aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2012-07-26 18:03:10 +0200
committerGravatar Gael Guennebaud <g.gael@free.fr>2012-07-26 18:03:10 +0200
commit4e60e2cdf64fb1f255850abc7686f807b4ae06ab (patch)
treea6ca999eb0d93691e703ae9de598d482a1e9357d
parent7518201de8e4515bc60c9c68e3d1f7b974d3a24c (diff)
RealQZ: improve computeNorms speed, improve shift accuracy (better to do a/b than a*(1/b)),
update API to set the maximum number of iterations
-rw-r--r--Eigen/src/Eigenvalues/RealQZ.h178
1 files changed, 106 insertions, 72 deletions
diff --git a/Eigen/src/Eigenvalues/RealQZ.h b/Eigen/src/Eigenvalues/RealQZ.h
index 5546dec0b..fb0712c2d 100644
--- a/Eigen/src/Eigenvalues/RealQZ.h
+++ b/Eigen/src/Eigenvalues/RealQZ.h
@@ -62,7 +62,8 @@ namespace Eigen {
* \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver
*/
- template<typename _MatrixType> class RealQZ {
+ template<typename _MatrixType> class RealQZ
+ {
public:
typedef _MatrixType MatrixType;
enum {
@@ -96,6 +97,7 @@ namespace Eigen {
m_Q(size, size),
m_Z(size, size),
m_workspace(size*2),
+ m_maxIters(400),
m_isInitialized(false)
{ }
@@ -113,6 +115,7 @@ namespace Eigen {
m_Q(A.rows(),A.cols()),
m_Z(A.rows(),A.cols()),
m_workspace(A.rows()*2),
+ m_maxIters(400),
m_isInitialized(false) {
compute(A, B, computeQZ);
}
@@ -182,17 +185,20 @@ namespace Eigen {
return m_global_iter;
}
- /** \brief Maximum number of iterations.
- *
- * Maximum number of iterations allowed for an eigenvalue to converge.
- */
- static const Index m_max_iter = 400;
+ /** Sets the maximal number of iterations allowed.
+ */
+ RealQZ& setMaxIterations(Index maxIters)
+ {
+ m_maxIters = maxIters;
+ return *this;
+ }
private:
MatrixType m_S, m_T, m_Q, m_Z;
Matrix<Scalar,Dynamic,1> m_workspace;
ComputationInfo m_info;
+ Index m_maxIters;
bool m_isInitialized;
bool m_computeQZ;
Scalar m_normOfT, m_normOfS;
@@ -215,7 +221,8 @@ namespace Eigen {
/** \internal Reduces S and T to upper Hessenberg - triangular form */
template<typename MatrixType>
- void RealQZ<MatrixType>::hessenbergTriangular() {
+ void RealQZ<MatrixType>::hessenbergTriangular()
+ {
const Index dim = m_S.cols();
@@ -236,8 +243,7 @@ namespace Eigen {
// kill S(i,j)
if(m_S.coeff(i,j) != 0)
{
- Scalar tmp = m_S(i-1,j);
- G.makeGivens(tmp, m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
+ G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
m_S.coeffRef(i,j) = Scalar(0.0);
m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint());
m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint());
@@ -248,8 +254,7 @@ namespace Eigen {
// kill T(i,i-1)
if(m_T.coeff(i,i-1)!=Scalar(0))
{
- Scalar tmp = m_T.coeff(i,i);
- G.makeGivens(tmp, m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
+ G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
m_T.coeffRef(i,i-1) = Scalar(0.0);
m_S.applyOnTheRight(i,i-1,G);
m_T.topRows(i).applyOnTheRight(i,i-1,G);
@@ -263,13 +268,14 @@ namespace Eigen {
/** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */
template<typename MatrixType>
- inline void RealQZ<MatrixType>::computeNorms() {
+ inline void RealQZ<MatrixType>::computeNorms()
+ {
const Index size = m_S.cols();
m_normOfS = Scalar(0.0);
m_normOfT = Scalar(0.0);
- for (Index j = 0; j < size; ++j) {
- Index row_start = (std::max)(j-1,Index(0));
- m_normOfS += m_S.row(j).segment(row_start, size - row_start).cwiseAbs().sum();
+ for (Index j = 0; j < size; ++j)
+ {
+ m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
}
}
@@ -277,9 +283,11 @@ namespace Eigen {
/** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */
template<typename MatrixType>
- inline typename MatrixType::Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu) {
+ inline typename MatrixType::Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu)
+ {
Index res = iu;
- while (res > 0) {
+ while (res > 0)
+ {
Scalar s = internal::abs(m_S.coeff(res-1,res-1)) + internal::abs(m_S.coeff(res,res));
if (s == Scalar(0.0))
s = m_normOfS;
@@ -292,7 +300,8 @@ namespace Eigen {
/** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1) */
template<typename MatrixType>
- inline typename MatrixType::Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l) {
+ inline typename MatrixType::Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l)
+ {
Index res = l;
while (res >= f) {
if (internal::abs(m_T.coeff(res,res)) <= NumTraits<Scalar>::epsilon() * m_normOfT)
@@ -302,14 +311,16 @@ namespace Eigen {
return res;
}
- /** \internal decouple 2x2 diagonal block in rows iu, iu+1 if eigenvalues are real */
+ /** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */
template<typename MatrixType>
- inline void RealQZ<MatrixType>::splitOffTwoRows(Index i) {
+ inline void RealQZ<MatrixType>::splitOffTwoRows(Index i)
+ {
const Index dim=m_S.cols();
if (internal::abs(m_S.coeff(i+1,i)==Scalar(0)))
return;
Index z = findSmallDiagEntry(i,i+1);
- if (z==i-1) {
+ if (z==i-1)
+ {
// block of (S T^{-1})
Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>().
template solve<OnTheRight>(m_S.template block<2,2>(i,i));
@@ -339,17 +350,21 @@ namespace Eigen {
m_S.coeffRef(i+1,i) = Scalar(0.0);
m_T.coeffRef(i+1,i) = Scalar(0.0);
}
- } else {
+ }
+ else
+ {
pushDownZero(z,i,i+1);
}
}
/** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */
template<typename MatrixType>
- inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l) {
+ inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l)
+ {
JRs G;
const Index dim = m_S.cols();
- for (Index zz=z; zz<l; zz++) {
+ for (Index zz=z; zz<l; zz++)
+ {
// push 0 down
Index firstColS = zz>f ? (zz-1) : zz;
G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1));
@@ -360,7 +375,8 @@ namespace Eigen {
if (m_computeQZ)
m_Q.applyOnTheRight(zz,zz+1,G);
// kill S(zz+1, zz-1)
- if (zz>f) {
+ if (zz>f)
+ {
G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1));
m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G);
m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G);
@@ -387,7 +403,8 @@ namespace Eigen {
// x, y, z
Scalar x, y, z;
- if (iter==10) {
+ if (iter==10)
+ {
// Wilkinson ad hoc shift
const Scalar
a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1),
@@ -407,44 +424,60 @@ namespace Eigen {
y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i
- a21*a21*b12*b11i*b11i*b22i;
z = a21*a32*b11i*b22i;
- } else if (iter==16) {
+ }
+ else if (iter==16)
+ {
// another exceptional shift
x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) /
(m_T.coeff(l-1,l-1)*m_T.coeff(l,l));
y = m_S.coeff(f+1,f)/m_T.coeff(f,f);
z = 0;
- } else if (iter>23 && !(iter%8)) {
+ }
+ else if (iter>23 && !(iter%8))
+ {
// extremely exceptional shift
x = internal::random<Scalar>(-1.0,1.0);
y = internal::random<Scalar>(-1.0,1.0);
z = internal::random<Scalar>(-1.0,1.0);
- } else {
- const Scalar
- a11=m_S.coeff(f,f), a12=m_S.coeff(f,f+1),
- a21=m_S.coeff(f+1,f), a22=m_S.coeff(f+1,f+1),
- a32=m_S.coeff(f+2,f+1),
- a88=m_S.coeff(l-1,l-1), a89=m_S.coeff(l-1,l),
- a98=m_S.coeff(l,l-1), a99=m_S.coeff(l,l),
- b11=m_T.coeff(f,f), b11i=1.0/b11, b12=m_T.coeff(f,f+1),
- b22i=Scalar(1.0)/m_T.coeff(f+1,f+1),
- b88i=Scalar(1.0)/m_T.coeff(l-1,l-1), b89=m_T.coeff(l-1,l),
- b99i=Scalar(1.0)/m_T.coeff(l,l);
- x = ( (a88*b88i - a11*b11i)*(a99*b99i - a11*b11i) - (a89*b99i)*(a98*b88i) + (a98*b88i)*(b89*b99i)*(a11*b11i) ) * (b11/a21)
- + a12*b22i - (a11*b11i)*(b12*b22i);
- y = (a22*b22i-a11*b11i) - (a21*b11i)*(b12*b22i) - (a88*b88i-a11*b11i) - (a99*b99i-a11*b11i) + (a98*b88i)*(b89*b99i);
- z = a32*b22i;
+ }
+ else
+ {
+ // Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1
+ // where l1 and l2 are the eigenvalues of the 2x2 bottom right sub matrix M of AB^-1. Thus:
+ // = AB^-1AB^-1 + l1 l2 I - (l1+l2)(AB^-1)
+ // = AB^-1AB^-1 + det(M) - tr(M)(AB^-1)
+ // Since we are only interested in having x, y, z with a correct ratio, we have:
+ const Scalar
+ a11 = m_S.coeff(f,f), a12 = m_S.coeff(f,f+1),
+ a21 = m_S.coeff(f+1,f), a22 = m_S.coeff(f+1,f+1),
+ a32 = m_S.coeff(f+2,f+1),
+
+ a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l),
+ a98 = m_S.coeff(l,l-1), a99 = m_S.coeff(l,l),
+
+ b11 = m_T.coeff(f,f), b12 = m_T.coeff(f,f+1),
+ b22 = m_T.coeff(f+1,f+1),
+
+ b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l),
+ b99 = m_T.coeff(l,l);
+
+ x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21)
+ + a12/b22 - (a11/b11)*(b12/b22);
+ y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99);
+ z = a32/b22;
}
JRs G;
- for (Index k=f; k<=l-2; k++) {
+ for (Index k=f; k<=l-2; k++)
+ {
// variables for Householder reflections
Vector2s essential2;
Scalar tau, beta;
Vector3s hr(x,y,z);
- // Q_k
+ // Q_k to annihilate S(k+1,k-1) and S(k+2,k-1)
hr.makeHouseholderInPlace(tau, beta);
essential2 = hr.template bottomRows<2>();
Index fc=(std::max)(k-1,Index(0)); // first col to update
@@ -452,12 +485,10 @@ namespace Eigen {
m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
if (m_computeQZ)
m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data());
- if (k>f) {
- m_S.coeffRef(k+1,k-1) = Scalar(0.0);
- m_S.coeffRef(k+2,k-1) = Scalar(0.0);
- }
+ if (k>f)
+ m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0);
- // Z_{k1}
+ // Z_{k1} to annihilate T(k+2,k+1) and T(k+2,k)
hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1);
hr.makeHouseholderInPlace(tau, beta);
essential2 = hr.template bottomRows<2>();
@@ -475,7 +506,8 @@ namespace Eigen {
m_T.col(k+2).head(lr) -= tau*tmp;
m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
}
- if (m_computeQZ) {
+ if (m_computeQZ)
+ {
// Z
Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim);
tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k));
@@ -483,10 +515,9 @@ namespace Eigen {
m_Z.row(k+2) -= tau*tmp;
m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp);
}
- m_T.coeffRef(k+2,k) = Scalar(0.0);
- m_T.coeffRef(k+2,k+1) = Scalar(0.0);
+ m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0);
- // Z_{k2}
+ // Z_{k2} to annihilate T(k+1,k)
G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k));
m_S.applyOnTheRight(k+1,k,G);
m_T.applyOnTheRight(k+1,k,G);
@@ -502,7 +533,7 @@ namespace Eigen {
z = m_S.coeff(k+3,k);
} // loop over k
- // Q_{n-1}
+ // Q_{n-1} to annihilate y = S(l,l-2)
G.makeGivens(x,y);
m_S.applyOnTheLeft(l-1,l,G.adjoint());
m_T.applyOnTheLeft(l-1,l,G.adjoint());
@@ -510,19 +541,19 @@ namespace Eigen {
m_Q.applyOnTheRight(l-1,l,G);
m_S.coeffRef(l,l-2) = Scalar(0.0);
- // Z_{n-1}
+ // Z_{n-1} to annihilate T(l,l-1)
G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1));
m_S.applyOnTheRight(l,l-1,G);
m_T.applyOnTheRight(l,l-1,G);
if (m_computeQZ)
m_Z.applyOnTheLeft(l,l-1,G.adjoint());
m_T.coeffRef(l,l-1) = Scalar(0.0);
-
}
template<typename MatrixType>
- RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ) {
+ RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ)
+ {
const Index dim = A_in.cols();
@@ -545,22 +576,31 @@ namespace Eigen {
f,
local_iter = 0;
- while (l>0 && local_iter<m_max_iter) {
+ while (l>0 && local_iter<m_maxIters)
+ {
f = findSmallSubdiagEntry(l);
if (f>0) m_S.coeffRef(f,f-1) = Scalar(0.0);
- if (f == l) {
- l --;
+ if (f == l) // One root found
+ {
+ l--;
local_iter = 0;
- } else if (f == l-1) {
+ }
+ else if (f == l-1) // Two roots found
+ {
splitOffTwoRows(f);
l -= 2;
local_iter = 0;
- } else {
+ }
+ else // No convergence yet
+ {
Index z = findSmallDiagEntry(f,l);
- if (z>=f) {
+ if (z>=f)
+ {
// zero found
pushDownZero(z,f,l);
- } else {
+ }
+ else
+ {
// QR-like iteration
step(f,l, local_iter);
local_iter++;
@@ -569,16 +609,10 @@ namespace Eigen {
}
}
// check if we converged before reaching iterations limit
- if (local_iter<m_max_iter) {
- m_info = Success;
- } else {
- m_info = NoConvergence;
- }
+ m_info = (local_iter<m_maxIters) ? Success : NoConvergence;
return *this;
} // end compute
-
} // end namespace Eigen
-
#endif //EIGEN_REAL_QZ