aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2010-05-04 17:11:32 +0100
committerGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2010-05-04 17:11:32 +0100
commit2d74f1ac9292dab56cf725ba9c09e22a77f5fb10 (patch)
tree0f7970e50e9c4bad1ef70c27e84b9457fed6277c
parent6ea6276f20cee16e86e35d60e8ce81cc48a46cb3 (diff)
Document SelfAdjointEigenSolver and add examples.
-rw-r--r--Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h269
-rw-r--r--doc/snippets/SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp7
-rw-r--r--doc/snippets/SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp17
-rw-r--r--doc/snippets/SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp16
-rw-r--r--doc/snippets/SelfAdjointEigenSolver_compute_MatrixType.cpp7
-rw-r--r--doc/snippets/SelfAdjointEigenSolver_compute_MatrixType2.cpp9
-rw-r--r--doc/snippets/SelfAdjointEigenSolver_eigenvalues.cpp4
-rw-r--r--doc/snippets/SelfAdjointEigenSolver_eigenvectors.cpp4
-rw-r--r--doc/snippets/SelfAdjointEigenSolver_operatorInverseSqrt.cpp9
-rw-r--r--doc/snippets/SelfAdjointEigenSolver_operatorSqrt.cpp8
10 files changed, 316 insertions, 34 deletions
diff --git a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
index 41a600290..00a9d368c 100644
--- a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
+++ b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
@@ -30,13 +30,42 @@
*
* \class SelfAdjointEigenSolver
*
- * \brief Eigen values/vectors solver for selfadjoint matrix
+ * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
*
- * \param MatrixType the type of the matrix of which we are computing the eigen decomposition
+ * \tparam _MatrixType the type of the matrix of which we are computing the
+ * eigendecomposition; this is expected to be an instantiation of the Matrix
+ * class template. Currently, only real matrices are supported.
*
- * \note MatrixType must be an actual Matrix type, it can't be an expression type.
+ * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
+ * matrices, this means that the matrix is symmetric: it equals its
+ * transpose. This class computes the eigenvalues and eigenvectors of a
+ * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
+ * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a
+ * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
+ * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
+ * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$ (for selfadjoint
+ * matrices, the matrix \f$ V \f$ is always invertible). This is called the
+ * eigendecomposition.
*
- * \sa MatrixBase::eigenvalues(), class EigenSolver
+ * The algorithm exploits the fact that the matrix is selfadjoint, making it
+ * faster and more accurate than the general purpose eigenvalue algorithms
+ * implemented in EigenSolver and ComplexEigenSolver.
+ *
+ * This class can also be used to solve the generalized eigenvalue problem
+ * \f$ Av = \lambda Bv \f$. In this case, the matrix \f$ A \f$ should be
+ * selfadjoint and the matrix \f$ B \f$ should be positive definite.
+ *
+ * Call the function compute() to compute the eigenvalues and eigenvectors of
+ * a given matrix. Alternatively, you can use the
+ * SelfAdjointEigenSolver(const MatrixType&, bool) constructor which computes
+ * the eigenvalues and eigenvectors at construction time. Once the eigenvalue
+ * and eigenvectors are computed, they can be retrieved with the eigenvalues()
+ * and eigenvectors() functions.
+ *
+ * The documentation for SelfAdjointEigenSolver(const MatrixType&, bool)
+ * contains an example of the typical use of this class.
+ *
+ * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
*/
template<typename _MatrixType> class SelfAdjointEigenSolver
{
@@ -49,13 +78,37 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
Options = MatrixType::Options,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
+
+ /** \brief Scalar type for matrices of type \p _MatrixType. */
typedef typename MatrixType::Scalar Scalar;
+
+ /** \brief Real scalar type for \p _MatrixType.
+ *
+ * This is just \c Scalar if #Scalar is real (e.g., \c float or
+ * \c double), and the type of the real part of \c Scalar if #Scalar is
+ * complex.
+ */
typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef std::complex<RealScalar> Complex;
+
+ /** \brief Type for vector of eigenvalues as returned by eigenvalues().
+ *
+ * This is a column vector with entries of type #RealScalar.
+ * The length of the vector is the size of \p _MatrixType.
+ */
typedef typename ei_plain_col_type<MatrixType, RealScalar>::type RealVectorType;
typedef Tridiagonalization<MatrixType> TridiagonalizationType;
-// typedef typename TridiagonalizationType::TridiagonalMatrixType TridiagonalMatrixType;
+ /** \brief Default constructor for fixed-size matrices.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via compute(const MatrixType&, bool) or
+ * compute(const MatrixType&, const MatrixType&, bool). This constructor
+ * can only be used if \p _MatrixType is a fixed-size matrix; use
+ * SelfAdjointEigenSolver(int) for dynamic-size matrices.
+ *
+ * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
+ */
SelfAdjointEigenSolver()
: m_eivec(int(Size), int(Size)),
m_eivalues(int(Size)),
@@ -64,16 +117,42 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
ei_assert(Size!=Dynamic);
}
+ /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
+ *
+ * \param [in] size Positive integer, size of the matrix whose
+ * eigenvalues and eigenvectors will be computed.
+ *
+ * This constructor is useful for dynamic-size matrices, when the user
+ * intends to perform decompositions via compute(const MatrixType&, bool)
+ * or compute(const MatrixType&, const MatrixType&, bool). The \p size
+ * parameter is only used as a hint. It is not an error to give a wrong
+ * \p size, but it may impair performance.
+ *
+ * \sa compute(const MatrixType&, bool) for an example
+ */
SelfAdjointEigenSolver(int size)
: m_eivec(size, size),
m_eivalues(size),
m_subdiag(TridiagonalizationType::SizeMinusOne)
{}
- /** Constructors computing the eigenvalues of the selfadjoint matrix \a matrix,
- * as well as the eigenvectors if \a computeEigenvectors is true.
+ /** \brief Constructor; computes eigendecomposition of given matrix.
+ *
+ * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
+ * be computed.
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
+ * eigenvalues are computed; if false, only the eigenvalues are
+ * computed.
+ *
+ * This constructor calls compute(const MatrixType&, bool) to compute the
+ * eigenvalues of the matrix \p matrix. The eigenvectors are computed if
+ * \p computeEigenvectors is true.
+ *
+ * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
*
- * \sa compute(MatrixType,bool), SelfAdjointEigenSolver(MatrixType,MatrixType,bool)
+ * \sa compute(const MatrixType&, bool),
+ * SelfAdjointEigenSolver(const MatrixType&, const MatrixType&, bool)
*/
SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
: m_eivec(matrix.rows(), matrix.cols()),
@@ -84,12 +163,26 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
compute(matrix, computeEigenvectors);
}
- /** Constructors computing the eigenvalues of the generalized eigen problem
- * \f$ Ax = lambda B x \f$ with \a matA the selfadjoint matrix \f$ A \f$
- * and \a matB the positive definite matrix \f$ B \f$ . The eigenvectors
- * are computed if \a computeEigenvectors is true.
+ /** \brief Constructor; computes eigendecomposition of given matrix pencil.
+ *
+ * \param[in] matA Selfadjoint matrix in matrix pencil.
+ * \param[in] matB Positive-definite matrix in matrix pencil.
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
+ * eigenvalues are computed; if false, only the eigenvalues are
+ * computed.
*
- * \sa compute(MatrixType,MatrixType,bool), SelfAdjointEigenSolver(MatrixType,bool)
+ * This constructor calls compute(const MatrixType&, const MatrixType&, bool)
+ * to compute the eigenvalues and (if requested) the eigenvectors of the
+ * generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the
+ * selfadjoint matrix \f$ A \f$ and \a matB the positive definite matrix
+ * \f$ B \f$ . The eigenvectors are computed if \a computeEigenvectors is
+ * true.
+ *
+ * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.out
+ *
+ * \sa compute(const MatrixType&, const MatrixType&, bool),
+ * SelfAdjointEigenSolver(const MatrixType&, bool)
*/
SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
: m_eivec(matA.rows(), matA.cols()),
@@ -100,12 +193,91 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
compute(matA, matB, computeEigenvectors);
}
+ /** \brief Computes eigendecomposition of given matrix.
+ *
+ * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
+ * be computed.
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
+ * eigenvalues are computed; if false, only the eigenvalues are
+ * computed.
+ * \returns Reference to \c *this
+ *
+ * This function computes the eigenvalues of \p matrix. The eigenvalues()
+ * function can be used to retrieve them. If \p computeEigenvectors is
+ * true, then the eigenvectors are also computed and can be retrieved by
+ * calling eigenvectors().
+ *
+ * This implementation uses a symmetric QR algorithm. The matrix is first
+ * reduced to tridiagonal form using the Tridiagonalization class. The
+ * tridiagonal matrix is then brought to diagonal form with implicit
+ * symmetric QR steps with Wilkinson shift. Details can be found in
+ * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
+ *
+ * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
+ * are required and \f$ 4n^3/3 \f$ if they are not required.
+ *
+ * This method reuses the memory in the SelfAdjointEigenSolver object that
+ * was allocated when the object was constructed, if the size of the
+ * matrix does not change.
+ *
+ * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
+ *
+ * \sa SelfAdjointEigenSolver(const MatrixType&, bool)
+ */
SelfAdjointEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
+ /** \brief Computes eigendecomposition of given matrix pencil.
+ *
+ * \param[in] matA Selfadjoint matrix in matrix pencil.
+ * \param[in] matB Positive-definite matrix in matrix pencil.
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
+ * eigenvalues are computed; if false, only the eigenvalues are
+ * computed.
+ * \returns Reference to \c *this
+ *
+ * This function computes eigenvalues and (if requested) the eigenvectors
+ * of the generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA
+ * the selfadjoint matrix \f$ A \f$ and \a matB the positive definite
+ * matrix \f$ B \f$. The eigenvalues() function can be used to retrieve
+ * the eigenvalues. If \p computeEigenvectors is true, then the
+ * eigenvectors are also computed and can be retrieved by calling
+ * eigenvectors().
+ *
+ * The implementation uses LLT to compute the Cholesky decomposition
+ * \f$ B = LL^* \f$ and calls compute(const MatrixType&, bool) to compute
+ * the eigendecomposition \f$ L^{-1} A (L^*)^{-1} \f$. This solves the
+ * generalized eigenproblem, because any solution of the generalized
+ * eigenproblem \f$ Ax = \lambda B x \f$ corresponds to a solution
+ * \f$ L^{-1} A (L^*)^{-1} (L^* x) = \lambda (L^* x) \f$ of the
+ * eigenproblem for \f$ L^{-1} A (L^*)^{-1} \f$.
+ *
+ * Example: \include SelfAdjointEigenSolver_compute_MatrixType2.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType2.out
+ *
+ * \sa SelfAdjointEigenSolver(const MatrixType&, const MatrixType&, bool)
+ */
SelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true);
- /** \returns the computed eigen vectors as a matrix of column vectors */
- MatrixType eigenvectors(void) const
+ /** \brief Returns the eigenvectors of given matrix (pencil).
+ *
+ * \returns %Matrix whose columns are the eigenvectors.
+ *
+ * \pre The eigenvectors have been computed before.
+ *
+ * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
+ * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
+ * eigenvectors are normalized to have (Euclidean) norm equal to one. If
+ * this object was used to solve the eigenproblem for the selfadjoint
+ * matrix \f$ A \f$, then the matrix returned by this function is the
+ * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
+ *
+ * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
+ *
+ * \sa eigenvalues()
+ */
+ MatrixType eigenvectors() const
{
#ifndef NDEBUG
ei_assert(m_eigenvectorsOk);
@@ -113,21 +285,62 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
return m_eivec;
}
- /** \returns the computed eigen values */
- RealVectorType eigenvalues(void) const { return m_eivalues; }
+ /** \brief Returns the eigenvalues of given matrix (pencil).
+ *
+ * \returns Column vector containing the eigenvalues.
+ *
+ * \pre The eigenvalues have been computed before.
+ *
+ * The eigenvalues are repeated according to their algebraic multiplicity,
+ * so there are as many eigenvalues as rows in the matrix.
+ *
+ * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
+ *
+ * \sa eigenvectors(), MatrixBase::eigenvalues()
+ */
+ RealVectorType eigenvalues() const { return m_eivalues; }
- /** \returns the positive square root of the matrix
+ /** \brief Computes the positive-definite square root of the matrix.
+ *
+ * \returns the positive-definite square root of the matrix
+ *
+ * \pre The eigenvalues and eigenvectors of a positive-definite matrix
+ * have been computed before.
*
- * \note the matrix itself must be positive in order for this to make sense.
+ * The square root of a positive-definite matrix \f$ A \f$ is the
+ * positive-definite matrix whose square equals \f$ A \f$. This function
+ * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
+ * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
+ *
+ * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
+ *
+ * \sa operatorInverseSqrt(),
+ * \ref MatrixFunctions_Module "MatrixFunctions Module"
*/
MatrixType operatorSqrt() const
{
return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
}
- /** \returns the positive inverse square root of the matrix
+ /** \brief Computes the inverse square root of the matrix.
+ *
+ * \returns the inverse positive-definite square root of the matrix
*
- * \note the matrix itself must be positive definite in order for this to make sense.
+ * \pre The eigenvalues and eigenvectors of a positive-definite matrix
+ * have been computed before.
+ *
+ * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
+ * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
+ * cheaper than first computing the square root with operatorSqrt() and
+ * then its inverse with MatrixBase::inverse().
+ *
+ * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
+ *
+ * \sa operatorSqrt(), MatrixBase::inverse(),
+ * \ref MatrixFunctions_Module "MatrixFunctions Module"
*/
MatrixType operatorInverseSqrt() const
{
@@ -165,11 +378,6 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
template<typename RealScalar, typename Scalar>
static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n);
-/** Computes the eigenvalues of the selfadjoint matrix \a matrix,
- * as well as the eigenvectors if \a computeEigenvectors is true.
- *
- * \sa SelfAdjointEigenSolver(MatrixType,bool), compute(MatrixType,MatrixType,bool)
- */
template<typename MatrixType>
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
{
@@ -233,13 +441,6 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::compute(
return *this;
}
-/** Computes the eigenvalues of the generalized eigen problem
- * \f$ Ax = lambda B x \f$ with \a matA the selfadjoint matrix \f$ A \f$
- * and \a matB the positive definite matrix \f$ B \f$ . The eigenvectors
- * are computed if \a computeEigenvectors is true.
- *
- * \sa SelfAdjointEigenSolver(MatrixType,MatrixType,bool), compute(MatrixType,bool)
- */
template<typename MatrixType>
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::
compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors)
diff --git a/doc/snippets/SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp b/doc/snippets/SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
new file mode 100644
index 000000000..73a7f6252
--- /dev/null
+++ b/doc/snippets/SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
@@ -0,0 +1,7 @@
+SelfAdjointEigenSolver<Matrix4f> es;
+Matrix4f X = Matrix4f::Random(4,4);
+Matrix4f A = X + X.transpose();
+es.compute(A);
+cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl;
+es.compute(A + Matrix4f::Identity(4,4)); // re-use es to compute eigenvalues of A+I
+cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
diff --git a/doc/snippets/SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp b/doc/snippets/SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
new file mode 100644
index 000000000..3599b17a0
--- /dev/null
+++ b/doc/snippets/SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
@@ -0,0 +1,17 @@
+MatrixXd X = MatrixXd::Random(5,5);
+MatrixXd A = X + X.transpose();
+cout << "Here is a random symmetric 5x5 matrix, A:" << endl << A << endl << endl;
+
+SelfAdjointEigenSolver<MatrixXd> es(A);
+cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl;
+cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl;
+
+double lambda = es.eigenvalues()[0];
+cout << "Consider the first eigenvalue, lambda = " << lambda << endl;
+VectorXd v = es.eigenvectors().col(0);
+cout << "If v is the corresponding eigenvector, then lambda * v = " << endl << lambda * v << endl;
+cout << "... and A * v = " << endl << A * v << endl << endl;
+
+MatrixXd D = es.eigenvalues().asDiagonal();
+MatrixXd V = es.eigenvectors();
+cout << "Finally, V * D * V^(-1) = " << endl << V * D * V.inverse() << endl;
diff --git a/doc/snippets/SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp b/doc/snippets/SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp
new file mode 100644
index 000000000..f05d67da3
--- /dev/null
+++ b/doc/snippets/SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp
@@ -0,0 +1,16 @@
+MatrixXd X = MatrixXd::Random(5,5);
+MatrixXd A = X + X.transpose();
+cout << "Here is a random symmetric matrix, A:" << endl << A << endl;
+X = MatrixXd::Random(5,5);
+MatrixXd B = X * X.transpose();
+cout << "and a random postive-definite matrix, B:" << endl << B << endl << endl;
+
+SelfAdjointEigenSolver<MatrixXd> es(A,B);
+cout << "The eigenvalues of the pencil (A,B) are:" << endl << es.eigenvalues() << endl;
+cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl;
+
+double lambda = es.eigenvalues()[0];
+cout << "Consider the first eigenvalue, lambda = " << lambda << endl;
+VectorXd v = es.eigenvectors().col(0);
+cout << "If v is the corresponding eigenvector, then A * v = " << endl << A * v << endl;
+cout << "... and lambda * B * v = " << endl << lambda * B * v << endl << endl;
diff --git a/doc/snippets/SelfAdjointEigenSolver_compute_MatrixType.cpp b/doc/snippets/SelfAdjointEigenSolver_compute_MatrixType.cpp
new file mode 100644
index 000000000..2975cc3f2
--- /dev/null
+++ b/doc/snippets/SelfAdjointEigenSolver_compute_MatrixType.cpp
@@ -0,0 +1,7 @@
+SelfAdjointEigenSolver<MatrixXf> es(4);
+MatrixXf X = MatrixXf::Random(4,4);
+MatrixXf A = X + X.transpose();
+es.compute(A);
+cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl;
+es.compute(A + MatrixXf::Identity(4,4)); // re-use es to compute eigenvalues of A+I
+cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
diff --git a/doc/snippets/SelfAdjointEigenSolver_compute_MatrixType2.cpp b/doc/snippets/SelfAdjointEigenSolver_compute_MatrixType2.cpp
new file mode 100644
index 000000000..4b0f11003
--- /dev/null
+++ b/doc/snippets/SelfAdjointEigenSolver_compute_MatrixType2.cpp
@@ -0,0 +1,9 @@
+MatrixXd X = MatrixXd::Random(5,5);
+MatrixXd A = X * X.transpose();
+X = MatrixXd::Random(5,5);
+MatrixXd B = X * X.transpose();
+
+SelfAdjointEigenSolver<MatrixXd> es(A,B,false);
+cout << "The eigenvalues of the pencil (A,B) are:" << endl << es.eigenvalues() << endl;
+es.compute(B,A,false);
+cout << "The eigenvalues of the pencil (B,A) are:" << endl << es.eigenvalues() << endl;
diff --git a/doc/snippets/SelfAdjointEigenSolver_eigenvalues.cpp b/doc/snippets/SelfAdjointEigenSolver_eigenvalues.cpp
new file mode 100644
index 000000000..0ff33c68d
--- /dev/null
+++ b/doc/snippets/SelfAdjointEigenSolver_eigenvalues.cpp
@@ -0,0 +1,4 @@
+MatrixXd ones = MatrixXd::Ones(3,3);
+SelfAdjointEigenSolver<MatrixXd> es(ones);
+cout << "The eigenvalues of the 3x3 matrix of ones are:"
+ << endl << es.eigenvalues() << endl;
diff --git a/doc/snippets/SelfAdjointEigenSolver_eigenvectors.cpp b/doc/snippets/SelfAdjointEigenSolver_eigenvectors.cpp
new file mode 100644
index 000000000..cfc8b0d54
--- /dev/null
+++ b/doc/snippets/SelfAdjointEigenSolver_eigenvectors.cpp
@@ -0,0 +1,4 @@
+MatrixXd ones = MatrixXd::Ones(3,3);
+SelfAdjointEigenSolver<MatrixXd> es(ones);
+cout << "The first eigenvector of the 3x3 matrix of ones is:"
+ << endl << es.eigenvectors().col(1) << endl;
diff --git a/doc/snippets/SelfAdjointEigenSolver_operatorInverseSqrt.cpp b/doc/snippets/SelfAdjointEigenSolver_operatorInverseSqrt.cpp
new file mode 100644
index 000000000..114c65fb3
--- /dev/null
+++ b/doc/snippets/SelfAdjointEigenSolver_operatorInverseSqrt.cpp
@@ -0,0 +1,9 @@
+MatrixXd X = MatrixXd::Random(4,4);
+MatrixXd A = X * X.transpose();
+cout << "Here is a random positive-definite matrix, A:" << endl << A << endl << endl;
+
+SelfAdjointEigenSolver<MatrixXd> es(A);
+cout << "The inverse square root of A is: " << endl;
+cout << es.operatorInverseSqrt() << endl;
+cout << "We can also compute it with operatorSqrt() and inverse(). That yields: " << endl;
+cout << es.operatorSqrt().inverse() << endl;
diff --git a/doc/snippets/SelfAdjointEigenSolver_operatorSqrt.cpp b/doc/snippets/SelfAdjointEigenSolver_operatorSqrt.cpp
new file mode 100644
index 000000000..eeacca74b
--- /dev/null
+++ b/doc/snippets/SelfAdjointEigenSolver_operatorSqrt.cpp
@@ -0,0 +1,8 @@
+MatrixXd X = MatrixXd::Random(4,4);
+MatrixXd A = X * X.transpose();
+cout << "Here is a random positive-definite matrix, A:" << endl << A << endl << endl;
+
+SelfAdjointEigenSolver<MatrixXd> es(A);
+MatrixXd sqrtA = es.operatorSqrt();
+cout << "The square root of A is: " << endl << sqrtA << endl;
+cout << "If we square this, we get: " << endl << sqrtA*sqrtA << endl;