aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2012-02-14 22:07:19 +0100
committerGravatar Gael Guennebaud <g.gael@free.fr>2012-02-14 22:07:19 +0100
commit4cc6d7aa6233bf5d135ce43b46e9a258d08da6b5 (patch)
tree6ad6cd22467d4022c718daac115b2cdb5dea5062
parentef448da57bdcb6fc9feb39454114acba11849489 (diff)
clean a bit the ILUT code
-rw-r--r--Eigen/IterativeLinearSolvers6
-rw-r--r--Eigen/src/IterativeLinearSolvers/IncompleteLUT.h503
2 files changed, 281 insertions, 228 deletions
diff --git a/Eigen/IterativeLinearSolvers b/Eigen/IterativeLinearSolvers
index 8f2c13eb8..3bd298729 100644
--- a/Eigen/IterativeLinearSolvers
+++ b/Eigen/IterativeLinearSolvers
@@ -2,6 +2,7 @@
#define EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
#include "SparseCore"
+#include "OrderingMethods"
#include "src/Core/util/DisableStupidWarnings.h"
@@ -15,6 +16,11 @@ namespace Eigen {
* - ConjugateGradient for selfadjoint (hermitian) matrices,
* - BiCGSTAB for general square matrices.
*
+ * These iterative solvers are associated with some preconditioners:
+ * - IdentityPreconditioner - not really useful
+ * - DiagonalPreconditioner - also called JAcobi preconditioner, work very well on diagonal dominant matrices.
+ * - IncompleteILUT - incomplete LU factorization with dual thresholding
+ *
* Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport.
*
* \code
diff --git a/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h b/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
index e8bde24b0..3f136cc4a 100644
--- a/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
+++ b/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
@@ -24,15 +24,13 @@
#ifndef EIGEN_INCOMPLETE_LUT_H
#define EIGEN_INCOMPLETE_LUT_H
-#include <bench/btl/generic_bench/utils/utilities.h>
-#include <Eigen/src/OrderingMethods/Amd.h>
/**
* \brief Incomplete LU factorization with dual-threshold strategy
* During the numerical factorization, two dropping rules are used :
- * 1) any element whose magnitude is less than some tolerance is dropped.
+ * 1) any element whose magnitude is less than some tolerance is dropped.
* This tolerance is obtained by multiplying the input tolerance @p droptol
- * by the average magnitude of all the original elements in the current row.
+ * by the average magnitude of all the original elements in the current row.
* 2) After the elimination of the row, only the @p fill largest elements in
* the L part and the @p fill largest elements in the U part are kept
* (in addition to the diagonal element ). Note that @p fill is computed from
@@ -63,11 +61,15 @@ class IncompleteLUT
public:
typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
- IncompleteLUT() : m_droptol(NumTraits<Scalar>::dummy_precision()),m_fillfactor(10),m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false) {}
+ IncompleteLUT()
+ : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
+ m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
+ {}
template<typename MatrixType>
- IncompleteLUT(const MatrixType& mat, RealScalar droptol, int fillfactor)
- : m_droptol(droptol),m_fillfactor(fillfactor),m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
+ IncompleteLUT(const MatrixType& mat, RealScalar droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
+ : m_droptol(droptol),m_fillfactor(fillfactor),
+ m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
{
eigen_assert(fillfactor != 0);
compute(mat);
@@ -76,205 +78,23 @@ class IncompleteLUT
Index rows() const { return m_lu.rows(); }
Index cols() const { return m_lu.cols(); }
-
- template<typename MatrixType>
- void analyzePattern(const MatrixType& amat)
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was succesful,
+ * \c NumericalIssue if the matrix.appears to be negative.
+ */
+ ComputationInfo info() const
{
- /* Compute the Fill-reducing permutation */
- SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
- SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
- SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 * mat1; /* Symmetrize the pattern */
- AtA.prune(keep_diag());
- internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); /* Then compute the AMD ordering... */
-
- m_Pinv = m_P.inverse(); /* ... and the inverse permutation */
- m_analysisIsOk = true;
+ eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
+ return m_info;
}
template<typename MatrixType>
- void factorize(const MatrixType& amat)
- {
- eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
- int n = amat.cols(); /* Size of the matrix */
- m_lu.resize(n,n);
- int fill_in; /* Number of largest elements to keep in each row */
- int nnzL, nnzU; /* Number of largest nonzero elements to keep in the L and the U part of the current row */
- /* Declare Working vectors and variables */
- int sizeu; /* number of nonzero elements in the upper part of the current row */
- int sizel; /* number of nonzero elements in the lower part of the current row */
- Vector u(n) ; /* real values of the row -- maximum size is n -- */
- VectorXi ju(n); /*column position of the values in u -- maximum size is n*/
- VectorXi jr(n); /* Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1*/
- int j, k, jj, jpos, minrow, len;
- Scalar fact, prod;
- RealScalar rownorm;
-
- /* Apply the fill-reducing permutation */
-
- eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
- SparseMatrix<Scalar,RowMajor, Index> mat;
- mat = amat.twistedBy(m_Pinv);
-
- /* Initialization */
- fact = 0;
- jr.fill(-1);
- ju.fill(0);
- u.fill(0);
- fill_in = static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1;
- if (fill_in > n) fill_in = n;
- nnzL = fill_in/2;
- nnzU = nnzL;
- m_lu.reserve(n * (nnzL + nnzU + 1));
- for (int ii = 0; ii < n; ii++)
- { /* global loop over the rows of the sparse matrix */
-
- /* Copy the lower and the upper part of the row i of mat in the working vector u */
- sizeu = 1;
- sizel = 0;
- ju(ii) = ii;
- u(ii) = 0;
- jr(ii) = ii;
- rownorm = 0;
-
- typename FactorType::InnerIterator j_it(mat, ii); /* Iterate through the current row ii */
- for (; j_it; ++j_it)
- {
- k = j_it.index();
- if (k < ii)
- { /* Copy the lower part */
- ju(sizel) = k;
- u(sizel) = j_it.value();
- jr(k) = sizel;
- ++sizel;
- }
- else if (k == ii)
- {
- u(ii) = j_it.value();
- }
- else
- { /* Copy the upper part */
- jpos = ii + sizeu;
- ju(jpos) = k;
- u(jpos) = j_it.value();
- jr(k) = jpos;
- ++sizeu;
- }
- rownorm += internal::abs2(j_it.value());
- } /* end copy of the row */
- /* detect possible zero row */
- if (rownorm == 0) eigen_internal_assert(false);
- rownorm = std::sqrt(rownorm); /* Take the 2-norm of the current row as a relative tolerance */
-
- /* Now, eliminate the previous nonzero rows */
- jj = 0; len = 0;
- while (jj < sizel)
- { /* In order to eliminate in the correct order, we must select first the smallest column index among ju(jj:sizel) */
-
- minrow = ju.segment(jj,sizel-jj).minCoeff(&k); /* k est relatif au segment */
- k += jj;
- if (minrow != ju(jj)) { /* swap the two locations */
- j = ju(jj);
- std::swap(ju(jj), ju(k));
- jr(minrow) = jj; jr(j) = k;
- std::swap(u(jj), u(k));
- }
- /* Reset this location to zero */
- jr(minrow) = -1;
-
- /* Start elimination */
- typename FactorType::InnerIterator ki_it(m_lu, minrow);
- while (ki_it && ki_it.index() < minrow) ++ki_it;
- if(ki_it && ki_it.col()==minrow) fact = u(jj) / ki_it.value();
- else { eigen_internal_assert(false); }
- if( std::abs(fact) <= m_droptol ) {
- jj++;
- continue ; /* This element is been dropped */
- }
- /* linear combination of the current row ii and the row minrow */
- ++ki_it;
- for (; ki_it; ++ki_it) {
- prod = fact * ki_it.value();
- j = ki_it.index();
- jpos = jr(j);
- if (j >= ii) { /* Dealing with the upper part */
- if (jpos == -1) { /* Fill-in element */
- int newpos = ii + sizeu;
- ju(newpos) = j;
- u(newpos) = - prod;
- jr(j) = newpos;
- sizeu++;
- if (sizeu > n) { eigen_internal_assert(false);}
- }
- else { /* Not a fill_in element */
- u(jpos) -= prod;
- }
- }
- else { /* Dealing with the lower part */
- if (jpos == -1) { /* Fill-in element */
- ju(sizel) = j;
- jr(j) = sizel;
- u(sizel) = - prod;
- sizel++;
- if(sizel > n) { eigen_internal_assert(false);}
- }
- else {
- u(jpos) -= prod;
- }
- }
- }
- /* Store the pivot element */
- u(len) = fact;
- ju(len) = minrow;
- ++len;
-
- jj++;
- } /* End While loop -- end of the elimination on the row ii*/
- /* Reset the upper part of the pointer jr to zero */
- for (k = 0; k <sizeu; k++){
- jr(ju(ii+k)) = -1;
- }
- /* Sort the L-part of the row --use Quicksplit()*/
- sizel = len;
- len = std::min(sizel, nnzL );
- typename Vector::SegmentReturnType ul(u.segment(0, len));
- typename VectorXi::SegmentReturnType jul(ju.segment(0, len));
- QuickSplit(ul, jul, len);
-
-
- /* Store the largest m_fill elements of the L part */
- m_lu.startVec(ii);
- for (k = 0; k < len; k++){
- m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
- }
-
- /* Store the diagonal element */
- if (u(ii) == Scalar(0))
- u(ii) = std::sqrt(m_droptol ) * rownorm ; /* NOTE This is used to avoid a zero pivot, because we are doing an incomplete factorization */
- m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
- /* Sort the U-part of the row -- Use Quicksplit() */
- len = 0;
- for (k = 1; k < sizeu; k++) { /* First, drop any element that is below a relative tolerance */
- if ( std::abs(u(ii+k)) > m_droptol * rownorm ) {
- ++len;
- u(ii + len) = u(ii + k);
- ju(ii + len) = ju(ii + k);
- }
- }
- sizeu = len + 1; /* To take into account the diagonal element */
- len = std::min(sizeu, nnzU);
- typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
- typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
- QuickSplit(uu, juu, len);
- /* Store the largest <fill> elements of the U part */
- for (k = ii + 1; k < ii + len; k++){
- m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
- }
- } /* End global for-loop */
- m_lu.finalize();
- m_lu.makeCompressed(); /* NOTE To save the extra space */
-
- m_factorizationIsOk = true;
- }
+ void analyzePattern(const MatrixType& amat);
+
+ template<typename MatrixType>
+ void factorize(const MatrixType& amat);
/**
* Compute an incomplete LU factorization with dual threshold on the matrix mat
@@ -291,19 +111,15 @@ class IncompleteLUT
return *this;
}
-
void setDroptol(RealScalar droptol);
void setFillfactor(int fillfactor);
-
-
-
template<typename Rhs, typename Dest>
void _solve(const Rhs& b, Dest& x) const
{
x = m_Pinv * b;
- x = m_lu.template triangularView<UnitLower>().solve(x);/* Compute L*x = P*b for x */
- x = m_lu.template triangularView<Upper>().solve(x); /* Compute U * z = y for z */
+ x = m_lu.template triangularView<UnitLower>().solve(x);
+ x = m_lu.template triangularView<Upper>().solve(x);
x = m_P * x;
}
@@ -315,19 +131,13 @@ class IncompleteLUT
&& "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
}
-
+
protected:
- FactorType m_lu;
- RealScalar m_droptol;
- int m_fillfactor;
- bool m_analysisIsOk;
- bool m_factorizationIsOk;
- bool m_isInitialized;
- template <typename VectorV, typename VectorI>
- int QuickSplit(VectorV &row, VectorI &ind, int ncut);
- PermutationMatrix<Dynamic,Dynamic,Index> m_P; /* Fill-reducing permutation */
- PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; /* Inverse permutation */
-
+
+ template <typename VectorV, typename VectorI>
+ int QuickSplit(VectorV &row, VectorI &ind, int ncut);
+
+
/** keeps off-diagonal entries; drops diagonal entries */
struct keep_diag {
inline bool operator() (const Index& row, const Index& col, const Scalar&) const
@@ -335,6 +145,18 @@ protected:
return row!=col;
}
};
+
+protected:
+
+ FactorType m_lu;
+ RealScalar m_droptol;
+ int m_fillfactor;
+ bool m_analysisIsOk;
+ bool m_factorizationIsOk;
+ bool m_isInitialized;
+ ComputationInfo m_info;
+ PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation
+ PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation
};
/**
@@ -371,8 +193,9 @@ template <typename Scalar>
template <typename VectorV, typename VectorI>
int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut)
{
+ using std::swap;
int mid;
- int n = row.size(); /* lenght of the vector */
+ int n = row.size(); /* length of the vector */
int first, last ;
ncut--; /* to fit the zero-based indices */
@@ -386,23 +209,247 @@ int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut)
for (int j = first + 1; j <= last; j++) {
if ( std::abs(row(j)) > abskey) {
++mid;
- std::swap(row(mid), row(j));
- std::swap(ind(mid), ind(j));
+ swap(row(mid), row(j));
+ swap(ind(mid), ind(j));
}
}
/* Interchange for the pivot element */
- std::swap(row(mid), row(first));
- std::swap(ind(mid), ind(first));
+ swap(row(mid), row(first));
+ swap(ind(mid), ind(first));
if (mid > ncut) last = mid - 1;
else if (mid < ncut ) first = mid + 1;
} while (mid != ncut );
-
- return 0; /* mid is equal to ncut */
-
+ return 0; /* mid is equal to ncut */
}
+template <typename Scalar>
+template<typename _MatrixType>
+void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
+{
+ // Compute the Fill-reducing permutation
+ SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
+ SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
+ // Symmetrize the pattern
+ // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
+ // on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
+ SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
+ AtA.prune(keep_diag());
+ internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); // Then compute the AMD ordering...
+
+ m_Pinv = m_P.inverse(); // ... and the inverse permutation
+
+ m_analysisIsOk = true;
+}
+
+template <typename Scalar>
+template<typename _MatrixType>
+void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
+{
+ using std::sqrt;
+ using std::swap;
+ using std::abs;
+
+ eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
+ int n = amat.cols(); // Size of the matrix
+ m_lu.resize(n,n);
+ // Declare Working vectors and variables
+ Vector u(n) ; // real values of the row -- maximum size is n --
+ VectorXi ju(n); // column position of the values in u -- maximum size is n
+ VectorXi jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
+
+ // Apply the fill-reducing permutation
+ eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
+ SparseMatrix<Scalar,RowMajor, Index> mat;
+ mat = amat.twistedBy(m_Pinv);
+
+ // Initialization
+ jr.fill(-1);
+ ju.fill(0);
+ u.fill(0);
+
+ // number of largest elements to keep in each row:
+ int fill_in = static_cast<int> (amat.nonZeros()*m_fillfactor)/n+1;
+ if (fill_in > n) fill_in = n;
+
+ // number of largest nonzero elements to keep in the L and the U part of the current row:
+ int nnzL = fill_in/2;
+ int nnzU = nnzL;
+ m_lu.reserve(n * (nnzL + nnzU + 1));
+
+ // global loop over the rows of the sparse matrix
+ for (int ii = 0; ii < n; ii++)
+ {
+ // 1 - copy the lower and the upper part of the row i of mat in the working vector u
+
+ int sizeu = 1; // number of nonzero elements in the upper part of the current row
+ int sizel = 0; // number of nonzero elements in the lower part of the current row
+ ju(ii) = ii;
+ u(ii) = 0;
+ jr(ii) = ii;
+ RealScalar rownorm = 0;
+
+ typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
+ for (; j_it; ++j_it)
+ {
+ int k = j_it.index();
+ if (k < ii)
+ {
+ // copy the lower part
+ ju(sizel) = k;
+ u(sizel) = j_it.value();
+ jr(k) = sizel;
+ ++sizel;
+ }
+ else if (k == ii)
+ {
+ u(ii) = j_it.value();
+ }
+ else
+ {
+ // copy the upper part
+ int jpos = ii + sizeu;
+ ju(jpos) = k;
+ u(jpos) = j_it.value();
+ jr(k) = jpos;
+ ++sizeu;
+ }
+ rownorm += internal::abs2(j_it.value());
+ }
+
+ // 2 - detect possible zero row
+ if(rownorm==0)
+ {
+ m_info = NumericalIssue;
+ return;
+ }
+ // Take the 2-norm of the current row as a relative tolerance
+ rownorm = sqrt(rownorm);
+
+ // 3 - eliminate the previous nonzero rows
+ int jj = 0;
+ int len = 0;
+ while (jj < sizel)
+ {
+ // In order to eliminate in the correct order,
+ // we must select first the smallest column index among ju(jj:sizel)
+ int k;
+ int minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
+ k += jj;
+ if (minrow != ju(jj))
+ {
+ // swap the two locations
+ int j = ju(jj);
+ swap(ju(jj), ju(k));
+ jr(minrow) = jj; jr(j) = k;
+ swap(u(jj), u(k));
+ }
+ // Reset this location
+ jr(minrow) = -1;
+
+ // Start elimination
+ typename FactorType::InnerIterator ki_it(m_lu, minrow);
+ while (ki_it && ki_it.index() < minrow) ++ki_it;
+ eigen_internal_assert(ki_it && ki_it.col()==minrow);
+ Scalar fact = u(jj) / ki_it.value();
+
+ // drop too small elements
+ if(abs(fact) <= m_droptol)
+ {
+ jj++;
+ continue;
+ }
+
+ // linear combination of the current row ii and the row minrow
+ ++ki_it;
+ for (; ki_it; ++ki_it)
+ {
+ Scalar prod = fact * ki_it.value();
+ int j = ki_it.index();
+ int jpos = jr(j);
+ if (jpos == -1) // fill-in element
+ {
+ int newpos;
+ if (j >= ii) // dealing with the upper part
+ {
+ newpos = ii + sizeu;
+ sizeu++;
+ eigen_internal_assert(sizeu<=n);
+ }
+ else // dealing with the lower part
+ {
+ newpos = sizel;
+ sizel++;
+ eigen_internal_assert(sizel<ii);
+ }
+ ju(newpos) = j;
+ u(newpos) = -prod;
+ jr(j) = newpos;
+ }
+ else
+ u(jpos) -= prod;
+ }
+ // store the pivot element
+ u(len) = fact;
+ ju(len) = minrow;
+ ++len;
+
+ jj++;
+ } // end of the elimination on the row ii
+
+ // reset the upper part of the pointer jr to zero
+ for(int k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
+
+ // 4 - partially sort and insert the elements in the m_lu matrix
+
+ // sort the L-part of the row
+ sizel = len;
+ len = (std::min)(sizel, nnzL);
+ typename Vector::SegmentReturnType ul(u.segment(0, sizel));
+ typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
+ QuickSplit(ul, jul, len);
+
+ // store the largest m_fill elements of the L part
+ m_lu.startVec(ii);
+ for(int k = 0; k < len; k++)
+ m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
+
+ // store the diagonal element
+ // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
+ if (u(ii) == Scalar(0))
+ u(ii) = sqrt(m_droptol) * rownorm;
+ m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
+
+ // sort the U-part of the row
+ // apply the dropping rule first
+ len = 0;
+ for(int k = 1; k < sizeu; k++)
+ {
+ if(abs(u(ii+k)) > m_droptol * rownorm )
+ {
+ ++len;
+ u(ii + len) = u(ii + k);
+ ju(ii + len) = ju(ii + k);
+ }
+ }
+ sizeu = len + 1; // +1 to take into account the diagonal element
+ len = (std::min)(sizeu, nnzU);
+ typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
+ typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
+ QuickSplit(uu, juu, len);
+
+ // store the largest elements of the U part
+ for(int k = ii + 1; k < ii + len; k++)
+ m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
+ }
+
+ m_lu.finalize();
+ m_lu.makeCompressed();
+
+ m_factorizationIsOk = true;
+ m_info = Success;
+}
namespace internal {