aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2009-09-08 14:51:34 +0100
committerGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2009-09-08 14:51:34 +0100
commit2a6db40f1064c71400bd0be35da440aa82591331 (patch)
tree0c3cd7a24bceb17309eeb0f42b3e3f03110f2e7a
parent220ff5413125e323ad454d325c81624549e9409c (diff)
Re-factor matrix exponential.
Put all routines in a class. I think this is a cleaner design.
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h465
1 files changed, 226 insertions, 239 deletions
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h b/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
index bf5b79955..36d13b7eb 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
@@ -25,6 +25,10 @@
#ifndef EIGEN_MATRIX_EXPONENTIAL
#define EIGEN_MATRIX_EXPONENTIAL
+#ifdef _MSC_VER
+ template <typename Scalar> Scalar log2(Scalar v) { return std::log(v)/std::log(Scalar(2)); }
+#endif
+
/** \brief Compute the matrix exponential.
*
* \param M matrix whose exponential is to be computed.
@@ -61,260 +65,243 @@ template <typename Derived>
EIGEN_STRONG_INLINE void ei_matrix_exponential(const MatrixBase<Derived> &M,
typename MatrixBase<Derived>::PlainMatrixType* result);
+/** \brief Class for computing the matrix exponential.*/
+template <typename MatrixType>
+class MatrixExponential {
-/** \internal \brief Internal helper functions for computing the
- * matrix exponential.
- */
-namespace MatrixExponentialInternal {
+ public:
+
+ /** \brief Compute the matrix exponential.
+ *
+ * \param M matrix whose exponential is to be computed.
+ * \param result pointer to the matrix in which to store the result.
+ */
+ MatrixExponential(const MatrixType &M, MatrixType *result);
-#ifdef _MSC_VER
- template <typename Scalar> Scalar log2(Scalar v) { return std::log(v)/std::log(Scalar(2)); }
-#endif
+ private:
+
+ // Prevent copying
+ MatrixExponential(const MatrixExponential&);
+ MatrixExponential& operator=(const MatrixExponential&);
+
+ /** \brief Compute the (3,3)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ *
+ * \param A Argument of matrix exponential
+ */
+ void pade3(const MatrixType &A);
+
+ /** \brief Compute the (5,5)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ *
+ * \param A Argument of matrix exponential
+ */
+ void pade5(const MatrixType &A);
+
+ /** \brief Compute the (7,7)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ *
+ * \param A Argument of matrix exponential
+ */
+ void pade7(const MatrixType &A);
+
+ /** \brief Compute the (9,9)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ *
+ * \param A Argument of matrix exponential
+ */
+ void pade9(const MatrixType &A);
+
+ /** \brief Compute the (13,13)-Pad&eacute; approximant to the exponential.
+ *
+ * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
+ * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
+ *
+ * \param A Argument of matrix exponential
+ */
+ void pade13(const MatrixType &A);
+
+ /** \brief Compute Pad&eacute; approximant to the exponential.
+ *
+ * Computes \c m_U, \c m_V and \c m_squarings such that
+ * \f$ (V+U)(V-U)^{-1} \f$ is a Pad&eacute; of
+ * \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$. The
+ * degree of the Pad&eacute; approximant and the value of
+ * squarings are chosen such that the approximation error is no
+ * more than the round-off error.
+ *
+ * The argument of this function should correspond with the (real
+ * part of) the entries of \c m_M. It is used to select the
+ * correct implementation using overloading.
+ */
+ void computeUV(double);
+
+ /** \brief Compute Pad&eacute; approximant to the exponential.
+ *
+ * \sa computeUV(double);
+ */
+ void computeUV(float);
- /** \internal \brief Compute the (3,3)-Pad&eacute; approximant to
- * the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$.
- *
- * \param M Argument of matrix exponential
- * \param Id Identity matrix of same size as M
- * \param tmp Temporary storage, to be provided by the caller
- * \param M2 Temporary storage, to be provided by the caller
- * \param U Even-degree terms in numerator of Pad&eacute; approximant
- * \param V Odd-degree terms in numerator of Pad&eacute; approximant
- */
- template <typename MatrixType>
- EIGEN_STRONG_INLINE void pade3(const MatrixType &M, const MatrixType& Id, MatrixType& tmp,
- MatrixType& M2, MatrixType& U, MatrixType& V)
- {
- typedef typename ei_traits<MatrixType>::Scalar Scalar;
- const Scalar b[] = {120., 60., 12., 1.};
- M2.noalias() = M * M;
- tmp = b[3]*M2 + b[1]*Id;
- U.noalias() = M * tmp;
- V = b[2]*M2 + b[0]*Id;
- }
-
- /** \internal \brief Compute the (5,5)-Pad&eacute; approximant to
- * the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$.
- *
- * \param M Argument of matrix exponential
- * \param Id Identity matrix of same size as M
- * \param tmp Temporary storage, to be provided by the caller
- * \param M2 Temporary storage, to be provided by the caller
- * \param U Even-degree terms in numerator of Pad&eacute; approximant
- * \param V Odd-degree terms in numerator of Pad&eacute; approximant
- */
- template <typename MatrixType>
- EIGEN_STRONG_INLINE void pade5(const MatrixType &M, const MatrixType& Id, MatrixType& tmp,
- MatrixType& M2, MatrixType& U, MatrixType& V)
- {
- typedef typename ei_traits<MatrixType>::Scalar Scalar;
- const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.};
- M2.noalias() = M * M;
- MatrixType M4 = M2 * M2;
- tmp = b[5]*M4 + b[3]*M2 + b[1]*Id;
- U.noalias() = M * tmp;
- V = b[4]*M4 + b[2]*M2 + b[0]*Id;
- }
-
- /** \internal \brief Compute the (7,7)-Pad&eacute; approximant to
- * the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$.
- *
- * \param M Argument of matrix exponential
- * \param Id Identity matrix of same size as M
- * \param tmp Temporary storage, to be provided by the caller
- * \param M2 Temporary storage, to be provided by the caller
- * \param U Even-degree terms in numerator of Pad&eacute; approximant
- * \param V Odd-degree terms in numerator of Pad&eacute; approximant
- */
- template <typename MatrixType>
- EIGEN_STRONG_INLINE void pade7(const MatrixType &M, const MatrixType& Id, MatrixType& tmp,
- MatrixType& M2, MatrixType& U, MatrixType& V)
- {
- typedef typename ei_traits<MatrixType>::Scalar Scalar;
- const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
- M2.noalias() = M * M;
- MatrixType M4 = M2 * M2;
- MatrixType M6 = M4 * M2;
- tmp = b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id;
- U.noalias() = M * tmp;
- V = b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id;
- }
-
- /** \internal \brief Compute the (9,9)-Pad&eacute; approximant to
- * the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$.
- *
- * \param M Argument of matrix exponential
- * \param Id Identity matrix of same size as M
- * \param tmp Temporary storage, to be provided by the caller
- * \param M2 Temporary storage, to be provided by the caller
- * \param U Even-degree terms in numerator of Pad&eacute; approximant
- * \param V Odd-degree terms in numerator of Pad&eacute; approximant
- */
- template <typename MatrixType>
- EIGEN_STRONG_INLINE void pade9(const MatrixType &M, const MatrixType& Id, MatrixType& tmp,
- MatrixType& M2, MatrixType& U, MatrixType& V)
- {
typedef typename ei_traits<MatrixType>::Scalar Scalar;
- const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
+ typedef typename NumTraits<typename ei_traits<MatrixType>::Scalar>::Real RealScalar;
+
+ /** \brief Pointer to matrix whose exponential is to be computed. */
+ const MatrixType* m_M;
+
+ /** \brief Even-degree terms in numerator of Pad&eacute; approximant. */
+ MatrixType m_U;
+
+ /** \brief Odd-degree terms in numerator of Pad&eacute; approximant. */
+ MatrixType m_V;
+
+ /** \brief Used for temporary storage. */
+ MatrixType m_tmp1;
+
+ /** \brief Used for temporary storage. */
+ MatrixType m_tmp2;
+
+ /** \brief Identity matrix of the same size as \c m_M. */
+ MatrixType m_Id;
+
+ /** \brief Number of squarings required in the last step. */
+ int m_squarings;
+
+ /** \brief L1 norm of m_M. */
+ float m_l1norm;
+};
+
+template <typename MatrixType>
+MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M, MatrixType *result) :
+ m_M(&M),
+ m_U(M.rows(),M.cols()),
+ m_V(M.rows(),M.cols()),
+ m_tmp1(M.rows(),M.cols()),
+ m_tmp2(M.rows(),M.cols()),
+ m_Id(MatrixType::Identity(M.rows(), M.cols())),
+ m_squarings(0),
+ m_l1norm(static_cast<float>(M.cwise().abs().colwise().sum().maxCoeff()))
+{
+ computeUV(RealScalar());
+ m_tmp1 = m_U + m_V; // numerator of Pade approximant
+ m_tmp2 = -m_U + m_V; // denominator of Pade approximant
+ m_tmp2.partialLu().solve(m_tmp1, result);
+ for (int i=0; i<m_squarings; i++)
+ *result *= *result; // undo scaling by repeated squaring
+}
+
+template <typename MatrixType>
+EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A)
+{
+ const Scalar b[] = {120., 60., 12., 1.};
+ m_tmp1.noalias() = A * A;
+ m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id;
+ m_U.noalias() = A * m_tmp2;
+ m_V = b[2]*m_tmp1 + b[0]*m_Id;
+}
+
+template <typename MatrixType>
+EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A)
+{
+ const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.};
+ MatrixType A2 = A * A;
+ m_tmp1.noalias() = A2 * A2;
+ m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id;
+ m_U.noalias() = A * m_tmp2;
+ m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id;
+}
+
+template <typename MatrixType>
+EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A)
+{
+ const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
+ MatrixType A2 = A * A;
+ MatrixType A4 = A2 * A2;
+ m_tmp1.noalias() = A4 * A2;
+ m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
+ m_U.noalias() = A * m_tmp2;
+ m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
+}
+
+template <typename MatrixType>
+EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A)
+{
+ const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
2162160., 110880., 3960., 90., 1.};
- M2.noalias() = M * M;
- MatrixType M4 = M2 * M2;
- MatrixType M6 = M4 * M2;
- MatrixType M8 = M6 * M2;
- tmp = b[9]*M8 + b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id;
- U.noalias() = M * tmp;
- V = b[8]*M8 + b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id;
- }
-
- /** \internal \brief Compute the (13,13)-Pad&eacute; approximant to
- * the exponential.
- *
- * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
- * approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$.
- *
- * \param M Argument of matrix exponential
- * \param Id Identity matrix of same size as M
- * \param tmp Temporary storage, to be provided by the caller
- * \param M2 Temporary storage, to be provided by the caller
- * \param U Even-degree terms in numerator of Pad&eacute; approximant
- * \param V Odd-degree terms in numerator of Pad&eacute; approximant
- */
- template <typename MatrixType>
- EIGEN_STRONG_INLINE void pade13(const MatrixType &M, const MatrixType& Id, MatrixType& tmp,
- MatrixType& M2, MatrixType& U, MatrixType& V)
- {
- typedef typename ei_traits<MatrixType>::Scalar Scalar;
- const Scalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
+ MatrixType A2 = A * A;
+ MatrixType A4 = A2 * A2;
+ MatrixType A6 = A4 * A2;
+ m_tmp1.noalias() = A6 * A2;
+ m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
+ m_U.noalias() = A * m_tmp2;
+ m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
+}
+
+template <typename MatrixType>
+EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A)
+{
+ const Scalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
1187353796428800., 129060195264000., 10559470521600., 670442572800.,
33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
- M2.noalias() = M * M;
- MatrixType M4 = M2 * M2;
- MatrixType M6 = M4 * M2;
- V = b[13]*M6 + b[11]*M4 + b[9]*M2;
- tmp.noalias() = M6 * V;
- tmp += b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id;
- U.noalias() = M * tmp;
- tmp = b[12]*M6 + b[10]*M4 + b[8]*M2;
- V.noalias() = M6 * tmp;
- V += b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id;
- }
-
- /** \internal \brief Helper class for computing Pad&eacute;
- * approximants to the exponential.
- */
- template <typename MatrixType, typename RealScalar = typename NumTraits<typename ei_traits<MatrixType>::Scalar>::Real>
- struct computeUV_selector
- {
- /** \internal \brief Compute Pad&eacute; approximant to the exponential.
- *
- * Computes \p U, \p V and \p squarings such that \f$ (V+U)(V-U)^{-1} \f$
- * is a Pad&eacute; of \f$ \exp(2^{-\mbox{squarings}}M) \f$
- * around \f$ M = 0 \f$. The degree of the Pad&eacute;
- * approximant and the value of squarings are chosen such that
- * the approximation error is no more than the round-off error.
- *
- * \param M Argument of matrix exponential
- * \param Id Identity matrix of same size as M
- * \param tmp1 Temporary storage, to be provided by the caller
- * \param tmp2 Temporary storage, to be provided by the caller
- * \param U Even-degree terms in numerator of Pad&eacute; approximant
- * \param V Odd-degree terms in numerator of Pad&eacute; approximant
- * \param l1norm L<sub>1</sub> norm of M
- * \param squarings Pointer to integer containing number of times
- * that the result needs to be squared to find the
- * matrix exponential
- */
- static void run(const MatrixType &M, const MatrixType& Id, MatrixType& tmp1, MatrixType& tmp2,
- MatrixType& U, MatrixType& V, float l1norm, int* squarings);
- };
-
- template <typename MatrixType>
- struct computeUV_selector<MatrixType, float>
- {
- static void run(const MatrixType &M, const MatrixType& Id, MatrixType& tmp1, MatrixType& tmp2,
- MatrixType& U, MatrixType& V, float l1norm, int* squarings)
- {
- *squarings = 0;
- if (l1norm < 4.258730016922831e-001) {
- pade3(M, Id, tmp1, tmp2, U, V);
- } else if (l1norm < 1.880152677804762e+000) {
- pade5(M, Id, tmp1, tmp2, U, V);
- } else {
- const float maxnorm = 3.925724783138660f;
- *squarings = std::max(0, (int)ceil(log2(l1norm / maxnorm)));
- MatrixType A = M / std::pow(typename ei_traits<MatrixType>::Scalar(2), *squarings);
- pade7(A, Id, tmp1, tmp2, U, V);
- }
- }
- };
-
- template <typename MatrixType>
- struct computeUV_selector<MatrixType, double>
- {
- static void run(const MatrixType &M, const MatrixType& Id, MatrixType& tmp1, MatrixType& tmp2,
- MatrixType& U, MatrixType& V, float l1norm, int* squarings)
- {
- *squarings = 0;
- if (l1norm < 1.495585217958292e-002) {
- pade3(M, Id, tmp1, tmp2, U, V);
- } else if (l1norm < 2.539398330063230e-001) {
- pade5(M, Id, tmp1, tmp2, U, V);
- } else if (l1norm < 9.504178996162932e-001) {
- pade7(M, Id, tmp1, tmp2, U, V);
- } else if (l1norm < 2.097847961257068e+000) {
- pade9(M, Id, tmp1, tmp2, U, V);
- } else {
- const double maxnorm = 5.371920351148152;
- *squarings = std::max(0, (int)ceil(log2(l1norm / maxnorm)));
- MatrixType A = M / std::pow(typename ei_traits<MatrixType>::Scalar(2), *squarings);
- pade13(A, Id, tmp1, tmp2, U, V);
- }
- }
- };
-
- /** \internal \brief Compute the matrix exponential.
- *
- * \param M matrix whose exponential is to be computed.
- * \param result pointer to the matrix in which to store the result.
- */
- template <typename MatrixType>
- void compute(const MatrixType &M, MatrixType* result)
- {
- MatrixType num(M.rows(), M.cols());
- MatrixType den(M.rows(), M.cols());
- MatrixType U(M.rows(), M.cols());
- MatrixType V(M.rows(), M.cols());
- MatrixType Id = MatrixType::Identity(M.rows(), M.cols());
- float l1norm = static_cast<float>(M.cwise().abs().colwise().sum().maxCoeff());
- int squarings;
- computeUV_selector<MatrixType>::run(M, Id, num, den, U, V, l1norm, &squarings);
- num = U + V; // numerator of Pade approximant
- den = -U + V; // denominator of Pade approximant
- den.partialLu().solve(num, result);
- for (int i=0; i<squarings; i++)
- *result *= *result; // undo scaling by repeated squaring
+ MatrixType A2 = A * A;
+ MatrixType A4 = A2 * A2;
+ m_tmp1.noalias() = A4 * A2;
+ m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2; // used for temporary storage
+ m_tmp2.noalias() = m_tmp1 * m_V;
+ m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
+ m_U.noalias() = A * m_tmp2;
+ m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2;
+ m_V.noalias() = m_tmp1 * m_tmp2;
+ m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
+}
+
+template <typename MatrixType>
+void MatrixExponential<MatrixType>::computeUV(float)
+{
+ if (m_l1norm < 4.258730016922831e-001) {
+ pade3(*m_M);
+ } else if (m_l1norm < 1.880152677804762e+000) {
+ pade5(*m_M);
+ } else {
+ const float maxnorm = 3.925724783138660f;
+ m_squarings = std::max(0, (int)ceil(log2(m_l1norm / maxnorm)));
+ MatrixType A = *m_M / std::pow(Scalar(2), m_squarings);
+ pade7(A);
}
+}
-} // end of namespace MatrixExponentialInternal
+template <typename MatrixType>
+void MatrixExponential<MatrixType>::computeUV(double)
+{
+ if (m_l1norm < 1.495585217958292e-002) {
+ pade3(*m_M);
+ } else if (m_l1norm < 2.539398330063230e-001) {
+ pade5(*m_M);
+ } else if (m_l1norm < 9.504178996162932e-001) {
+ pade7(*m_M);
+ } else if (m_l1norm < 2.097847961257068e+000) {
+ pade9(*m_M);
+ } else {
+ const double maxnorm = 5.371920351148152;
+ m_squarings = std::max(0, (int)ceil(log2(m_l1norm / maxnorm)));
+ MatrixType A = *m_M / std::pow(Scalar(2), m_squarings);
+ pade13(A);
+ }
+}
template <typename Derived>
EIGEN_STRONG_INLINE void ei_matrix_exponential(const MatrixBase<Derived> &M,
typename MatrixBase<Derived>::PlainMatrixType* result)
{
ei_assert(M.rows() == M.cols());
- MatrixExponentialInternal::compute(M.eval(), result);
+ MatrixExponential<typename MatrixBase<Derived>::PlainMatrixType>(M, result);
}
#endif // EIGEN_MATRIX_EXPONENTIAL