diff options
author | Jitse Niesen <jitse@maths.leeds.ac.uk> | 2009-09-08 14:51:34 +0100 |
---|---|---|
committer | Jitse Niesen <jitse@maths.leeds.ac.uk> | 2009-09-08 14:51:34 +0100 |
commit | 2a6db40f1064c71400bd0be35da440aa82591331 (patch) | |
tree | 0c3cd7a24bceb17309eeb0f42b3e3f03110f2e7a | |
parent | 220ff5413125e323ad454d325c81624549e9409c (diff) |
Re-factor matrix exponential.
Put all routines in a class. I think this is a cleaner design.
-rw-r--r-- | unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h | 465 |
1 files changed, 226 insertions, 239 deletions
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h b/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h index bf5b79955..36d13b7eb 100644 --- a/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +++ b/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h @@ -25,6 +25,10 @@ #ifndef EIGEN_MATRIX_EXPONENTIAL #define EIGEN_MATRIX_EXPONENTIAL +#ifdef _MSC_VER + template <typename Scalar> Scalar log2(Scalar v) { return std::log(v)/std::log(Scalar(2)); } +#endif + /** \brief Compute the matrix exponential. * * \param M matrix whose exponential is to be computed. @@ -61,260 +65,243 @@ template <typename Derived> EIGEN_STRONG_INLINE void ei_matrix_exponential(const MatrixBase<Derived> &M, typename MatrixBase<Derived>::PlainMatrixType* result); +/** \brief Class for computing the matrix exponential.*/ +template <typename MatrixType> +class MatrixExponential { -/** \internal \brief Internal helper functions for computing the - * matrix exponential. - */ -namespace MatrixExponentialInternal { + public: + + /** \brief Compute the matrix exponential. + * + * \param M matrix whose exponential is to be computed. + * \param result pointer to the matrix in which to store the result. + */ + MatrixExponential(const MatrixType &M, MatrixType *result); -#ifdef _MSC_VER - template <typename Scalar> Scalar log2(Scalar v) { return std::log(v)/std::log(Scalar(2)); } -#endif + private: + + // Prevent copying + MatrixExponential(const MatrixExponential&); + MatrixExponential& operator=(const MatrixExponential&); + + /** \brief Compute the (3,3)-Padé approximant to the exponential. + * + * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé + * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. + * + * \param A Argument of matrix exponential + */ + void pade3(const MatrixType &A); + + /** \brief Compute the (5,5)-Padé approximant to the exponential. + * + * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé + * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. + * + * \param A Argument of matrix exponential + */ + void pade5(const MatrixType &A); + + /** \brief Compute the (7,7)-Padé approximant to the exponential. + * + * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé + * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. + * + * \param A Argument of matrix exponential + */ + void pade7(const MatrixType &A); + + /** \brief Compute the (9,9)-Padé approximant to the exponential. + * + * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé + * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. + * + * \param A Argument of matrix exponential + */ + void pade9(const MatrixType &A); + + /** \brief Compute the (13,13)-Padé approximant to the exponential. + * + * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé + * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. + * + * \param A Argument of matrix exponential + */ + void pade13(const MatrixType &A); + + /** \brief Compute Padé approximant to the exponential. + * + * Computes \c m_U, \c m_V and \c m_squarings such that + * \f$ (V+U)(V-U)^{-1} \f$ is a Padé of + * \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$. The + * degree of the Padé approximant and the value of + * squarings are chosen such that the approximation error is no + * more than the round-off error. + * + * The argument of this function should correspond with the (real + * part of) the entries of \c m_M. It is used to select the + * correct implementation using overloading. + */ + void computeUV(double); + + /** \brief Compute Padé approximant to the exponential. + * + * \sa computeUV(double); + */ + void computeUV(float); - /** \internal \brief Compute the (3,3)-Padé approximant to - * the exponential. - * - * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé - * approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$. - * - * \param M Argument of matrix exponential - * \param Id Identity matrix of same size as M - * \param tmp Temporary storage, to be provided by the caller - * \param M2 Temporary storage, to be provided by the caller - * \param U Even-degree terms in numerator of Padé approximant - * \param V Odd-degree terms in numerator of Padé approximant - */ - template <typename MatrixType> - EIGEN_STRONG_INLINE void pade3(const MatrixType &M, const MatrixType& Id, MatrixType& tmp, - MatrixType& M2, MatrixType& U, MatrixType& V) - { - typedef typename ei_traits<MatrixType>::Scalar Scalar; - const Scalar b[] = {120., 60., 12., 1.}; - M2.noalias() = M * M; - tmp = b[3]*M2 + b[1]*Id; - U.noalias() = M * tmp; - V = b[2]*M2 + b[0]*Id; - } - - /** \internal \brief Compute the (5,5)-Padé approximant to - * the exponential. - * - * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé - * approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$. - * - * \param M Argument of matrix exponential - * \param Id Identity matrix of same size as M - * \param tmp Temporary storage, to be provided by the caller - * \param M2 Temporary storage, to be provided by the caller - * \param U Even-degree terms in numerator of Padé approximant - * \param V Odd-degree terms in numerator of Padé approximant - */ - template <typename MatrixType> - EIGEN_STRONG_INLINE void pade5(const MatrixType &M, const MatrixType& Id, MatrixType& tmp, - MatrixType& M2, MatrixType& U, MatrixType& V) - { - typedef typename ei_traits<MatrixType>::Scalar Scalar; - const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.}; - M2.noalias() = M * M; - MatrixType M4 = M2 * M2; - tmp = b[5]*M4 + b[3]*M2 + b[1]*Id; - U.noalias() = M * tmp; - V = b[4]*M4 + b[2]*M2 + b[0]*Id; - } - - /** \internal \brief Compute the (7,7)-Padé approximant to - * the exponential. - * - * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé - * approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$. - * - * \param M Argument of matrix exponential - * \param Id Identity matrix of same size as M - * \param tmp Temporary storage, to be provided by the caller - * \param M2 Temporary storage, to be provided by the caller - * \param U Even-degree terms in numerator of Padé approximant - * \param V Odd-degree terms in numerator of Padé approximant - */ - template <typename MatrixType> - EIGEN_STRONG_INLINE void pade7(const MatrixType &M, const MatrixType& Id, MatrixType& tmp, - MatrixType& M2, MatrixType& U, MatrixType& V) - { - typedef typename ei_traits<MatrixType>::Scalar Scalar; - const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.}; - M2.noalias() = M * M; - MatrixType M4 = M2 * M2; - MatrixType M6 = M4 * M2; - tmp = b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id; - U.noalias() = M * tmp; - V = b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id; - } - - /** \internal \brief Compute the (9,9)-Padé approximant to - * the exponential. - * - * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé - * approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$. - * - * \param M Argument of matrix exponential - * \param Id Identity matrix of same size as M - * \param tmp Temporary storage, to be provided by the caller - * \param M2 Temporary storage, to be provided by the caller - * \param U Even-degree terms in numerator of Padé approximant - * \param V Odd-degree terms in numerator of Padé approximant - */ - template <typename MatrixType> - EIGEN_STRONG_INLINE void pade9(const MatrixType &M, const MatrixType& Id, MatrixType& tmp, - MatrixType& M2, MatrixType& U, MatrixType& V) - { typedef typename ei_traits<MatrixType>::Scalar Scalar; - const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240., + typedef typename NumTraits<typename ei_traits<MatrixType>::Scalar>::Real RealScalar; + + /** \brief Pointer to matrix whose exponential is to be computed. */ + const MatrixType* m_M; + + /** \brief Even-degree terms in numerator of Padé approximant. */ + MatrixType m_U; + + /** \brief Odd-degree terms in numerator of Padé approximant. */ + MatrixType m_V; + + /** \brief Used for temporary storage. */ + MatrixType m_tmp1; + + /** \brief Used for temporary storage. */ + MatrixType m_tmp2; + + /** \brief Identity matrix of the same size as \c m_M. */ + MatrixType m_Id; + + /** \brief Number of squarings required in the last step. */ + int m_squarings; + + /** \brief L1 norm of m_M. */ + float m_l1norm; +}; + +template <typename MatrixType> +MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M, MatrixType *result) : + m_M(&M), + m_U(M.rows(),M.cols()), + m_V(M.rows(),M.cols()), + m_tmp1(M.rows(),M.cols()), + m_tmp2(M.rows(),M.cols()), + m_Id(MatrixType::Identity(M.rows(), M.cols())), + m_squarings(0), + m_l1norm(static_cast<float>(M.cwise().abs().colwise().sum().maxCoeff())) +{ + computeUV(RealScalar()); + m_tmp1 = m_U + m_V; // numerator of Pade approximant + m_tmp2 = -m_U + m_V; // denominator of Pade approximant + m_tmp2.partialLu().solve(m_tmp1, result); + for (int i=0; i<m_squarings; i++) + *result *= *result; // undo scaling by repeated squaring +} + +template <typename MatrixType> +EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A) +{ + const Scalar b[] = {120., 60., 12., 1.}; + m_tmp1.noalias() = A * A; + m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id; + m_U.noalias() = A * m_tmp2; + m_V = b[2]*m_tmp1 + b[0]*m_Id; +} + +template <typename MatrixType> +EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A) +{ + const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.}; + MatrixType A2 = A * A; + m_tmp1.noalias() = A2 * A2; + m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id; + m_U.noalias() = A * m_tmp2; + m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id; +} + +template <typename MatrixType> +EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A) +{ + const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.}; + MatrixType A2 = A * A; + MatrixType A4 = A2 * A2; + m_tmp1.noalias() = A4 * A2; + m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; + m_U.noalias() = A * m_tmp2; + m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; +} + +template <typename MatrixType> +EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A) +{ + const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240., 2162160., 110880., 3960., 90., 1.}; - M2.noalias() = M * M; - MatrixType M4 = M2 * M2; - MatrixType M6 = M4 * M2; - MatrixType M8 = M6 * M2; - tmp = b[9]*M8 + b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id; - U.noalias() = M * tmp; - V = b[8]*M8 + b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id; - } - - /** \internal \brief Compute the (13,13)-Padé approximant to - * the exponential. - * - * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé - * approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$. - * - * \param M Argument of matrix exponential - * \param Id Identity matrix of same size as M - * \param tmp Temporary storage, to be provided by the caller - * \param M2 Temporary storage, to be provided by the caller - * \param U Even-degree terms in numerator of Padé approximant - * \param V Odd-degree terms in numerator of Padé approximant - */ - template <typename MatrixType> - EIGEN_STRONG_INLINE void pade13(const MatrixType &M, const MatrixType& Id, MatrixType& tmp, - MatrixType& M2, MatrixType& U, MatrixType& V) - { - typedef typename ei_traits<MatrixType>::Scalar Scalar; - const Scalar b[] = {64764752532480000., 32382376266240000., 7771770303897600., + MatrixType A2 = A * A; + MatrixType A4 = A2 * A2; + MatrixType A6 = A4 * A2; + m_tmp1.noalias() = A6 * A2; + m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; + m_U.noalias() = A * m_tmp2; + m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; +} + +template <typename MatrixType> +EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A) +{ + const Scalar b[] = {64764752532480000., 32382376266240000., 7771770303897600., 1187353796428800., 129060195264000., 10559470521600., 670442572800., 33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.}; - M2.noalias() = M * M; - MatrixType M4 = M2 * M2; - MatrixType M6 = M4 * M2; - V = b[13]*M6 + b[11]*M4 + b[9]*M2; - tmp.noalias() = M6 * V; - tmp += b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id; - U.noalias() = M * tmp; - tmp = b[12]*M6 + b[10]*M4 + b[8]*M2; - V.noalias() = M6 * tmp; - V += b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id; - } - - /** \internal \brief Helper class for computing Padé - * approximants to the exponential. - */ - template <typename MatrixType, typename RealScalar = typename NumTraits<typename ei_traits<MatrixType>::Scalar>::Real> - struct computeUV_selector - { - /** \internal \brief Compute Padé approximant to the exponential. - * - * Computes \p U, \p V and \p squarings such that \f$ (V+U)(V-U)^{-1} \f$ - * is a Padé of \f$ \exp(2^{-\mbox{squarings}}M) \f$ - * around \f$ M = 0 \f$. The degree of the Padé - * approximant and the value of squarings are chosen such that - * the approximation error is no more than the round-off error. - * - * \param M Argument of matrix exponential - * \param Id Identity matrix of same size as M - * \param tmp1 Temporary storage, to be provided by the caller - * \param tmp2 Temporary storage, to be provided by the caller - * \param U Even-degree terms in numerator of Padé approximant - * \param V Odd-degree terms in numerator of Padé approximant - * \param l1norm L<sub>1</sub> norm of M - * \param squarings Pointer to integer containing number of times - * that the result needs to be squared to find the - * matrix exponential - */ - static void run(const MatrixType &M, const MatrixType& Id, MatrixType& tmp1, MatrixType& tmp2, - MatrixType& U, MatrixType& V, float l1norm, int* squarings); - }; - - template <typename MatrixType> - struct computeUV_selector<MatrixType, float> - { - static void run(const MatrixType &M, const MatrixType& Id, MatrixType& tmp1, MatrixType& tmp2, - MatrixType& U, MatrixType& V, float l1norm, int* squarings) - { - *squarings = 0; - if (l1norm < 4.258730016922831e-001) { - pade3(M, Id, tmp1, tmp2, U, V); - } else if (l1norm < 1.880152677804762e+000) { - pade5(M, Id, tmp1, tmp2, U, V); - } else { - const float maxnorm = 3.925724783138660f; - *squarings = std::max(0, (int)ceil(log2(l1norm / maxnorm))); - MatrixType A = M / std::pow(typename ei_traits<MatrixType>::Scalar(2), *squarings); - pade7(A, Id, tmp1, tmp2, U, V); - } - } - }; - - template <typename MatrixType> - struct computeUV_selector<MatrixType, double> - { - static void run(const MatrixType &M, const MatrixType& Id, MatrixType& tmp1, MatrixType& tmp2, - MatrixType& U, MatrixType& V, float l1norm, int* squarings) - { - *squarings = 0; - if (l1norm < 1.495585217958292e-002) { - pade3(M, Id, tmp1, tmp2, U, V); - } else if (l1norm < 2.539398330063230e-001) { - pade5(M, Id, tmp1, tmp2, U, V); - } else if (l1norm < 9.504178996162932e-001) { - pade7(M, Id, tmp1, tmp2, U, V); - } else if (l1norm < 2.097847961257068e+000) { - pade9(M, Id, tmp1, tmp2, U, V); - } else { - const double maxnorm = 5.371920351148152; - *squarings = std::max(0, (int)ceil(log2(l1norm / maxnorm))); - MatrixType A = M / std::pow(typename ei_traits<MatrixType>::Scalar(2), *squarings); - pade13(A, Id, tmp1, tmp2, U, V); - } - } - }; - - /** \internal \brief Compute the matrix exponential. - * - * \param M matrix whose exponential is to be computed. - * \param result pointer to the matrix in which to store the result. - */ - template <typename MatrixType> - void compute(const MatrixType &M, MatrixType* result) - { - MatrixType num(M.rows(), M.cols()); - MatrixType den(M.rows(), M.cols()); - MatrixType U(M.rows(), M.cols()); - MatrixType V(M.rows(), M.cols()); - MatrixType Id = MatrixType::Identity(M.rows(), M.cols()); - float l1norm = static_cast<float>(M.cwise().abs().colwise().sum().maxCoeff()); - int squarings; - computeUV_selector<MatrixType>::run(M, Id, num, den, U, V, l1norm, &squarings); - num = U + V; // numerator of Pade approximant - den = -U + V; // denominator of Pade approximant - den.partialLu().solve(num, result); - for (int i=0; i<squarings; i++) - *result *= *result; // undo scaling by repeated squaring + MatrixType A2 = A * A; + MatrixType A4 = A2 * A2; + m_tmp1.noalias() = A4 * A2; + m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2; // used for temporary storage + m_tmp2.noalias() = m_tmp1 * m_V; + m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; + m_U.noalias() = A * m_tmp2; + m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2; + m_V.noalias() = m_tmp1 * m_tmp2; + m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; +} + +template <typename MatrixType> +void MatrixExponential<MatrixType>::computeUV(float) +{ + if (m_l1norm < 4.258730016922831e-001) { + pade3(*m_M); + } else if (m_l1norm < 1.880152677804762e+000) { + pade5(*m_M); + } else { + const float maxnorm = 3.925724783138660f; + m_squarings = std::max(0, (int)ceil(log2(m_l1norm / maxnorm))); + MatrixType A = *m_M / std::pow(Scalar(2), m_squarings); + pade7(A); } +} -} // end of namespace MatrixExponentialInternal +template <typename MatrixType> +void MatrixExponential<MatrixType>::computeUV(double) +{ + if (m_l1norm < 1.495585217958292e-002) { + pade3(*m_M); + } else if (m_l1norm < 2.539398330063230e-001) { + pade5(*m_M); + } else if (m_l1norm < 9.504178996162932e-001) { + pade7(*m_M); + } else if (m_l1norm < 2.097847961257068e+000) { + pade9(*m_M); + } else { + const double maxnorm = 5.371920351148152; + m_squarings = std::max(0, (int)ceil(log2(m_l1norm / maxnorm))); + MatrixType A = *m_M / std::pow(Scalar(2), m_squarings); + pade13(A); + } +} template <typename Derived> EIGEN_STRONG_INLINE void ei_matrix_exponential(const MatrixBase<Derived> &M, typename MatrixBase<Derived>::PlainMatrixType* result) { ei_assert(M.rows() == M.cols()); - MatrixExponentialInternal::compute(M.eval(), result); + MatrixExponential<typename MatrixBase<Derived>::PlainMatrixType>(M, result); } #endif // EIGEN_MATRIX_EXPONENTIAL |