aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2009-08-01 23:42:51 +0200
committerGravatar Gael Guennebaud <g.gael@free.fr>2009-08-01 23:42:51 +0200
commit48fc64458cb16e0ce8a395a38bba56866b290133 (patch)
tree4ced04aa9cd6cdbaa12b7f802b92413a40c03af1
parent18429156a145c1adddcb313512f9f1179a9141cf (diff)
add blocked LLT, and bugfix in trsm asserts
-rw-r--r--Eigen/src/Cholesky/LLT.h121
-rw-r--r--Eigen/src/Core/SolveTriangular.h20
-rw-r--r--Eigen/src/Core/Transpose.h4
-rw-r--r--test/cholesky.cpp77
4 files changed, 115 insertions, 107 deletions
diff --git a/Eigen/src/Cholesky/LLT.h b/Eigen/src/Cholesky/LLT.h
index 4527067a8..58ac0c1fa 100644
--- a/Eigen/src/Cholesky/LLT.h
+++ b/Eigen/src/Cholesky/LLT.h
@@ -116,80 +116,81 @@ template<typename MatrixType, int _UpLo> class LLT
bool m_isInitialized;
};
-template<typename MatrixType>
-bool ei_inplace_llt_lo(MatrixType& mat)
+// forward declaration (defined at the end of this file)
+template<int UpLo> struct ei_llt_inplace;
+
+template<> struct ei_llt_inplace<LowerTriangular>
{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- assert(mat.rows()==mat.cols());
- const int size = mat.rows();
-
- // The biggest overall is the point of reference to which further diagonals
- // are compared; if any diagonal is negligible compared
- // to the largest overall, the algorithm bails. This cutoff is suggested
- // in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by
- // Nicholas J. Higham. Also see "Accuracy and Stability of Numerical
- // Algorithms" page 217, also by Higham.
- const RealScalar cutoff = machine_epsilon<Scalar>() * size * mat.diagonal().cwise().abs().maxCoeff();
- RealScalar x;
- x = ei_real(mat.coeff(0,0));
- mat.coeffRef(0,0) = ei_sqrt(x);
- if(size==1)
+ template<typename MatrixType>
+ static bool unblocked(MatrixType& mat)
{
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ ei_assert(mat.rows()==mat.cols());
+ const int size = mat.rows();
+ for(int k = 0; k < size; ++k)
+ {
+ int rs = size-k-1; // remaining size
+
+ Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
+ Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
+ Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
+
+ RealScalar x = ei_real(mat.coeff(k,k));
+ if (k>0) x -= mat.row(k).start(k).squaredNorm();
+ if (x<=RealScalar(0))
+ return false;
+ mat.coeffRef(k,k) = x = ei_sqrt(x);
+ if (k>0 && rs>0) A21 -= (A20 * A10.adjoint()).lazy();
+ if (rs>0) A21 *= RealScalar(1)/x;
+ }
return true;
}
- mat.col(0).end(size-1) = mat.col(0).end(size-1) / ei_real(mat.coeff(0,0));
- for (int j = 1; j < size; ++j)
+
+ template<typename MatrixType>
+ static bool blocked(MatrixType& m)
{
- x = ei_real(mat.coeff(j,j)) - mat.row(j).start(j).squaredNorm();
- if (ei_abs(x) < cutoff) continue;
+ ei_assert(m.rows()==m.cols());
+ int size = m.rows();
+ if(size<32)
+ return unblocked(m);
- mat.coeffRef(j,j) = x = ei_sqrt(x);
+ int blockSize = size/8;
+ blockSize = (blockSize/16)*16;
+ blockSize = std::min(std::max(blockSize,8), 128);
- int endSize = size-j-1;
- if (endSize>0)
+ for (int k=0; k<size; k+=blockSize)
{
- mat.col(j).end(endSize) -= (mat.block(j+1, 0, endSize, j) * mat.row(j).start(j).adjoint()).lazy();
- mat.col(j).end(endSize) *= RealScalar(1)/x;
+ int bs = std::min(blockSize, size-k);
+ int rs = size - k - bs;
+
+ Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
+ Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
+ Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
+
+ if(!unblocked(A11)) return false;
+ if(rs>0) A11.conjugate().template triangularView<LowerTriangular>().solveInPlace(A21.transpose());
+ if(rs>0) A22.template selfadjointView<LowerTriangular>().rankUpdate(A21,-1); // bottleneck
}
+ return true;
}
+};
- return true;
-}
-
-template<typename MatrixType>
-bool ei_inplace_llt_up(MatrixType& mat)
+template<> struct ei_llt_inplace<UpperTriangular>
{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- assert(mat.rows()==mat.cols());
- const int size = mat.rows();
-
- const RealScalar cutoff = machine_epsilon<Scalar>() * size * mat.diagonal().cwise().abs().maxCoeff();
- RealScalar x;
- x = ei_real(mat.coeff(0,0));
- mat.coeffRef(0,0) = ei_sqrt(x);
- if(size==1)
+ template<typename MatrixType>
+ static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat)
{
- return true;
+ Transpose<MatrixType> matt(mat);
+ return ei_llt_inplace<LowerTriangular>::unblocked(matt);
}
- mat.row(0).end(size-1) = mat.row(0).end(size-1) / ei_real(mat.coeff(0,0));
- for (int j = 1; j < size; ++j)
+ template<typename MatrixType>
+ static EIGEN_STRONG_INLINE bool blocked(MatrixType& mat)
{
- x = ei_real(mat.coeff(j,j)) - mat.col(j).start(j).squaredNorm();
- if (ei_abs(x) < cutoff) continue;
-
- mat.coeffRef(j,j) = x = ei_sqrt(x);
-
- int endSize = size-j-1;
- if (endSize>0) {
- mat.row(j).end(endSize) -= (mat.col(j).start(j).adjoint() * mat.block(0, j+1, j, endSize)).lazy();
- mat.row(j).end(endSize) *= RealScalar(1)/x;
- }
+ Transpose<MatrixType> matt(mat);
+ return ei_llt_inplace<LowerTriangular>::blocked(matt);
}
-
- return true;
-}
+};
template<typename MatrixType> struct LLT_Traits<MatrixType,LowerTriangular>
{
@@ -198,7 +199,7 @@ template<typename MatrixType> struct LLT_Traits<MatrixType,LowerTriangular>
inline static MatrixL getL(const MatrixType& m) { return m; }
inline static MatrixU getU(const MatrixType& m) { return m.adjoint().nestByValue(); }
static bool inplace_decomposition(MatrixType& m)
- { return ei_inplace_llt_lo(m); }
+ { return ei_llt_inplace<LowerTriangular>::blocked(m); }
};
template<typename MatrixType> struct LLT_Traits<MatrixType,UpperTriangular>
@@ -208,7 +209,7 @@ template<typename MatrixType> struct LLT_Traits<MatrixType,UpperTriangular>
inline static MatrixL getL(const MatrixType& m) { return m.adjoint().nestByValue(); }
inline static MatrixU getU(const MatrixType& m) { return m; }
static bool inplace_decomposition(MatrixType& m)
- { return ei_inplace_llt_up(m); }
+ { return ei_llt_inplace<UpperTriangular>::blocked(m); }
};
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
diff --git a/Eigen/src/Core/SolveTriangular.h b/Eigen/src/Core/SolveTriangular.h
index 9b67dd580..15b45e4f2 100644
--- a/Eigen/src/Core/SolveTriangular.h
+++ b/Eigen/src/Core/SolveTriangular.h
@@ -215,25 +215,25 @@ struct ei_triangular_solver_selector<Lhs,Rhs,OnTheLeft,Mode,CompleteUnrolling,St
* See TriangularView:solve() for the details.
*/
template<typename MatrixType, unsigned int Mode>
-template<int Side, typename RhsDerived>
-void TriangularView<MatrixType,Mode>::solveInPlace(const MatrixBase<RhsDerived>& _rhs) const
+template<int Side, typename OtherDerived>
+void TriangularView<MatrixType,Mode>::solveInPlace(const MatrixBase<OtherDerived>& _other) const
{
- RhsDerived& rhs = _rhs.const_cast_derived();
+ OtherDerived& other = _other.const_cast_derived();
ei_assert(cols() == rows());
- ei_assert(cols() == rhs.rows());
+ ei_assert( (Side==OnTheLeft && cols() == other.rows()) || (Side==OnTheRight && cols() == other.cols()) );
ei_assert(!(Mode & ZeroDiagBit));
ei_assert(Mode & (UpperTriangularBit|LowerTriangularBit));
- enum { copy = ei_traits<RhsDerived>::Flags & RowMajorBit && RhsDerived::IsVectorAtCompileTime };
+ enum { copy = ei_traits<OtherDerived>::Flags & RowMajorBit && OtherDerived::IsVectorAtCompileTime };
typedef typename ei_meta_if<copy,
- typename ei_plain_matrix_type_column_major<RhsDerived>::type, RhsDerived&>::ret RhsCopy;
- RhsCopy rhsCopy(rhs);
+ typename ei_plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::ret OtherCopy;
+ OtherCopy otherCopy(other);
- ei_triangular_solver_selector<MatrixType, typename ei_unref<RhsCopy>::type,
- Side, Mode>::run(_expression(), rhsCopy);
+ ei_triangular_solver_selector<MatrixType, typename ei_unref<OtherCopy>::type,
+ Side, Mode>::run(_expression(), otherCopy);
if (copy)
- rhs = rhsCopy;
+ other = otherCopy;
}
/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
diff --git a/Eigen/src/Core/Transpose.h b/Eigen/src/Core/Transpose.h
index 77865c410..0787daa61 100644
--- a/Eigen/src/Core/Transpose.h
+++ b/Eigen/src/Core/Transpose.h
@@ -70,7 +70,9 @@ template<typename MatrixType> class Transpose
inline int rows() const { return m_matrix.cols(); }
inline int cols() const { return m_matrix.rows(); }
inline int nonZeros() const { return m_matrix.nonZeros(); }
- inline int stride(void) const { return m_matrix.stride(); }
+ inline int stride() const { return m_matrix.stride(); }
+ inline Scalar* data() { return m_matrix.data(); }
+ inline const Scalar* data() const { return m_matrix.data(); }
inline Scalar& coeffRef(int row, int col)
{
diff --git a/test/cholesky.cpp b/test/cholesky.cpp
index 4b3952a62..e3b72f272 100644
--- a/test/cholesky.cpp
+++ b/test/cholesky.cpp
@@ -49,52 +49,58 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols);
SquareMatrixType symm = a0 * a0.adjoint();
// let's make sure the matrix is not singular or near singular
- MatrixType a1 = MatrixType::Random(rows,cols);
- symm += a1 * a1.adjoint();
+ for (int k=0; k<3; ++k)
+ {
+ MatrixType a1 = MatrixType::Random(rows,cols);
+ symm += a1 * a1.adjoint();
+ }
+
+ SquareMatrixType symmUp = symm.template triangularView<UpperTriangular>();
+ SquareMatrixType symmLo = symm.template triangularView<LowerTriangular>();
// to test if really Cholesky only uses the upper triangular part, uncomment the following
// FIXME: currently that fails !!
//symm.template part<StrictlyLowerTriangular>().setZero();
#ifdef HAS_GSL
- if (ei_is_same_type<RealScalar,double>::ret)
- {
- typedef GslTraits<Scalar> Gsl;
- typename Gsl::Matrix gMatA=0, gSymm=0;
- typename Gsl::Vector gVecB=0, gVecX=0;
- convert<MatrixType>(symm, gSymm);
- convert<MatrixType>(symm, gMatA);
- convert<VectorType>(vecB, gVecB);
- convert<VectorType>(vecB, gVecX);
- Gsl::cholesky(gMatA);
- Gsl::cholesky_solve(gMatA, gVecB, gVecX);
- VectorType vecX(rows), _vecX, _vecB;
- convert(gVecX, _vecX);
- symm.llt().solve(vecB, &vecX);
- Gsl::prod(gSymm, gVecX, gVecB);
- convert(gVecB, _vecB);
- // test gsl itself !
- VERIFY_IS_APPROX(vecB, _vecB);
- VERIFY_IS_APPROX(vecX, _vecX);
-
- Gsl::free(gMatA);
- Gsl::free(gSymm);
- Gsl::free(gVecB);
- Gsl::free(gVecX);
- }
+// if (ei_is_same_type<RealScalar,double>::ret)
+// {
+// typedef GslTraits<Scalar> Gsl;
+// typename Gsl::Matrix gMatA=0, gSymm=0;
+// typename Gsl::Vector gVecB=0, gVecX=0;
+// convert<MatrixType>(symm, gSymm);
+// convert<MatrixType>(symm, gMatA);
+// convert<VectorType>(vecB, gVecB);
+// convert<VectorType>(vecB, gVecX);
+// Gsl::cholesky(gMatA);
+// Gsl::cholesky_solve(gMatA, gVecB, gVecX);
+// VectorType vecX(rows), _vecX, _vecB;
+// convert(gVecX, _vecX);
+// symm.llt().solve(vecB, &vecX);
+// Gsl::prod(gSymm, gVecX, gVecB);
+// convert(gVecB, _vecB);
+// // test gsl itself !
+// VERIFY_IS_APPROX(vecB, _vecB);
+// VERIFY_IS_APPROX(vecX, _vecX);
+//
+// Gsl::free(gMatA);
+// Gsl::free(gSymm);
+// Gsl::free(gVecB);
+// Gsl::free(gVecX);
+// }
#endif
{
- LLT<SquareMatrixType> chol(symm);
- VERIFY_IS_APPROX(symm, chol.matrixL().toDense() * chol.matrixL().adjoint().toDense());
- chol.solve(vecB, &vecX);
+ LLT<SquareMatrixType,LowerTriangular> chollo(symmLo);
+ VERIFY_IS_APPROX(symm, chollo.matrixL().toDense() * chollo.matrixL().adjoint().toDense());
+ chollo.solve(vecB, &vecX);
VERIFY_IS_APPROX(symm * vecX, vecB);
- chol.solve(matB, &matX);
+ chollo.solve(matB, &matX);
VERIFY_IS_APPROX(symm * matX, matB);
// test the upper mode
- LLT<SquareMatrixType,UpperTriangular> cholup(symm);
- VERIFY_IS_APPROX(symm, cholup.matrixL().toDense() * chol.matrixL().adjoint().toDense());
+ LLT<SquareMatrixType,UpperTriangular> cholup(symmUp);
+ VERIFY_IS_APPROX(symm, cholup.matrixL().toDense() * cholup.matrixL().adjoint().toDense());
cholup.solve(vecB, &vecX);
VERIFY_IS_APPROX(symm * vecX, vecB);
cholup.solve(matB, &matX);
@@ -147,9 +153,8 @@ void test_cholesky()
CALL_SUBTEST( cholesky(Matrix2d()) );
CALL_SUBTEST( cholesky(Matrix3f()) );
CALL_SUBTEST( cholesky(Matrix4d()) );
- CALL_SUBTEST( cholesky(MatrixXcd(7,7)) );
- CALL_SUBTEST( cholesky(MatrixXd(17,17)) );
- CALL_SUBTEST( cholesky(MatrixXf(200,200)) );
+ CALL_SUBTEST( cholesky(MatrixXcd(100,100)) );
+ CALL_SUBTEST( cholesky(MatrixXd(200,200)) );
}
CALL_SUBTEST( cholesky_verify_assert<Matrix3f>() );