aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Desire NUENTSA <desire.nuentsa_wakam@inria.fr>2012-09-11 12:12:19 +0200
committerGravatar Desire NUENTSA <desire.nuentsa_wakam@inria.fr>2012-09-11 12:12:19 +0200
commit45672e724e80ef7b5c9a6837296c8e55ae6a62a1 (patch)
tree7b19d6a8b4a2eb6e6848ce5904582d324867def0
parent504edbddb185aec03e11578c059aa489a1af8fb3 (diff)
Incomplete Cholesky preconditioner... not yet stable
-rw-r--r--Eigen/src/IterativeLinearSolvers/IncompleteLUT.h101
-rw-r--r--bench/spbench/sp_solver.cpp5
-rw-r--r--unsupported/Eigen/IterativeSolvers1
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h221
4 files changed, 275 insertions, 53 deletions
diff --git a/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h b/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
index 224304f0e..5a71531cd 100644
--- a/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
+++ b/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h
@@ -10,8 +10,56 @@
#ifndef EIGEN_INCOMPLETE_LUT_H
#define EIGEN_INCOMPLETE_LUT_H
+
namespace Eigen {
+namespace internal {
+
+/**
+ * Compute a quick-sort split of a vector
+ * On output, the vector row is permuted such that its elements satisfy
+ * abs(row(i)) >= abs(row(ncut)) if i<ncut
+ * abs(row(i)) <= abs(row(ncut)) if i>ncut
+ * \param row The vector of values
+ * \param ind The array of index for the elements in @p row
+ * \param ncut The number of largest elements to keep
+ **/
+template <typename VectorV, typename VectorI>
+int QuickSplit(VectorV &row, VectorI &ind, int ncut)
+{
+ typedef typename VectorV::RealScalar RealScalar;
+ using std::swap;
+ int mid;
+ int n = row.size(); /* length of the vector */
+ int first, last ;
+
+ ncut--; /* to fit the zero-based indices */
+ first = 0;
+ last = n-1;
+ if (ncut < first || ncut > last ) return 0;
+
+ do {
+ mid = first;
+ RealScalar abskey = std::abs(row(mid));
+ for (int j = first + 1; j <= last; j++) {
+ if ( std::abs(row(j)) > abskey) {
+ ++mid;
+ swap(row(mid), row(j));
+ swap(ind(mid), ind(j));
+ }
+ }
+ /* Interchange for the pivot element */
+ swap(row(mid), row(first));
+ swap(ind(mid), ind(first));
+
+ if (mid > ncut) last = mid - 1;
+ else if (mid < ncut ) first = mid + 1;
+ } while (mid != ncut );
+
+ return 0; /* mid is equal to ncut */
+}
+
+}// end namespace internal
/**
* \brief Incomplete LU factorization with dual-threshold strategy
* During the numerical factorization, two dropping rules are used :
@@ -126,10 +174,6 @@ class IncompleteLUT : internal::noncopyable
protected:
- template <typename VectorV, typename VectorI>
- int QuickSplit(VectorV &row, VectorI &ind, int ncut);
-
-
/** keeps off-diagonal entries; drops diagonal entries */
struct keep_diag {
inline bool operator() (const Index& row, const Index& col, const Scalar&) const
@@ -171,51 +215,6 @@ void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
this->m_fillfactor = fillfactor;
}
-
-/**
- * Compute a quick-sort split of a vector
- * On output, the vector row is permuted such that its elements satisfy
- * abs(row(i)) >= abs(row(ncut)) if i<ncut
- * abs(row(i)) <= abs(row(ncut)) if i>ncut
- * \param row The vector of values
- * \param ind The array of index for the elements in @p row
- * \param ncut The number of largest elements to keep
- **/
-template <typename Scalar>
-template <typename VectorV, typename VectorI>
-int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut)
-{
- using std::swap;
- int mid;
- int n = row.size(); /* length of the vector */
- int first, last ;
-
- ncut--; /* to fit the zero-based indices */
- first = 0;
- last = n-1;
- if (ncut < first || ncut > last ) return 0;
-
- do {
- mid = first;
- RealScalar abskey = std::abs(row(mid));
- for (int j = first + 1; j <= last; j++) {
- if ( std::abs(row(j)) > abskey) {
- ++mid;
- swap(row(mid), row(j));
- swap(ind(mid), ind(j));
- }
- }
- /* Interchange for the pivot element */
- swap(row(mid), row(first));
- swap(ind(mid), ind(first));
-
- if (mid > ncut) last = mid - 1;
- else if (mid < ncut ) first = mid + 1;
- } while (mid != ncut );
-
- return 0; /* mid is equal to ncut */
-}
-
template <typename Scalar>
template<typename _MatrixType>
void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
@@ -400,7 +399,7 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
len = (std::min)(sizel, nnzL);
typename Vector::SegmentReturnType ul(u.segment(0, sizel));
typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
- QuickSplit(ul, jul, len);
+ internal::QuickSplit(ul, jul, len);
// store the largest m_fill elements of the L part
m_lu.startVec(ii);
@@ -429,7 +428,7 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
len = (std::min)(sizeu, nnzU);
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
- QuickSplit(uu, juu, len);
+ internal::QuickSplit(uu, juu, len);
// store the largest elements of the U part
for(int k = ii + 1; k < ii + len; k++)
diff --git a/bench/spbench/sp_solver.cpp b/bench/spbench/sp_solver.cpp
index e18f2d1c3..a1f4bac8a 100644
--- a/bench/spbench/sp_solver.cpp
+++ b/bench/spbench/sp_solver.cpp
@@ -13,7 +13,7 @@
#include <Eigen/SuperLUSupport>
// #include <unsupported/Eigen/src/IterativeSolvers/Scaling.h>
#include <bench/BenchTimer.h>
-
+#include <unsupported/Eigen/IterativeSolvers>
using namespace std;
using namespace Eigen;
@@ -26,7 +26,8 @@ int main(int argc, char **args)
VectorXd b, x, tmp;
BenchTimer timer,totaltime;
//SparseLU<SparseMatrix<double, ColMajor> > solver;
- SuperLU<SparseMatrix<double, ColMajor> > solver;
+// SuperLU<SparseMatrix<double, ColMajor> > solver;
+ ConjugateGradient<SparseMatrix<double, ColMajor>, Lower,IncompleteCholesky<double,Lower> > solver;
ifstream matrix_file;
string line;
int n;
diff --git a/unsupported/Eigen/IterativeSolvers b/unsupported/Eigen/IterativeSolvers
index 6c6946d91..c3cc97cd2 100644
--- a/unsupported/Eigen/IterativeSolvers
+++ b/unsupported/Eigen/IterativeSolvers
@@ -33,6 +33,7 @@
#include "../../Eigen/Jacobi"
#include "../../Eigen/Householder"
#include "src/IterativeSolvers/GMRES.h"
+#include "src/IterativeSolvers/IncompleteCholesky.h"
//#include "src/IterativeSolvers/SSORPreconditioner.h"
//@}
diff --git a/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h b/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
new file mode 100644
index 000000000..bdd494f26
--- /dev/null
+++ b/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
@@ -0,0 +1,221 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_INCOMPLETE_CHOlESKY_H
+#define EIGEN_INCOMPLETE_CHOlESKY_H
+#include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h"
+#include <Eigen/OrderingMethods>
+#include <list>
+
+namespace Eigen {
+/**
+ * \brief Modified Incomplete Cholesky with dual threshold
+ *
+ * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
+ * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
+ *
+ * \tparam _MatrixType The type of the sparse matrix. It should be a symmetric
+ * matrix. It is advised to give a row-oriented sparse matrix
+ * \tparam _UpLo The triangular part of the matrix to reference.
+ * \tparam _OrderingType
+ */
+
+template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> >
+class IncompleteCholesky : internal::noncopyable
+{
+ public:
+ typedef SparseMatrix<Scalar,ColMajor> MatrixType;
+ typedef _OrderingType OrderingType;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef typename MatrixType::Index Index;
+ typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
+ typedef Matrix<Scalar,Dynamic,1> VectorType;
+ typedef Matrix<Index,Dynamic, 1> IndexType;
+
+ public:
+ IncompleteCholesky() {}
+ IncompleteCholesky(const MatrixType& matrix)
+ {
+ compute(matrix);
+ }
+
+ Index rows() const { return m_L.rows(); }
+
+ Index cols() const { return m_L.cols(); }
+
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was succesful,
+ * \c NumericalIssue if the matrix appears to be negative.
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
+ return m_info;
+ }
+ /**
+ * \brief Computes the fill reducing permutation vector.
+ */
+ template<typename MatrixType>
+ void analyzePattern(const MatrixType& mat)
+ {
+ OrderingType ord;
+ ord(mat, m_perm);
+ m_analysisIsOk = true;
+ }
+
+ template<typename MatrixType>
+ void factorize(const MatrixType& amat);
+
+ template<typename MatrixType>
+ void compute (const MatrixType& matrix)
+ {
+ analyzePattern(matrix);
+ factorize(matrix);
+ }
+
+ template<typename Rhs, typename Dest>
+ void _solve(const Rhs& b, Dest& x) const
+ {
+ eigen_assert(m_factorizationIsOk && "factorize() should be called first");
+ if (m_perm.rows() == b.rows())
+ x = m_perm.inverse() * b;
+ else
+ x = b;
+ x = m_L.template triangularView<UnitLower>().solve(x);
+ x = m_L.adjoint().template triangularView<Upper>().solve(x);
+ if (m_perm.rows() == b.rows())
+ x = m_perm * x;
+ }
+ template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
+ eigen_assert(cols()==b.rows()
+ && "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b");
+ return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived());
+ }
+ protected:
+ SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC
+ bool m_analysisIsOk;
+ bool m_factorizationIsOk;
+ bool m_isInitialized;
+ ComputationInfo m_info;
+ PermutationType m_perm;
+
+};
+
+template<typename Scalar, int _UpLo, typename OrderingType>
+template<typename _MatrixType>
+void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
+{
+ eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
+
+ // FIXME Stability: We should probably compute the scaling factors and the shifts that are needed to ensure an efficient LLT preconditioner.
+
+ // Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
+
+ // Apply the fill-reducing permutation computed in analyzePattern()
+ if (m_perm.rows() == mat.rows() )
+ m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
+ else
+ m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
+
+ int n = mat.cols();
+
+ Scalar *vals = m_L.valuePtr(); //Values
+ Index *rowIdx = m_L.innerIndexPtr(); //Row indices
+ Index *colPtr = m_L.outerIndexPtr(); // Pointer to the beginning of each row
+ VectorType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
+ // Initialize firstElt;
+ for (int j = 0; j < n-1; j++) firstElt(j) = colPtr[j]+1;
+ std::vector<std::list<Index> > listCol(n); // listCol(j) is a linked list of columns to update column j
+ VectorType curCol(n); // Store a nonzero values in each column
+ VectorType irow(n); // Row indices of nonzero elements in each column
+ // jki version of the Cholesky factorization
+ for (int j=0; j < n; j++)
+ {
+ //Left-looking factorize the column j
+ // First, load the jth column into curCol
+ Scalar diag = vals[colPtr[j]]; // Lower diagonal matrix with
+ curCol.setZero();
+ irow.setLinSpaced(n,0,n-1);
+ for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++)
+ {
+ curCol(rowIdx[i]) = vals[i];
+ irow(rowIdx[i]) = rowIdx[i];
+ }
+
+ std::list<int>::iterator k;
+ // Browse all previous columns that will update column j
+ for(k = listCol[j].begin(); k != listCol[j].end(); k++)
+ {
+ int jk = firstElt(*k); // First element to use in the column
+ Scalar a_jk = vals[jk];
+ diag -= a_jk * a_jk;
+ jk += 1;
+ for (int i = jk; i < colPtr[*k]; i++)
+ {
+ curCol(rowIdx[i]) -= vals[i] * a_jk ;
+ }
+ firstElt(*k) = jk;
+ if (jk < colPtr[*k+1])
+ {
+ // Add this column to the updating columns list for column *k+1
+ listCol[rowIdx[jk]].push_back(*k);
+ }
+ }
+
+ // Select the largest p elements
+ // p is the original number of elements in the column (without the diagonal)
+ int p = colPtr[j+1] - colPtr[j] - 2 ;
+ internal::QuickSplit(curCol, irow, p);
+ if(RealScalar(diag) <= 0)
+ {
+ m_info = NumericalIssue;
+ return;
+ }
+ RealScalar rdiag = internal::sqrt(RealScalar(diag));
+ Scalar scal = Scalar(1)/rdiag;
+ vals[colPtr[j]] = rdiag;
+ // Insert the largest p elements in the matrix and scale them meanwhile
+ int cpt = 0;
+ for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
+ {
+ vals[i] = curCol(cpt) * scal;
+ rowIdx[i] = irow(cpt);
+ cpt ++;
+ }
+ }
+ m_factorizationIsOk = true;
+ m_isInitialized = true;
+ m_info = Success;
+}
+
+namespace internal {
+
+template<typename _MatrixType, typename Rhs>
+struct solve_retval<IncompleteCholesky<_MatrixType>, Rhs>
+ : solve_retval_base<IncompleteCholesky<_MatrixType>, Rhs>
+{
+ typedef IncompleteCholesky<_MatrixType> Dec;
+ EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dec()._solve(rhs(),dst);
+ }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif \ No newline at end of file