalar>::ReadCost,
+ Flags = SparseMatrixType::Flags
+ };
+
+ evaluator() : m_matrix(0) {}
+ evaluator(const SparseMatrixType &mat) : m_matrix(&mat) {}
+
+ operator SparseMatrixType&() { return m_matrix->const_cast_derived(); }
+ operator const SparseMatrixType&() const { return *m_matrix; }
+
+ Scalar coeff(Index row, Index col) const { return m_matrix->coeff(row,col); }
+
+ const SparseMatrixType *m_matrix;
+};
+
+}
+
} // end namespace Eigen
#endif // EIGEN_DYNAMIC_SPARSEMATRIX_H
diff --git a/unsupported/test/CMakeLists.txt b/unsupported/test/CMakeLists.txt
index 0a6c56c19..48b61cde0 100644
--- a/unsupported/test/CMakeLists.txt
+++ b/unsupported/test/CMakeLists.txt
@@ -5,6 +5,7 @@ add_custom_target(BuildUnsupported)
include_directories(../../test ../../unsupported ../../Eigen
${CMAKE_CURRENT_BINARY_DIR}/../../test)
+
find_package(GoogleHash)
if(GOOGLEHASH_FOUND)
add_definitions("-DEIGEN_GOOGLEHASH_SUPPORT")
@@ -40,6 +41,7 @@ ei_add_test(matrix_function)
ei_add_test(matrix_power)
ei_add_test(matrix_square_root)
ei_add_test(alignedvector3)
+
ei_add_test(FFT)
find_package(MPFR 2.3.0)
@@ -86,12 +88,12 @@ endif()
ei_add_test(polynomialsolver)
ei_add_test(polynomialutils)
-ei_add_test(kronecker_product)
ei_add_test(splines)
ei_add_test(gmres)
ei_add_test(minres)
ei_add_test(levenberg_marquardt)
ei_add_test(bdcsvd)
+ei_add_test(kronecker_product)
option(EIGEN_TEST_CXX11 "Enable testing of C++11 features (e.g. Tensor module)." OFF)
if(EIGEN_TEST_CXX11)
diff --git a/unsupported/test/NonLinearOptimization.cpp b/unsupported/test/NonLinearOptimization.cpp
index d7376b0f5..75974f84f 100644
--- a/unsupported/test/NonLinearOptimization.cpp
+++ b/unsupported/test/NonLinearOptimization.cpp
@@ -1022,7 +1022,8 @@ void testNistLanczos1(void)
VERIFY_IS_EQUAL(lm.nfev, 79);
VERIFY_IS_EQUAL(lm.njev, 72);
// check norm^2
- VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.430899764097e-25); // should be 1.4307867721E-25, but nist results are on 128-bit floats
+ std::cout.precision(30);
+ VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.4290986055242372e-25); // should be 1.4307867721E-25, but nist results are on 128-bit floats
// check x
VERIFY_IS_APPROX(x[0], 9.5100000027E-02);
VERIFY_IS_APPROX(x[1], 1.0000000001E+00);
@@ -1043,7 +1044,7 @@ void testNistLanczos1(void)
VERIFY_IS_EQUAL(lm.nfev, 9);
VERIFY_IS_EQUAL(lm.njev, 8);
// check norm^2
- VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.428595533845e-25); // should be 1.4307867721E-25, but nist results are on 128-bit floats
+ VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.430571737783119393e-25); // should be 1.4307867721E-25, but nist results are on 128-bit floats
// check x
VERIFY_IS_APPROX(x[0], 9.5100000027E-02);
VERIFY_IS_APPROX(x[1], 1.0000000001E+00);
@@ -1262,8 +1263,8 @@ void testNistBoxBOD(void)
// check return value
VERIFY_IS_EQUAL(info, 1);
- VERIFY_IS_EQUAL(lm.nfev, 31);
- VERIFY_IS_EQUAL(lm.njev, 25);
+ VERIFY(lm.nfev < 31); // 31
+ VERIFY(lm.njev < 25); // 25
// check norm^2
VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.1680088766E+03);
// check x
@@ -1342,10 +1343,6 @@ void testNistMGH17(void)
lm.parameters.maxfev = 1000;
info = lm.minimize(x);
- // check return value
- VERIFY_IS_EQUAL(info, 2);
- VERIFY_IS_EQUAL(lm.nfev, 602 );
- VERIFY_IS_EQUAL(lm.njev, 545 );
// check norm^2
VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.4648946975E-05);
// check x
@@ -1354,6 +1351,11 @@ void testNistMGH17(void)
VERIFY_IS_APPROX(x[2], -1.4646871366E+00);
VERIFY_IS_APPROX(x[3], 1.2867534640E-02);
VERIFY_IS_APPROX(x[4], 2.2122699662E-02);
+
+ // check return value
+ VERIFY_IS_EQUAL(info, 2);
+ VERIFY(lm.nfev < 650); // 602
+ VERIFY(lm.njev < 600); // 545
/*
* Second try
@@ -1832,8 +1834,8 @@ void test_NonLinearOptimization()
// NIST tests, level of difficulty = "Average"
CALL_SUBTEST/*_5*/(testNistHahn1());
CALL_SUBTEST/*_6*/(testNistMisra1d());
-// CALL_SUBTEST/*_7*/(testNistMGH17());
-// CALL_SUBTEST/*_8*/(testNistLanczos1());
+ CALL_SUBTEST/*_7*/(testNistMGH17());
+ CALL_SUBTEST/*_8*/(testNistLanczos1());
// // NIST tests, level of difficulty = "Higher"
CALL_SUBTEST/*_9*/(testNistRat42());
diff --git a/unsupported/test/bdcsvd.cpp b/unsupported/test/bdcsvd.cpp
index 115a649b0..4ad991522 100644
--- a/unsupported/test/bdcsvd.cpp
+++ b/unsupported/test/bdcsvd.cpp
@@ -10,204 +10,105 @@
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/
-#include "svd_common.h"
+// discard stack allocation as that too bypasses malloc
+#define EIGEN_STACK_ALLOCATION_LIMIT 0
+#define EIGEN_RUNTIME_NO_MALLOC
+
+#include "main.h"
+#include <unsupported/Eigen/BDCSVD>
#include <iostream>
#include <Eigen/LU>
-// check if "svd" is the good image of "m"
-template<typename MatrixType>
-void bdcsvd_check_full(const MatrixType& m, const BDCSVD<MatrixType>& svd)
-{
- svd_check_full< MatrixType, BDCSVD< MatrixType > >(m, svd);
-}
-
-// Compare to a reference value
-template<typename MatrixType>
-void bdcsvd_compare_to_full(const MatrixType& m,
- unsigned int computationOptions,
- const BDCSVD<MatrixType>& referenceSvd)
-{
- svd_compare_to_full< MatrixType, BDCSVD< MatrixType > >(m, computationOptions, referenceSvd);
-} // end bdcsvd_compare_to_full
+#define SVD_DEFAULT(M) BDCSVD<M>
+// #define SVD_FOR_MIN_NORM(M) BDCSVD<M>
+#define SVD_FOR_MIN_NORM(M) JacobiSVD<M,ColPivHouseholderQRPreconditioner>
+#include "../../test/svd_common.h"
-template<typename MatrixType>
-void bdcsvd_solve(const MatrixType& m, unsigned int computationOptions)
-{
- svd_solve< MatrixType, BDCSVD< MatrixType > >(m, computationOptions);
-} // end template bdcsvd_solve
-
-
-// test the computations options
-template<typename MatrixType>
-void bdcsvd_test_all_computation_options(const MatrixType& m)
-{
- BDCSVD<MatrixType> fullSvd(m, ComputeFullU|ComputeFullV);
- svd_test_computation_options_1< MatrixType, BDCSVD< MatrixType > >(m, fullSvd);
- svd_test_computation_options_2< MatrixType, BDCSVD< MatrixType > >(m, fullSvd);
-} // end bdcsvd_test_all_computation_options
-
-
-// Call a test with all the computations options
+// Check all variants of JacobiSVD
template<typename MatrixType>
void bdcsvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
{
- MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
- bdcsvd_test_all_computation_options<MatrixType>(m);
-} // end template bdcsvd
-
-
-// verify assert
-template<typename MatrixType>
-void bdcsvd_verify_assert(const MatrixType& m)
-{
- svd_verify_assert< MatrixType, BDCSVD< MatrixType > >(m);
-}// end template bdcsvd_verify_assert
+ MatrixType m = a;
+ if(pickrandom)
+ svd_fill_random(m);
+ CALL_SUBTEST(( svd_test_all_computation_options<BDCSVD<MatrixType> >(m, false) ));
+}
-// test weird values
-template<typename MatrixType>
-void bdcsvd_inf_nan()
-{
- svd_inf_nan< MatrixType, BDCSVD< MatrixType > >();
-}// end template bdcsvd_inf_nan
-
-
-
-void bdcsvd_preallocate()
-{
- svd_preallocate< BDCSVD< MatrixXf > >();
-} // end bdcsvd_preallocate
-
+// template<typename MatrixType>
+// void bdcsvd_method()
+// {
+// enum { Size = MatrixType::RowsAtCompileTime };
+// typedef typename MatrixType::RealScalar RealScalar;
+// typedef Matrix<RealScalar, Size, 1> RealVecType;
+// MatrixType m = MatrixType::Identity();
+// VERIFY_IS_APPROX(m.bdcSvd().singularValues(), RealVecType::Ones());
+// VERIFY_RAISES_ASSERT(m.bdcSvd().matrixU());
+// VERIFY_RAISES_ASSERT(m.bdcSvd().matrixV());
+// VERIFY_IS_APPROX(m.bdcSvd(ComputeFullU|ComputeFullV).solve(m), m);
+// }
// compare the Singular values returned with Jacobi and Bdc
template<typename MatrixType>
void compare_bdc_jacobi(const MatrixType& a = MatrixType(), unsigned int computationOptions = 0)
{
- std::cout << "debut compare" << std::endl;
MatrixType m = MatrixType::Random(a.rows(), a.cols());
BDCSVD<MatrixType> bdc_svd(m);
JacobiSVD<MatrixType> jacobi_svd(m);
VERIFY_IS_APPROX(bdc_svd.singularValues(), jacobi_svd.singularValues());
- if(computationOptions & ComputeFullU)
- VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
- if(computationOptions & ComputeThinU)
- VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
- if(computationOptions & ComputeFullV)
- VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
- if(computationOptions & ComputeThinV)
- VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
- std::cout << "fin compare" << std::endl;
-} // end template compare_bdc_jacobi
-
-
-// call the tests
+ if(computationOptions & ComputeFullU) VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
+ if(computationOptions & ComputeThinU) VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU());
+ if(computationOptions & ComputeFullV) VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
+ if(computationOptions & ComputeThinV) VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV());
+}
+
void test_bdcsvd()
{
- // test of Dynamic defined Matrix (42, 42) of float
- CALL_SUBTEST_11(( bdcsvd_verify_assert<Matrix<float,Dynamic,Dynamic> >
- (Matrix<float,Dynamic,Dynamic>(42,42)) ));
- CALL_SUBTEST_11(( compare_bdc_jacobi<Matrix<float,Dynamic,Dynamic> >
- (Matrix<float,Dynamic,Dynamic>(42,42), 0) ));
- CALL_SUBTEST_11(( bdcsvd<Matrix<float,Dynamic,Dynamic> >
- (Matrix<float,Dynamic,Dynamic>(42,42)) ));
-
- // test of Dynamic defined Matrix (50, 50) of double
- CALL_SUBTEST_13(( bdcsvd_verify_assert<Matrix<double,Dynamic,Dynamic> >
- (Matrix<double,Dynamic,Dynamic>(50,50)) ));
- CALL_SUBTEST_13(( compare_bdc_jacobi<Matrix<double,Dynamic,Dynamic> >
- (Matrix<double,Dynamic,Dynamic>(50,50), 0) ));
- CALL_SUBTEST_13(( bdcsvd<Matrix<double,Dynamic,Dynamic> >
- (Matrix<double,Dynamic,Dynamic>(50, 50)) ));
-
- // test of Dynamic defined Matrix (22, 22) of complex double
- CALL_SUBTEST_14(( bdcsvd_verify_assert<Matrix<std::complex<double>,Dynamic,Dynamic> >
- (Matrix<std::complex<double>,Dynamic,Dynamic>(22,22)) ));
- CALL_SUBTEST_14(( compare_bdc_jacobi<Matrix<std::complex<double>,Dynamic,Dynamic> >
- (Matrix<std::complex<double>, Dynamic, Dynamic> (22,22), 0) ));
- CALL_SUBTEST_14(( bdcsvd<Matrix<std::complex<double>,Dynamic,Dynamic> >
- (Matrix<std::complex<double>,Dynamic,Dynamic>(22, 22)) ));
-
- // test of Dynamic defined Matrix (10, 10) of int
- //CALL_SUBTEST_15(( bdcsvd_verify_assert<Matrix<int,Dynamic,Dynamic> >
- // (Matrix<int,Dynamic,Dynamic>(10,10)) ));
- //CALL_SUBTEST_15(( compare_bdc_jacobi<Matrix<int,Dynamic,Dynamic> >
- // (Matrix<int,Dynamic,Dynamic>(10,10), 0) ));
- //CALL_SUBTEST_15(( bdcsvd<Matrix<int,Dynamic,Dynamic> >
- // (Matrix<int,Dynamic,Dynamic>(10, 10)) ));
+ CALL_SUBTEST_3(( svd_verify_assert<BDCSVD<Matrix3f> >(Matrix3f()) ));
+ CALL_SUBTEST_4(( svd_verify_assert<BDCSVD<Matrix4d> >(Matrix4d()) ));
+ CALL_SUBTEST_7(( svd_verify_assert<BDCSVD<MatrixXf> >(MatrixXf(10,12)) ));
+ CALL_SUBTEST_8(( svd_verify_assert<BDCSVD<MatrixXcd> >(MatrixXcd(7,5)) ));
+// svd_all_trivial_2x2(bdcsvd<Matrix2cd>);
+// svd_all_trivial_2x2(bdcsvd<Matrix2d>);
- // test of Dynamic defined Matrix (8, 6) of double
-
- CALL_SUBTEST_16(( bdcsvd_verify_assert<Matrix<double,Dynamic,Dynamic> >
- (Matrix<double,Dynamic,Dynamic>(8,6)) ));
- CALL_SUBTEST_16(( compare_bdc_jacobi<Matrix<double,Dynamic,Dynamic> >
- (Matrix<double,Dynamic,Dynamic>(8, 6), 0) ));
- CALL_SUBTEST_16(( bdcsvd<Matrix<double,Dynamic,Dynamic> >
- (Matrix<double,Dynamic,Dynamic>(8, 6)) ));
-
-
-
- // test of Dynamic defined Matrix (36, 12) of float
- CALL_SUBTEST_17(( compare_bdc_jacobi<Matrix<float,Dynamic,Dynamic> >
- (Matrix<float,Dynamic,Dynamic>(36, 12), 0) ));
- CALL_SUBTEST_17(( bdcsvd<Matrix<float,Dynamic,Dynamic> >
- (Matrix<float,Dynamic,Dynamic>(36, 12)) ));
-
- // test of Dynamic defined Matrix (5, 8) of double
- CALL_SUBTEST_18(( compare_bdc_jacobi<Matrix<double,Dynamic,Dynamic> >
- (Matrix<double,Dynamic,Dynamic>(5, 8), 0) ));
- CALL_SUBTEST_18(( bdcsvd<Matrix<double,Dynamic,Dynamic> >
- (Matrix<double,Dynamic,Dynamic>(5, 8)) ));
-
-
- // non regression tests
- CALL_SUBTEST_3(( bdcsvd_verify_assert(Matrix3f()) ));
- CALL_SUBTEST_4(( bdcsvd_verify_assert(Matrix4d()) ));
- CALL_SUBTEST_7(( bdcsvd_verify_assert(MatrixXf(10,12)) ));
- CALL_SUBTEST_8(( bdcsvd_verify_assert(MatrixXcd(7,5)) ));
-
- // SUBTESTS 1 and 2 on specifics matrix
for(int i = 0; i < g_repeat; i++) {
- Matrix2cd m;
- m << 0, 1,
- 0, 1;
- CALL_SUBTEST_1(( bdcsvd(m, false) ));
- m << 1, 0,
- 1, 0;
- CALL_SUBTEST_1(( bdcsvd(m, false) ));
-
- Matrix2d n;
- n << 0, 0,
- 0, 0;
- CALL_SUBTEST_2(( bdcsvd(n, false) ));
- n << 0, 0,
- 0, 1;
- CALL_SUBTEST_2(( bdcsvd(n, false) ));
+// CALL_SUBTEST_3(( bdcsvd<Matrix3f>() ));
+// CALL_SUBTEST_4(( bdcsvd<Matrix4d>() ));
+// CALL_SUBTEST_5(( bdcsvd<Matrix<float,3,5> >() ));
+
+ int r = internal::random<int>(1, EIGEN_TEST_MAX_SIZE/2),
+ c = internal::random<int>(1, EIGEN_TEST_MAX_SIZE/2);
- // Statics matrix don't work with BDSVD yet
- // bdc algo on a random 3x3 float matrix
- // CALL_SUBTEST_3(( bdcsvd<Matrix3f>() ));
- // bdc algo on a random 4x4 double matrix
- // CALL_SUBTEST_4(( bdcsvd<Matrix4d>() ));
- // bdc algo on a random 3x5 float matrix
- // CALL_SUBTEST_5(( bdcsvd<Matrix<float,3,5> >() ));
-
- int r = internal::random<int>(1, 30),
- c = internal::random<int>(1, 30);
- CALL_SUBTEST_7(( bdcsvd<MatrixXf>(MatrixXf(r,c)) ));
- CALL_SUBTEST_8(( bdcsvd<MatrixXcd>(MatrixXcd(r,c)) ));
+ TEST_SET_BUT_UNUSED_VARIABLE(r)
+ TEST_SET_BUT_UNUSED_VARIABLE(c)
+
+ CALL_SUBTEST_6(( bdcsvd(Matrix<double,Dynamic,2>(r,2)) ));
+ CALL_SUBTEST_7(( bdcsvd(MatrixXf(r,c)) ));
+ CALL_SUBTEST_7(( compare_bdc_jacobi(MatrixXf(r,c)) ));
+ CALL_SUBTEST_10(( bdcsvd(MatrixXd(r,c)) ));
+ CALL_SUBTEST_10(( compare_bdc_jacobi(MatrixXd(r,c)) ));
+ CALL_SUBTEST_8(( bdcsvd(MatrixXcd(r,c)) ));
+ CALL_SUBTEST_8(( compare_bdc_jacobi(MatrixXcd(r,c)) ));
(void) r;
(void) c;
// Test on inf/nan matrix
- CALL_SUBTEST_7( bdcsvd_inf_nan<MatrixXf>() );
+ CALL_SUBTEST_7( (svd_inf_nan<BDCSVD<MatrixXf>, MatrixXf>()) );
+ CALL_SUBTEST_10( (svd_inf_nan<BDCSVD<MatrixXd>, MatrixXd>()) );
}
- CALL_SUBTEST_7(( bdcsvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
- CALL_SUBTEST_8(( bdcsvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
+ // test matrixbase method
+// CALL_SUBTEST_1(( bdcsvd_method<Matrix2cd>() ));
+// CALL_SUBTEST_3(( bdcsvd_method<Matrix3f>() ));
// Test problem size constructors
CALL_SUBTEST_7( BDCSVD<MatrixXf>(10,10) );
-} // end test_bdcsvd
+ // Check that preallocation avoids subsequent mallocs
+ CALL_SUBTEST_9( svd_preallocate() );
+
+ CALL_SUBTEST_2( svd_underoverflow() );
+}
+
diff --git a/unsupported/test/jacobisvd.cpp b/unsupported/test/jacobisvd.cpp
deleted file mode 100644
index b4e884eee..000000000
--- a/unsupported/test/jacobisvd.cpp
+++ /dev/null
@@ -1,198 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#include "svd_common.h"
-
-template<typename MatrixType, int QRPreconditioner>
-void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd)
-{
- svd_check_full<MatrixType, JacobiSVD<MatrixType, QRPreconditioner > >(m, svd);
-}
-
-template<typename MatrixType, int QRPreconditioner>
-void jacobisvd_compare_to_full(const MatrixType& m,
- unsigned int computationOptions,
- const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd)
-{
- svd_compare_to_full<MatrixType, JacobiSVD<MatrixType, QRPreconditioner> >(m, computationOptions, referenceSvd);
-}
-
-
-template<typename MatrixType, int QRPreconditioner>
-void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions)
-{
- svd_solve< MatrixType, JacobiSVD< MatrixType, QRPreconditioner > >(m, computationOptions);
-}
-
-
-
-template<typename MatrixType, int QRPreconditioner>
-void jacobisvd_test_all_computation_options(const MatrixType& m)
-{
-
- if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
- return;
-
- JacobiSVD< MatrixType, QRPreconditioner > fullSvd(m, ComputeFullU|ComputeFullV);
- svd_test_computation_options_1< MatrixType, JacobiSVD< MatrixType, QRPreconditioner > >(m, fullSvd);
-
- if(QRPreconditioner == FullPivHouseholderQRPreconditioner)
- return;
- svd_test_computation_options_2< MatrixType, JacobiSVD< MatrixType, QRPreconditioner > >(m, fullSvd);
-
-}
-
-template<typename MatrixType>
-void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
-{
- MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
-
- jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m);
- jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m);
- jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m);
- jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m);
-}
-
-
-template<typename MatrixType>
-void jacobisvd_verify_assert(const MatrixType& m)
-{
-
- svd_verify_assert<MatrixType, JacobiSVD< MatrixType > >(m);
-
- typedef typename MatrixType::Index Index;
- Index rows = m.rows();
- Index cols = m.cols();
-
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime
- };
-
- MatrixType a = MatrixType::Zero(rows, cols);
- a.setZero();
-
- if (ColsAtCompileTime == Dynamic)
- {
- JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr;
- VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV))
- VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV))
- VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV))
- }
-}
-
-template<typename MatrixType>
-void jacobisvd_method()
-{
- enum { Size = MatrixType::RowsAtCompileTime };
- typedef typename MatrixType::RealScalar RealScalar;
- typedef Matrix<RealScalar, Size, 1> RealVecType;
- MatrixType m = MatrixType::Identity();
- VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones());
- VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU());
- VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV());
- VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m);
-}
-
-
-
-template<typename MatrixType>
-void jacobisvd_inf_nan()
-{
- svd_inf_nan<MatrixType, JacobiSVD< MatrixType > >();
-}
-
-
-// Regression test for bug 286: JacobiSVD loops indefinitely with some
-// matrices containing denormal numbers.
-void jacobisvd_bug286()
-{
-#if defined __INTEL_COMPILER
-// shut up warning #239: floating point underflow
-#pragma warning push
-#pragma warning disable 239
-#endif
- Matrix2d M;
- M << -7.90884e-313, -4.94e-324,
- 0, 5.60844e-313;
-#if defined __INTEL_COMPILER
-#pragma warning pop
-#endif
- JacobiSVD<Matrix2d> svd;
- svd.compute(M); // just check we don't loop indefinitely
-}
-
-
-void jacobisvd_preallocate()
-{
- svd_preallocate< JacobiSVD <MatrixXf> >();
-}
-
-void test_jacobisvd()
-{
- CALL_SUBTEST_11(( jacobisvd<Matrix<double,Dynamic,Dynamic> >
- (Matrix<double,Dynamic,Dynamic>(16, 6)) ));
-
- CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) ));
- CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) ));
- CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) ));
- CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) ));
-
- for(int i = 0; i < g_repeat; i++) {
- Matrix2cd m;
- m << 0, 1,
- 0, 1;
- CALL_SUBTEST_1(( jacobisvd(m, false) ));
- m << 1, 0,
- 1, 0;
- CALL_SUBTEST_1(( jacobisvd(m, false) ));
-
- Matrix2d n;
- n << 0, 0,
- 0, 0;
- CALL_SUBTEST_2(( jacobisvd(n, false) ));
- n << 0, 0,
- 0, 1;
- CALL_SUBTEST_2(( jacobisvd(n, false) ));
-
- CALL_SUBTEST_3(( jacobisvd<Matrix3f>() ));
- CALL_SUBTEST_4(( jacobisvd<Matrix4d>() ));
- CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() ));
- CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));
-
- int r = internal::random<int>(1, 30),
- c = internal::random<int>(1, 30);
- CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) ));
- CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) ));
- (void) r;
- (void) c;
-
- // Test on inf/nan matrix
- CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() );
- }
-
- CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
- CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
-
-
- // test matrixbase method
- CALL_SUBTEST_1(( jacobisvd_method<Matrix2cd>() ));
- CALL_SUBTEST_3(( jacobisvd_method<Matrix3f>() ));
-
-
- // Test problem size constructors
- CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) );
-
- // Check that preallocation avoids subsequent mallocs
- CALL_SUBTEST_9( jacobisvd_preallocate() );
-
- // Regression check for bug 286
- CALL_SUBTEST_2( jacobisvd_bug286() );
-}
diff --git a/unsupported/test/levenberg_marquardt.cpp b/unsupported/test/levenberg_marquardt.cpp
index 04464727d..1fa1c3c22 100644
--- a/unsupported/test/levenberg_marquardt.cpp
+++ b/unsupported/test/levenberg_marquardt.cpp
@@ -787,16 +787,17 @@ void testNistMGH10(void)
LevenbergMarquardt<MGH10_functor> lm(functor);
info = lm.minimize(x);
- // check return value
- VERIFY_IS_EQUAL(info, 1);
- VERIFY_IS_EQUAL(lm.nfev(), 284 );
- VERIFY_IS_EQUAL(lm.njev(), 249 );
// check norm^2
VERIFY_IS_APPROX(lm.fvec().squaredNorm(), 8.7945855171E+01);
// check x
VERIFY_IS_APPROX(x[0], 5.6096364710E-03);
VERIFY_IS_APPROX(x[1], 6.1813463463E+03);
VERIFY_IS_APPROX(x[2], 3.4522363462E+02);
+
+ // check return value
+ //VERIFY_IS_EQUAL(info, 1);
+ VERIFY_IS_EQUAL(lm.nfev(), 284 );
+ VERIFY_IS_EQUAL(lm.njev(), 249 );
/*
* Second try
@@ -805,16 +806,17 @@ void testNistMGH10(void)
// do the computation
info = lm.minimize(x);
- // check return value
- VERIFY_IS_EQUAL(info, 1);
- VERIFY_IS_EQUAL(lm.nfev(), 126);
- VERIFY_IS_EQUAL(lm.njev(), 116);
// check norm^2
VERIFY_IS_APPROX(lm.fvec().squaredNorm(), 8.7945855171E+01);
// check x
VERIFY_IS_APPROX(x[0], 5.6096364710E-03);
VERIFY_IS_APPROX(x[1], 6.1813463463E+03);
VERIFY_IS_APPROX(x[2], 3.4522363462E+02);
+
+ // check return value
+ //VERIFY_IS_EQUAL(info, 1);
+ VERIFY_IS_EQUAL(lm.nfev(), 126);
+ VERIFY_IS_EQUAL(lm.njev(), 116);
}
@@ -866,15 +868,16 @@ void testNistBoxBOD(void)
lm.setFactor(10);
info = lm.minimize(x);
- // check return value
- VERIFY_IS_EQUAL(info, 1);
- VERIFY_IS_EQUAL(lm.nfev(), 31);
- VERIFY_IS_EQUAL(lm.njev(), 25);
// check norm^2
VERIFY_IS_APPROX(lm.fvec().squaredNorm(), 1.1680088766E+03);
// check x
VERIFY_IS_APPROX(x[0], 2.1380940889E+02);
VERIFY_IS_APPROX(x[1], 5.4723748542E-01);
+
+ // check return value
+ VERIFY_IS_EQUAL(info, 1);
+ VERIFY(lm.nfev() < 31); // 31
+ VERIFY(lm.njev() < 25); // 25
/*
* Second try
@@ -948,10 +951,6 @@ void testNistMGH17(void)
lm.setMaxfev(1000);
info = lm.minimize(x);
- // check return value
-// VERIFY_IS_EQUAL(info, 2); //FIXME Use (lm.info() == Success)
-// VERIFY_IS_EQUAL(lm.nfev(), 602 );
- VERIFY_IS_EQUAL(lm.njev(), 545 );
// check norm^2
VERIFY_IS_APPROX(lm.fvec().squaredNorm(), 5.4648946975E-05);
// check x
@@ -960,6 +959,11 @@ void testNistMGH17(void)
VERIFY_IS_APPROX(x[2], -1.4646871366E+00);
VERIFY_IS_APPROX(x[3], 1.2867534640E-02);
VERIFY_IS_APPROX(x[4], 2.2122699662E-02);
+
+ // check return value
+// VERIFY_IS_EQUAL(info, 2); //FIXME Use (lm.info() == Success)
+ VERIFY(lm.nfev() < 700 ); // 602
+ VERIFY(lm.njev() < 600 ); // 545
/*
* Second try
@@ -1035,10 +1039,6 @@ void testNistMGH09(void)
lm.setMaxfev(1000);
info = lm.minimize(x);
- // check return value
- VERIFY_IS_EQUAL(info, 1);
- VERIFY_IS_EQUAL(lm.nfev(), 490 );
- VERIFY_IS_EQUAL(lm.njev(), 376 );
// check norm^2
VERIFY_IS_APPROX(lm.fvec().squaredNorm(), 3.0750560385E-04);
// check x
@@ -1046,6 +1046,10 @@ void testNistMGH09(void)
VERIFY_IS_APPROX(x[1], 0.19126423573); // should be 1.9128232873E-01
VERIFY_IS_APPROX(x[2], 0.12305309914); // should be 1.2305650693E-01
VERIFY_IS_APPROX(x[3], 0.13605395375); // should be 1.3606233068E-01
+ // check return value
+ VERIFY_IS_EQUAL(info, 1);
+ VERIFY(lm.nfev() < 510 ); // 490
+ VERIFY(lm.njev() < 400 ); // 376
/*
* Second try
diff --git a/unsupported/test/svd_common.h b/unsupported/test/svd_common.h
deleted file mode 100644
index b40c23a2b..000000000
--- a/unsupported/test/svd_common.h
+++ /dev/null
@@ -1,261 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
-// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
-// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
-// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// discard stack allocation as that too bypasses malloc
-#define EIGEN_STACK_ALLOCATION_LIMIT 0
-#define EIGEN_RUNTIME_NO_MALLOC
-
-#include "main.h"
-#include <unsupported/Eigen/SVD>
-#include <Eigen/LU>
-
-
-// check if "svd" is the good image of "m"
-template<typename MatrixType, typename SVD>
-void svd_check_full(const MatrixType& m, const SVD& svd)
-{
- typedef typename MatrixType::Index Index;
- Index rows = m.rows();
- Index cols = m.cols();
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime
- };
-
- typedef typename MatrixType::Scalar Scalar;
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
- typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
-
-
- MatrixType sigma = MatrixType::Zero(rows, cols);
- sigma.diagonal() = svd.singularValues().template cast<Scalar>();
- MatrixUType u = svd.matrixU();
- MatrixVType v = svd.matrixV();
- VERIFY_IS_APPROX(m, u * sigma * v.adjoint());
- VERIFY_IS_UNITARY(u);
- VERIFY_IS_UNITARY(v);
-} // end svd_check_full
-
-
-
-// Compare to a reference value
-template<typename MatrixType, typename SVD>
-void svd_compare_to_full(const MatrixType& m,
- unsigned int computationOptions,
- const SVD& referenceSvd)
-{
- typedef typename MatrixType::Index Index;
- Index rows = m.rows();
- Index cols = m.cols();
- Index diagSize = (std::min)(rows, cols);
-
- SVD svd(m, computationOptions);
-
- VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
- if(computationOptions & ComputeFullU)
- VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
- if(computationOptions & ComputeThinU)
- VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
- if(computationOptions & ComputeFullV)
- VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV());
- if(computationOptions & ComputeThinV)
- VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
-} // end svd_compare_to_full
-
-
-
-template<typename MatrixType, typename SVD>
-void svd_solve(const MatrixType& m, unsigned int computationOptions)
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- Index rows = m.rows();
- Index cols = m.cols();
-
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime
- };
-
- typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
- typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
-
- RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
- SVD svd(m, computationOptions);
- SolutionType x = svd.solve(rhs);
- // evaluate normal equation which works also for least-squares solutions
- VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
-} // end svd_solve
-
-
-// test computations options
-// 2 functions because Jacobisvd can return before the second function
-template<typename MatrixType, typename SVD>
-void svd_test_computation_options_1(const MatrixType& m, const SVD& fullSvd)
-{
- svd_check_full< MatrixType, SVD >(m, fullSvd);
- svd_solve< MatrixType, SVD >(m, ComputeFullU | ComputeFullV);
-}
-
-
-template<typename MatrixType, typename SVD>
-void svd_test_computation_options_2(const MatrixType& m, const SVD& fullSvd)
-{
- svd_compare_to_full< MatrixType, SVD >(m, ComputeFullU, fullSvd);
- svd_compare_to_full< MatrixType, SVD >(m, ComputeFullV, fullSvd);
- svd_compare_to_full< MatrixType, SVD >(m, 0, fullSvd);
-
- if (MatrixType::ColsAtCompileTime == Dynamic) {
- // thin U/V are only available with dynamic number of columns
-
- svd_compare_to_full< MatrixType, SVD >(m, ComputeFullU|ComputeThinV, fullSvd);
- svd_compare_to_full< MatrixType, SVD >(m, ComputeThinV, fullSvd);
- svd_compare_to_full< MatrixType, SVD >(m, ComputeThinU|ComputeFullV, fullSvd);
- svd_compare_to_full< MatrixType, SVD >(m, ComputeThinU , fullSvd);
- svd_compare_to_full< MatrixType, SVD >(m, ComputeThinU|ComputeThinV, fullSvd);
- svd_solve<MatrixType, SVD>(m, ComputeFullU | ComputeThinV);
- svd_solve<MatrixType, SVD>(m, ComputeThinU | ComputeFullV);
- svd_solve<MatrixType, SVD>(m, ComputeThinU | ComputeThinV);
-
- typedef typename MatrixType::Index Index;
- Index diagSize = (std::min)(m.rows(), m.cols());
- SVD svd(m, ComputeThinU | ComputeThinV);
- VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
- }
-}
-
-template<typename MatrixType, typename SVD>
-void svd_verify_assert(const MatrixType& m)
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- Index rows = m.rows();
- Index cols = m.cols();
-
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime
- };
-
- typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
- RhsType rhs(rows);
- SVD svd;
- VERIFY_RAISES_ASSERT(svd.matrixU())
- VERIFY_RAISES_ASSERT(svd.singularValues())
- VERIFY_RAISES_ASSERT(svd.matrixV())
- VERIFY_RAISES_ASSERT(svd.solve(rhs))
- MatrixType a = MatrixType::Zero(rows, cols);
- a.setZero();
- svd.compute(a, 0);
- VERIFY_RAISES_ASSERT(svd.matrixU())
- VERIFY_RAISES_ASSERT(svd.matrixV())
- svd.singularValues();
- VERIFY_RAISES_ASSERT(svd.solve(rhs))
-
- if (ColsAtCompileTime == Dynamic)
- {
- svd.compute(a, ComputeThinU);
- svd.matrixU();
- VERIFY_RAISES_ASSERT(svd.matrixV())
- VERIFY_RAISES_ASSERT(svd.solve(rhs))
- svd.compute(a, ComputeThinV);
- svd.matrixV();
- VERIFY_RAISES_ASSERT(svd.matrixU())
- VERIFY_RAISES_ASSERT(svd.solve(rhs))
- }
- else
- {
- VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
- VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
- }
-}
-
-// work around stupid msvc error when constructing at compile time an expression that involves
-// a division by zero, even if the numeric type has floating point
-template<typename Scalar>
-EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
-
-// workaround aggressive optimization in ICC
-template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
-
-
-template<typename MatrixType, typename SVD>
-void svd_inf_nan()
-{
- // all this function does is verify we don't iterate infinitely on nan/inf values
-
- SVD svd;
- typedef typename MatrixType::Scalar Scalar;
- Scalar some_inf = Scalar(1) / zero<Scalar>();
- VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
- svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
-
- Scalar some_nan = zero<Scalar> () / zero<Scalar> ();
- VERIFY(some_nan != some_nan);
- svd.compute(MatrixType::Constant(10,10,some_nan), ComputeFullU | ComputeFullV);
-
- MatrixType m = MatrixType::Zero(10,10);
- m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
- svd.compute(m, ComputeFullU | ComputeFullV);
-
- m = MatrixType::Zero(10,10);
- m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_nan;
- svd.compute(m, ComputeFullU | ComputeFullV);
-}
-
-
-template<typename SVD>
-void svd_preallocate()
-{
- Vector3f v(3.f, 2.f, 1.f);
- MatrixXf m = v.asDiagonal();
-
- internal::set_is_malloc_allowed(false);
- VERIFY_RAISES_ASSERT(VectorXf v(10);)
- SVD svd;
- internal::set_is_malloc_allowed(true);
- svd.compute(m);
- VERIFY_IS_APPROX(svd.singularValues(), v);
-
- SVD svd2(3,3);
- internal::set_is_malloc_allowed(false);
- svd2.compute(m);
- internal::set_is_malloc_allowed(true);
- VERIFY_IS_APPROX(svd2.singularValues(), v);
- VERIFY_RAISES_ASSERT(svd2.matrixU());
- VERIFY_RAISES_ASSERT(svd2.matrixV());
- svd2.compute(m, ComputeFullU | ComputeFullV);
- VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
- VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
- internal::set_is_malloc_allowed(false);
- svd2.compute(m);
- internal::set_is_malloc_allowed(true);
-
- SVD svd3(3,3,ComputeFullU|ComputeFullV);
- internal::set_is_malloc_allowed(false);
- svd2.compute(m);
- internal::set_is_malloc_allowed(true);
- VERIFY_IS_APPROX(svd2.singularValues(), v);
- VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
- VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
- internal::set_is_malloc_allowed(false);
- svd2.compute(m, ComputeFullU|ComputeFullV);
- internal::set_is_malloc_allowed(true);
-}
-
-
-
-
-