aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2008-08-23 15:14:20 +0000
committerGravatar Gael Guennebaud <g.gael@free.fr>2008-08-23 15:14:20 +0000
commit2120fed849e1d00724694a2c8a041ec5561c750b (patch)
tree984bb801927df2aa12cf866fc76465466bd40eb6
parent312013a08911816e287425d598e55e5d356e0ac5 (diff)
* bug fixes in: Dot, generalized eigen problem, singular matrix detetection in Cholesky
* fix all numerical instabilies in the unit tests, now all tests can be run 2000 times with almost zero failures.
-rw-r--r--Eigen/src/Cholesky/Cholesky.h5
-rw-r--r--Eigen/src/Cholesky/CholeskyWithoutSquareRoot.h3
-rw-r--r--Eigen/src/Core/Dot.h4
-rw-r--r--Eigen/src/Geometry/AngleAxis.h2
-rw-r--r--Eigen/src/QR/SelfAdjointEigenSolver.h27
-rw-r--r--cmake/FindGSL.cmake159
-rw-r--r--test/CMakeLists.txt8
-rw-r--r--test/adjoint.cpp50
-rw-r--r--test/array.cpp12
-rw-r--r--test/cholesky.cpp89
-rw-r--r--test/eigensolver.cpp81
-rw-r--r--test/geometry.cpp13
-rw-r--r--test/gsl_helper.h190
-rw-r--r--test/inverse.cpp10
-rw-r--r--test/linearstructure.cpp10
-rw-r--r--test/lu.cpp12
-rw-r--r--test/product_small.cpp1
-rwxr-xr-xtest/runtest.sh2
-rw-r--r--test/svd.cpp19
-rw-r--r--test/triangular.cpp38
20 files changed, 632 insertions, 103 deletions
diff --git a/Eigen/src/Cholesky/Cholesky.h b/Eigen/src/Cholesky/Cholesky.h
index af5dfb430..891a86a79 100644
--- a/Eigen/src/Cholesky/Cholesky.h
+++ b/Eigen/src/Cholesky/Cholesky.h
@@ -93,17 +93,18 @@ void Cholesky<MatrixType>::compute(const MatrixType& a)
assert(a.rows()==a.cols());
const int size = a.rows();
m_matrix.resize(size, size);
+ const RealScalar eps = ei_sqrt(precision<Scalar>());
RealScalar x;
x = ei_real(a.coeff(0,0));
- m_isPositiveDefinite = x > precision<Scalar>() && ei_isMuchSmallerThan(ei_imag(a.coeff(0,0)), RealScalar(1));
+ m_isPositiveDefinite = x > eps && ei_isMuchSmallerThan(ei_imag(a.coeff(0,0)), RealScalar(1));
m_matrix.coeffRef(0,0) = ei_sqrt(x);
m_matrix.col(0).end(size-1) = a.row(0).end(size-1).adjoint() / ei_real(m_matrix.coeff(0,0));
for (int j = 1; j < size; ++j)
{
Scalar tmp = ei_real(a.coeff(j,j)) - m_matrix.row(j).start(j).norm2();
x = ei_real(tmp);
- if (x < precision<Scalar>() || (!ei_isMuchSmallerThan(ei_imag(tmp), RealScalar(1))))
+ if (x < eps || (!ei_isMuchSmallerThan(ei_imag(tmp), RealScalar(1))))
{
m_isPositiveDefinite = false;
return;
diff --git a/Eigen/src/Cholesky/CholeskyWithoutSquareRoot.h b/Eigen/src/Cholesky/CholeskyWithoutSquareRoot.h
index b00dc0a11..db33b04f9 100644
--- a/Eigen/src/Cholesky/CholeskyWithoutSquareRoot.h
+++ b/Eigen/src/Cholesky/CholeskyWithoutSquareRoot.h
@@ -94,6 +94,7 @@ void CholeskyWithoutSquareRoot<MatrixType>::compute(const MatrixType& a)
const int size = a.rows();
m_matrix.resize(size, size);
m_isPositiveDefinite = true;
+ const RealScalar eps = ei_sqrt(precision<Scalar>());
// Let's preallocate a temporay vector to evaluate the matrix-vector product into it.
// Unlike the standard Cholesky decomposition, here we cannot evaluate it to the destination
@@ -111,7 +112,7 @@ void CholeskyWithoutSquareRoot<MatrixType>::compute(const MatrixType& a)
RealScalar tmp = ei_real(a.coeff(j,j) - (m_matrix.row(j).start(j) * m_matrix.col(j).start(j).conjugate()).coeff(0,0));
m_matrix.coeffRef(j,j) = tmp;
- if (ei_isMuchSmallerThan(tmp,RealScalar(1)))
+ if (tmp < eps)
{
m_isPositiveDefinite = false;
return;
diff --git a/Eigen/src/Core/Dot.h b/Eigen/src/Core/Dot.h
index eb25185b6..a3e1229f8 100644
--- a/Eigen/src/Core/Dot.h
+++ b/Eigen/src/Core/Dot.h
@@ -229,9 +229,9 @@ struct ei_dot_impl<Derived1, Derived2, LinearVectorization, CompleteUnrolling>
};
static Scalar run(const Derived1& v1, const Derived2& v2)
{
- Scalar res = ei_predux(ei_dot_vec_unroller<Derived1, Derived2, 0, VectorizationSize>::run(v1, v2));
+ Scalar res = ei_predux(ei_dot_vec_unroller<Derived1, Derived2, 0, VectorizationSize>::run(v1, v2));
if (VectorizationSize != Size)
- res += ei_dot_novec_unroller<Derived1, Derived2, VectorizationSize, Size>::run(v1, v2);
+ res += ei_dot_novec_unroller<Derived1, Derived2, VectorizationSize, Size-VectorizationSize>::run(v1, v2);
return res;
}
};
diff --git a/Eigen/src/Geometry/AngleAxis.h b/Eigen/src/Geometry/AngleAxis.h
index 733f273d7..cd18bfdec 100644
--- a/Eigen/src/Geometry/AngleAxis.h
+++ b/Eigen/src/Geometry/AngleAxis.h
@@ -131,7 +131,7 @@ template<typename Scalar>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionType& q)
{
Scalar n2 = q.vec().norm2();
- if (ei_isMuchSmallerThan(n2,Scalar(1)))
+ if (n2 < precision<Scalar>()*precision<Scalar>())
{
m_angle = 0;
m_axis << 1, 0, 0;
diff --git a/Eigen/src/QR/SelfAdjointEigenSolver.h b/Eigen/src/QR/SelfAdjointEigenSolver.h
index f8bd7bfad..765af7d21 100644
--- a/Eigen/src/QR/SelfAdjointEigenSolver.h
+++ b/Eigen/src/QR/SelfAdjointEigenSolver.h
@@ -225,22 +225,33 @@ void SelfAdjointEigenSolver<MatrixType>::
compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors)
{
ei_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows());
-
- // Compute the cholesky decomposition of matB = U'U
+
+ // Compute the cholesky decomposition of matB = L L'
Cholesky<MatrixType> cholB(matB);
- // compute C = inv(U') A inv(U)
- MatrixType matC = cholB.matrixL().solveTriangular(matA);
- // FIXME since we currently do not support A * inv(U),
- // let's do (inv(U') A')' :
- matC = (cholB.matrixL().solveTriangular(matC.adjoint())).adjoint();
+ // compute C = inv(L) A inv(L')
+ MatrixType matC = matA;
+ cholB.matrixL().solveTriangularInPlace(matC);
+ // FIXME since we currently do not support A * inv(L'), let's do (inv(L) A')' :
+ matC = matC.adjoint().eval();
+ cholB.matrixL().template marked<Lower>().solveTriangularInPlace(matC);
+ matC = matC.adjoint().eval();
+ // this version works too:
+// matC = matC.transpose();
+// cholB.matrixL().conjugate().template marked<Lower>().solveTriangularInPlace(matC);
+// matC = matC.transpose();
+ // FIXME: this should work: (currently it only does for small matrices)
+// Transpose<MatrixType> trMatC(matC);
+// cholB.matrixL().conjugate().eval().template marked<Lower>().solveTriangularInPlace(trMatC);
compute(matC, computeEigenvectors);
if (computeEigenvectors)
{
// transform back the eigen vectors: evecs = inv(U) * evecs
- m_eivec = cholB.matrixL().adjoint().template marked<Upper>().solveTriangular(m_eivec);
+ cholB.matrixL().adjoint().template marked<Upper>().solveTriangularInPlace(m_eivec);
+ for (int i=0; i<m_eivec.cols(); ++i)
+ m_eivec.col(i) = m_eivec.col(i).normalized();
}
}
diff --git a/cmake/FindGSL.cmake b/cmake/FindGSL.cmake
new file mode 100644
index 000000000..57509f774
--- /dev/null
+++ b/cmake/FindGSL.cmake
@@ -0,0 +1,159 @@
+# Try to find gnu scientific library GSL
+# See
+# http://www.gnu.org/software/gsl/ and
+# http://gnuwin32.sourceforge.net/packages/gsl.htm
+#
+# Once run this will define:
+#
+# GSL_FOUND = system has GSL lib
+#
+# GSL_LIBRARIES = full path to the libraries
+# on Unix/Linux with additional linker flags from "gsl-config --libs"
+#
+# CMAKE_GSL_CXX_FLAGS = Unix compiler flags for GSL, essentially "`gsl-config --cxxflags`"
+#
+# GSL_INCLUDE_DIR = where to find headers
+#
+# GSL_LINK_DIRECTORIES = link directories, useful for rpath on Unix
+# GSL_EXE_LINKER_FLAGS = rpath on Unix
+#
+# Felix Woelk 07/2004
+# Jan Woetzel
+#
+# www.mip.informatik.uni-kiel.de
+# --------------------------------
+
+IF(WIN32)
+ # JW tested with gsl-1.8, Windows XP, MSVS 7.1
+ SET(GSL_POSSIBLE_ROOT_DIRS
+ ${GSL_ROOT_DIR}
+ $ENV{GSL_ROOT_DIR}
+ ${GSL_DIR}
+ ${GSL_HOME}
+ $ENV{GSL_DIR}
+ $ENV{GSL_HOME}
+ $ENV{EXTRA}
+ "C:/Program Files/GnuWin32"
+ )
+ FIND_PATH(GSL_INCLUDE_DIR
+ NAMES gsl/gsl_cdf.h gsl/gsl_randist.h
+ PATHS ${GSL_POSSIBLE_ROOT_DIRS}
+ PATH_SUFFIXES include
+ DOC "GSL header include dir"
+ )
+
+ FIND_LIBRARY(GSL_GSL_LIBRARY
+ NAMES libgsl.dll.a gsl libgsl
+ PATHS ${GSL_POSSIBLE_ROOT_DIRS}
+ PATH_SUFFIXES lib
+ DOC "GSL library" )
+
+ if(NOT GSL_GSL_LIBRARY)
+ FIND_FILE(GSL_GSL_LIBRARY
+ NAMES libgsl.dll.a
+ PATHS ${GSL_POSSIBLE_ROOT_DIRS}
+ PATH_SUFFIXES lib
+ DOC "GSL library")
+ endif(NOT GSL_GSL_LIBRARY)
+
+ FIND_LIBRARY(GSL_GSLCBLAS_LIBRARY
+ NAMES libgslcblas.dll.a gslcblas libgslcblas
+ PATHS ${GSL_POSSIBLE_ROOT_DIRS}
+ PATH_SUFFIXES lib
+ DOC "GSL cblas library dir" )
+
+ if(NOT GSL_GSLCBLAS_LIBRARY)
+ FIND_FILE(GSL_GSLCBLAS_LIBRARY
+ NAMES libgslcblas.dll.a
+ PATHS ${GSL_POSSIBLE_ROOT_DIRS}
+ PATH_SUFFIXES lib
+ DOC "GSL library")
+ endif(NOT GSL_GSLCBLAS_LIBRARY)
+
+ SET(GSL_LIBRARIES ${GSL_GSL_LIBRARY})
+
+ #MESSAGE("DBG\n"
+ # "GSL_GSL_LIBRARY=${GSL_GSL_LIBRARY}\n"
+ # "GSL_GSLCBLAS_LIBRARY=${GSL_GSLCBLAS_LIBRARY}\n"
+ # "GSL_LIBRARIES=${GSL_LIBRARIES}")
+
+
+ELSE(WIN32)
+
+ IF(UNIX)
+ SET(GSL_CONFIG_PREFER_PATH
+ "$ENV{GSL_DIR}/bin"
+ "$ENV{GSL_DIR}"
+ "$ENV{GSL_HOME}/bin"
+ "$ENV{GSL_HOME}"
+ CACHE STRING "preferred path to GSL (gsl-config)")
+ FIND_PROGRAM(GSL_CONFIG gsl-config
+ ${GSL_CONFIG_PREFER_PATH}
+ /usr/bin/
+ )
+ # MESSAGE("DBG GSL_CONFIG ${GSL_CONFIG}")
+
+ IF (GSL_CONFIG)
+ # set CXXFLAGS to be fed into CXX_FLAGS by the user:
+ SET(GSL_CXX_FLAGS "`${GSL_CONFIG} --cflags`")
+
+ # set INCLUDE_DIRS to prefix+include
+ EXEC_PROGRAM(${GSL_CONFIG}
+ ARGS --prefix
+ OUTPUT_VARIABLE GSL_PREFIX)
+ SET(GSL_INCLUDE_DIR ${GSL_PREFIX}/include CACHE STRING INTERNAL)
+
+ # set link libraries and link flags
+ #SET(GSL_LIBRARIES "`${GSL_CONFIG} --libs`")
+ EXEC_PROGRAM(${GSL_CONFIG}
+ ARGS --libs
+ OUTPUT_VARIABLE GSL_LIBRARIES )
+
+ # extract link dirs for rpath
+ EXEC_PROGRAM(${GSL_CONFIG}
+ ARGS --libs
+ OUTPUT_VARIABLE GSL_CONFIG_LIBS )
+
+ # split off the link dirs (for rpath)
+ # use regular expression to match wildcard equivalent "-L*<endchar>"
+ # with <endchar> is a space or a semicolon
+ STRING(REGEX MATCHALL "[-][L]([^ ;])+"
+ GSL_LINK_DIRECTORIES_WITH_PREFIX
+ "${GSL_CONFIG_LIBS}" )
+ # MESSAGE("DBG GSL_LINK_DIRECTORIES_WITH_PREFIX=${GSL_LINK_DIRECTORIES_WITH_PREFIX}")
+
+ # remove prefix -L because we need the pure directory for LINK_DIRECTORIES
+
+ IF (GSL_LINK_DIRECTORIES_WITH_PREFIX)
+ STRING(REGEX REPLACE "[-][L]" "" GSL_LINK_DIRECTORIES ${GSL_LINK_DIRECTORIES_WITH_PREFIX} )
+ ENDIF (GSL_LINK_DIRECTORIES_WITH_PREFIX)
+ SET(GSL_EXE_LINKER_FLAGS "-Wl,-rpath,${GSL_LINK_DIRECTORIES}" CACHE STRING INTERNAL)
+ # MESSAGE("DBG GSL_LINK_DIRECTORIES=${GSL_LINK_DIRECTORIES}")
+ # MESSAGE("DBG GSL_EXE_LINKER_FLAGS=${GSL_EXE_LINKER_FLAGS}")
+
+ # ADD_DEFINITIONS("-DHAVE_GSL")
+ # SET(GSL_DEFINITIONS "-DHAVE_GSL")
+ MARK_AS_ADVANCED(
+ GSL_CXX_FLAGS
+ GSL_INCLUDE_DIR
+ GSL_LIBRARIES
+ GSL_LINK_DIRECTORIES
+ GSL_DEFINITIONS
+ )
+ MESSAGE(STATUS "Using GSL from ${GSL_PREFIX}")
+
+ ELSE(GSL_CONFIG)
+ MESSAGE("FindGSL.cmake: gsl-config not found. Please set it manually. GSL_CONFIG=${GSL_CONFIG}")
+ ENDIF(GSL_CONFIG)
+
+ ENDIF(UNIX)
+ENDIF(WIN32)
+
+
+IF(GSL_LIBRARIES)
+ IF(GSL_INCLUDE_DIR OR GSL_CXX_FLAGS)
+
+ SET(GSL_FOUND 1)
+
+ ENDIF(GSL_INCLUDE_DIR OR GSL_CXX_FLAGS)
+ENDIF(GSL_LIBRARIES)
diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt
index 8d217d421..680a8e65f 100644
--- a/test/CMakeLists.txt
+++ b/test/CMakeLists.txt
@@ -1,5 +1,9 @@
IF(BUILD_TESTS)
+find_package(GSL)
+if(GSL_FOUND)
+ add_definitions("-DHAS_GSL")
+endif(GSL_FOUND)
IF(CMAKE_COMPILER_IS_GNUCXX)
IF(CMAKE_SYSTEM_NAME MATCHES Linux)
@@ -69,6 +73,10 @@ MACRO(EI_ADD_TEST testname)
target_link_libraries(${targetname} Eigen2)
ENDIF(TEST_LIB)
+ if(GSL_FOUND)
+ target_link_libraries(${targetname} ${GSL_LIBRARIES})
+ endif(GSL_FOUND)
+
IF(WIN32)
ADD_TEST(${testname} "${targetname}")
ELSE(WIN32)
diff --git a/test/adjoint.cpp b/test/adjoint.cpp
index 50ebb70dc..982584eea 100644
--- a/test/adjoint.cpp
+++ b/test/adjoint.cpp
@@ -31,25 +31,29 @@ template<typename MatrixType> void adjoint(const MatrixType& m)
*/
typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
int rows = m.rows();
int cols = m.cols();
- MatrixType m1 = MatrixType::Random(rows, cols),
- m2 = MatrixType::Random(rows, cols),
+ RealScalar largerEps = test_precision<RealScalar>();
+ if (ei_is_same_type<RealScalar,float>::ret)
+ largerEps = 1e-3f;
+
+ MatrixType m1 = test_random_matrix<MatrixType>(rows, cols),
+ m2 = test_random_matrix<MatrixType>(rows, cols),
m3(rows, cols),
mzero = MatrixType::Zero(rows, cols),
- identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
- ::Identity(rows, rows),
- square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
- ::Random(rows, rows);
- VectorType v1 = VectorType::Random(rows),
- v2 = VectorType::Random(rows),
- v3 = VectorType::Random(rows),
+ identity = SquareMatrixType::Identity(rows, rows),
+ square = test_random_matrix<SquareMatrixType>(rows, rows);
+ VectorType v1 = test_random_matrix<VectorType>(rows),
+ v2 = test_random_matrix<VectorType>(rows),
+ v3 = test_random_matrix<VectorType>(rows),
vzero = VectorType::Zero(rows);
- Scalar s1 = ei_random<Scalar>(),
- s2 = ei_random<Scalar>();
+ Scalar s1 = test_random<Scalar>(),
+ s2 = test_random<Scalar>();
// check basic compatibility of adjoint, transpose, conjugate
VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1);
@@ -61,19 +65,18 @@ template<typename MatrixType> void adjoint(const MatrixType& m)
// check basic properties of dot, norm, norm2
typedef typename NumTraits<Scalar>::Real RealScalar;
- VERIFY_IS_APPROX((s1 * v1 + s2 * v2).dot(v3), s1 * v1.dot(v3) + s2 * v2.dot(v3));
- VERIFY_IS_APPROX(v3.dot(s1 * v1 + s2 * v2), ei_conj(s1)*v3.dot(v1)+ei_conj(s2)*v3.dot(v2));
- VERIFY_IS_APPROX(ei_conj(v1.dot(v2)), v2.dot(v1));
- VERIFY_IS_APPROX(ei_abs(v1.dot(v1)), v1.norm2());
+ VERIFY(ei_isApprox((s1 * v1 + s2 * v2).dot(v3), s1 * v1.dot(v3) + s2 * v2.dot(v3), largerEps));
+ VERIFY(ei_isApprox(v3.dot(s1 * v1 + s2 * v2), ei_conj(s1)*v3.dot(v1)+ei_conj(s2)*v3.dot(v2), largerEps));
+ VERIFY_IS_APPROX(ei_conj(v1.dot(v2)), v2.dot(v1));
+ VERIFY_IS_APPROX(ei_abs(v1.dot(v1)), v1.norm2());
if(NumTraits<Scalar>::HasFloatingPoint)
- VERIFY_IS_APPROX(v1.norm2(), v1.norm() * v1.norm());
- VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(vzero.dot(v1)), static_cast<RealScalar>(1));
+ VERIFY_IS_APPROX(v1.norm2(), v1.norm() * v1.norm());
+ VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(vzero.dot(v1)), static_cast<RealScalar>(1));
if(NumTraits<Scalar>::HasFloatingPoint)
- VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
+ VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
// check compatibility of dot and adjoint
- // FIXME this line failed with MSVC and complex<double> in the ei_aligned_free()
- VERIFY_IS_APPROX(v1.dot(square * v2), (square.adjoint() * v1).dot(v2));
+ VERIFY(ei_isApprox(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), largerEps));
// like in testBasicStuff, test operator() to check const-qualification
int r = ei_random<int>(0, rows-1),
@@ -93,10 +96,11 @@ void test_adjoint()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( adjoint(Matrix<float, 1, 1>()) );
- CALL_SUBTEST( adjoint(Matrix4d()) );
- CALL_SUBTEST( adjoint(MatrixXcf(3, 3)) );
+ CALL_SUBTEST( adjoint(Matrix3d()) );
+ CALL_SUBTEST( adjoint(Matrix4f()) );
+ CALL_SUBTEST( adjoint(MatrixXcf(4, 4)) );
CALL_SUBTEST( adjoint(MatrixXi(8, 12)) );
- CALL_SUBTEST( adjoint(MatrixXcd(20, 20)) );
+ CALL_SUBTEST( adjoint(MatrixXf(21, 21)) );
}
// test a large matrix only once
CALL_SUBTEST( adjoint(Matrix<float, 100, 100>()) );
diff --git a/test/array.cpp b/test/array.cpp
index eb78322c2..25387d0cd 100644
--- a/test/array.cpp
+++ b/test/array.cpp
@@ -32,17 +32,18 @@ template<typename MatrixType> void scalarAdd(const MatrixType& m)
*/
typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
int rows = m.rows();
int cols = m.cols();
- MatrixType m1 = MatrixType::Random(rows, cols),
- m2 = MatrixType::Random(rows, cols),
+ MatrixType m1 = test_random_matrix<MatrixType>(rows, cols),
+ m2 = test_random_matrix<MatrixType>(rows, cols),
m3(rows, cols);
- Scalar s1 = ei_random<Scalar>(),
- s2 = ei_random<Scalar>();
+ Scalar s1 = test_random<Scalar>(),
+ s2 = test_random<Scalar>();
VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise());
VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows,cols,s1) + m1);
@@ -56,7 +57,8 @@ template<typename MatrixType> void scalarAdd(const MatrixType& m)
VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum());
VERIFY_IS_APPROX(m1.rowwise().sum().sum(), m1.sum());
- VERIFY_IS_NOT_APPROX((m1.rowwise().sum()*2).sum(), m1.sum());
+ if (!ei_isApprox(m1.sum(), (m1+m2).sum()))
+ VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(ei_scalar_sum_op<Scalar>()));
}
diff --git a/test/cholesky.cpp b/test/cholesky.cpp
index a8d8fd974..ca57f7644 100644
--- a/test/cholesky.cpp
+++ b/test/cholesky.cpp
@@ -21,11 +21,15 @@
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
+#define EIGEN_DONT_VECTORIZE
#include "main.h"
#include <Eigen/Cholesky>
#include <Eigen/LU>
+#ifdef HAS_GSL
+#include "gsl_helper.h"
+#endif
+
template<typename MatrixType> void cholesky(const MatrixType& m)
{
/* this test covers the following files:
@@ -39,38 +43,79 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
- MatrixType a = test_random_matrix<MatrixType>(rows,cols);
+ MatrixType a0 = test_random_matrix<MatrixType>(rows,cols);
VectorType vecB = test_random_matrix<VectorType>(rows);
MatrixType matB = test_random_matrix<MatrixType>(rows,cols);
- SquareMatrixType covMat = a * a.adjoint();
+ SquareMatrixType symm = a0 * a0.adjoint();
+ // let's make sure the matrix is not singular or near singular
+ MatrixType a1 = test_random_matrix<MatrixType>(rows,cols);
+ symm += a1 * a1.adjoint();
+
+ #ifdef HAS_GSL
+ if (ei_is_same_type<RealScalar,double>::ret)
+ {
+ typedef GslTraits<Scalar> Gsl;
+ typename Gsl::Matrix gMatA=0, gSymm=0;
+ typename Gsl::Vector gVecB=0, gVecX=0;
+ convert<MatrixType>(symm, gSymm);
+ convert<MatrixType>(symm, gMatA);
+ convert<VectorType>(vecB, gVecB);
+ convert<VectorType>(vecB, gVecX);
+ Gsl::cholesky(gMatA);
+ Gsl::cholesky_solve(gMatA, gVecB, gVecX);
+ VectorType vecX, _vecX, _vecB;
+ convert(gVecX, _vecX);
+ vecX = symm.cholesky().solve(vecB);
+ Gsl::prod(gSymm, gVecX, gVecB);
+ convert(gVecB, _vecB);
+ // test gsl itself !
+ VERIFY_IS_APPROX(vecB, _vecB);
+ VERIFY_IS_APPROX(vecX, _vecX);
+
+ Gsl::free(gMatA);
+ Gsl::free(gSymm);
+ Gsl::free(gVecB);
+ Gsl::free(gVecX);
+ }
+ #endif
if (rows>1)
{
- CholeskyWithoutSquareRoot<SquareMatrixType> cholnosqrt(covMat);
- VERIFY_IS_APPROX(covMat, cholnosqrt.matrixL() * cholnosqrt.vectorD().asDiagonal() * cholnosqrt.matrixL().adjoint());
- // cout << (covMat * cholnosqrt.solve(vecB)).transpose().format(6) << endl;
- // cout << vecB.transpose().format(6) << endl << "----------" << endl;
- VERIFY((covMat * cholnosqrt.solve(vecB)).isApprox(vecB, test_precision<RealScalar>()*RealScalar(100))); // FIXME
- VERIFY((covMat * cholnosqrt.solve(matB)).isApprox(matB, test_precision<RealScalar>()*RealScalar(100))); // FIXME
+ CholeskyWithoutSquareRoot<SquareMatrixType> cholnosqrt(symm);
+ VERIFY(cholnosqrt.isPositiveDefinite());
+ VERIFY_IS_APPROX(symm, cholnosqrt.matrixL() * cholnosqrt.vectorD().asDiagonal() * cholnosqrt.matrixL().adjoint());
+ VERIFY_IS_APPROX(symm * cholnosqrt.solve(vecB), vecB);
+ VERIFY_IS_APPROX(symm * cholnosqrt.solve(matB), matB);
}
- Cholesky<SquareMatrixType> chol(covMat);
- VERIFY_IS_APPROX(covMat, chol.matrixL() * chol.matrixL().adjoint());
-// cout << (covMat * chol.solve(vecB)).transpose().format(6) << endl;
-// cout << vecB.transpose().format(6) << endl << "----------" << endl;
- VERIFY((covMat * chol.solve(vecB)).isApprox(vecB, test_precision<RealScalar>()*RealScalar(100))); // FIXME
- VERIFY((covMat * chol.solve(matB)).isApprox(matB, test_precision<RealScalar>()*RealScalar(100))); // FIXME
+ {
+ Cholesky<SquareMatrixType> chol(symm);
+ VERIFY(chol.isPositiveDefinite());
+ VERIFY_IS_APPROX(symm, chol.matrixL() * chol.matrixL().adjoint());
+ VERIFY_IS_APPROX(symm * chol.solve(vecB), vecB);
+ VERIFY_IS_APPROX(symm * chol.solve(matB), matB);
+ }
+
+ // test isPositiveDefinite on non definite matrix
+ if (rows>4)
+ {
+ SquareMatrixType symm = a0.block(0,0,rows,cols-4) * a0.block(0,0,rows,cols-4).adjoint();
+ Cholesky<SquareMatrixType> chol(symm);
+ VERIFY(!chol.isPositiveDefinite());
+ CholeskyWithoutSquareRoot<SquareMatrixType> cholnosqrt(symm);
+ VERIFY(!cholnosqrt.isPositiveDefinite());
+ }
}
void test_cholesky()
{
for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST( cholesky(Matrix<float,1,1>()) );
- CALL_SUBTEST( cholesky(Matrix<float,2,2>()) );
-// CALL_SUBTEST( cholesky(Matrix3f()) );
-// CALL_SUBTEST( cholesky(Matrix4d()) );
-// CALL_SUBTEST( cholesky(MatrixXcd(7,7)) );
-// CALL_SUBTEST( cholesky(MatrixXf(19,19)) );
-// CALL_SUBTEST( cholesky(MatrixXd(33,33)) );
+ CALL_SUBTEST( cholesky(Matrix<double,1,1>()) );
+ CALL_SUBTEST( cholesky(Matrix2d()) );
+ CALL_SUBTEST( cholesky(Matrix3f()) );
+ CALL_SUBTEST( cholesky(Matrix4d()) );
+ CALL_SUBTEST( cholesky(MatrixXcd(7,7)) );
+ CALL_SUBTEST( cholesky(MatrixXf(17,17)) );
+ CALL_SUBTEST( cholesky(MatrixXd(33,33)) );
}
}
diff --git a/test/eigensolver.cpp b/test/eigensolver.cpp
index a1ab4a685..48ae50587 100644
--- a/test/eigensolver.cpp
+++ b/test/eigensolver.cpp
@@ -25,6 +25,10 @@
#include "main.h"
#include <Eigen/QR>
+#ifdef HAS_GSL
+#include "gsl_helper.h"
+#endif
+
template<typename MatrixType> void eigensolver(const MatrixType& m)
{
/* this test covers the following files:
@@ -33,19 +37,76 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
int rows = m.rows();
int cols = m.cols();
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
+ typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
- MatrixType a = MatrixType::Random(rows,cols);
- MatrixType symmA = a.adjoint() * a;
+ RealScalar largerEps = 10*test_precision<RealScalar>();
+
+ MatrixType a = test_random_matrix<MatrixType>(rows,cols);
+ MatrixType a1 = test_random_matrix<MatrixType>(rows,cols);
+ MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
+
+ MatrixType b = test_random_matrix<MatrixType>(rows,cols);
+ MatrixType b1 = test_random_matrix<MatrixType>(rows,cols);
+ MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
- VERIFY_IS_APPROX(symmA * eiSymm.eigenvectors(), (eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal().eval()));
+ // generalized eigen pb
+ SelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB);
+
+ #ifdef HAS_GSL
+ if (ei_is_same_type<RealScalar,double>::ret)
+ {
+ typedef GslTraits<Scalar> Gsl;
+ typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0;
+ typename GslTraits<RealScalar>::Vector gEval=0;
+ RealVectorType _eval;
+ MatrixType _evec;
+ convert<MatrixType>(symmA, gSymmA);
+ convert<MatrixType>(symmB, gSymmB);
+ convert<MatrixType>(symmA, gEvec);
+ gEval = GslTraits<RealScalar>::createVector(rows);
+
+ Gsl::eigen_symm(gSymmA, gEval, gEvec);
+ convert(gEval, _eval);
+ convert(gEvec, _evec);
+
+ // test gsl itself !
+ VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal().eval(), largerEps));
+
+ // compare with eigen
+ VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues());
+ VERIFY_IS_APPROX(_evec.cwise().abs(), eiSymm.eigenvectors().cwise().abs());
+
+ // generalized pb
+ Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec);
+ convert(gEval, _eval);
+ convert(gEvec, _evec);
+ // test GSL itself:
+ VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal().eval()), largerEps));
+
+ // compare with eigen
+// std::cerr << _eval.transpose() << "\n" << eiSymmGen.eigenvalues().transpose() << "\n\n";
+// std::cerr << _evec.format(6) << "\n\n" << eiSymmGen.eigenvectors().format(6) << "\n\n\n";
+ VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues());
+ VERIFY_IS_APPROX(_evec.cwise().abs(), eiSymmGen.eigenvectors().cwise().abs());
+
+ Gsl::free(gSymmA);
+ Gsl::free(gSymmB);
+ GslTraits<RealScalar>::free(gEval);
+ Gsl::free(gEvec);
+ }
+ #endif
+
+ VERIFY((symmA * eiSymm.eigenvectors()).isApprox(
+ eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal().eval(), largerEps));
// generalized eigen problem Ax = lBx
- MatrixType b = MatrixType::Random(rows,cols);
- MatrixType symmB = b.adjoint() * b;
- eiSymm.compute(symmA,symmB);
- VERIFY_IS_APPROX(symmA * eiSymm.eigenvectors(), symmB * (eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal().eval()));
+ VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox(
+ symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal().eval()), largerEps));
// EigenSolver<MatrixType> eiNotSymmButSymm(covMat);
// VERIFY_IS_APPROX((covMat.template cast<Complex>()) * (eiNotSymmButSymm.eigenvectors().template cast<Complex>()),
@@ -59,12 +120,12 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
void test_eigensolver()
{
- for(int i = 0; i < 1; i++) {
+ for(int i = 0; i < g_repeat; i++) {
// very important to test a 3x3 matrix since we provide a special path for it
CALL_SUBTEST( eigensolver(Matrix3f()) );
CALL_SUBTEST( eigensolver(Matrix4d()) );
CALL_SUBTEST( eigensolver(MatrixXf(7,7)) );
- CALL_SUBTEST( eigensolver(MatrixXcd(6,6)) );
- CALL_SUBTEST( eigensolver(MatrixXcf(3,3)) );
+ CALL_SUBTEST( eigensolver(MatrixXcd(5,5)) );
+ CALL_SUBTEST( eigensolver(MatrixXd(19,19)) );
}
}
diff --git a/test/geometry.cpp b/test/geometry.cpp
index 8c4752d5d..82f0a2797 100644
--- a/test/geometry.cpp
+++ b/test/geometry.cpp
@@ -69,8 +69,8 @@ template<typename Scalar> void geometry(void)
VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
VERIFY_IS_APPROX(q1 * q2 * v2,
q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
- VERIFY_IS_NOT_APPROX(q2 * q1 * v2,
- q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
+ VERIFY( !(q2 * q1 * v2).isApprox(
+ q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
q2 = q1.toRotationMatrix();
VERIFY_IS_APPROX(q1*v1,q2*v1);
@@ -126,7 +126,7 @@ template<typename Scalar> void geometry(void)
t1.prescale(v0);
VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x());
- VERIFY_IS_NOT_APPROX((t1 * Vector3(1,0,0)).norm(), v0.x());
+ VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x()));
t0.setIdentity();
t1.setIdentity();
@@ -138,7 +138,7 @@ template<typename Scalar> void geometry(void)
t1.prescale(v1.cwise().inverse());
t1.translate(-v0);
- VERIFY((t0.matrix() * t1.matrix()).isIdentity());
+ VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision<Scalar>()));
t1.fromPositionOrientationScale(v0, q1, v1);
VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
@@ -147,6 +147,8 @@ template<typename Scalar> void geometry(void)
Transform2 t20, t21;
Vector2 v20 = test_random_matrix<Vector2>();
Vector2 v21 = test_random_matrix<Vector2>();
+ for (int k=0; k<2; ++k)
+ if (ei_abs(v21[k])<1e-3) v21[k] = 1e-3;
t21.setIdentity();
t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
@@ -154,7 +156,8 @@ template<typename Scalar> void geometry(void)
t21.setIdentity();
t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
- VERIFY( (t20.fromPositionOrientationScale(v20,a,v21) * (t21.prescale(v21.cwise().inverse()).translate(-v20))).isIdentity() );
+ VERIFY( (t20.fromPositionOrientationScale(v20,a,v21)
+ * (t21.prescale(v21.cwise().inverse()).translate(-v20))).isIdentity(test_precision<Scalar>()) );
}
void test_geometry()
diff --git a/test/gsl_helper.h b/test/gsl_helper.h
new file mode 100644
index 000000000..6d786749b
--- /dev/null
+++ b/test/gsl_helper.h
@@ -0,0 +1,190 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_GSL_HELPER
+#define EIGEN_GSL_HELPER
+
+#include <Eigen/Core>
+
+#include <gsl/gsl_blas.h>
+#include <gsl/gsl_multifit.h>
+#include <gsl/gsl_eigen.h>
+#include <gsl/gsl_linalg.h>
+#include <gsl/gsl_complex.h>
+#include <gsl/gsl_complex_math.h>
+
+namespace Eigen {
+
+template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> struct GslTraits
+{
+ typedef gsl_matrix* Matrix;
+ typedef gsl_vector* Vector;
+ static Matrix createMatrix(int rows, int cols) { return gsl_matrix_alloc(rows,cols); }
+ static Vector createVector(int size) { return gsl_vector_alloc(size); }
+ static void free(Matrix& m) { gsl_matrix_free(m); m=0; }
+ static void free(Vector& m) { gsl_vector_free(m); m=0; }
+ static void prod(const Matrix& m, const Vector& v, Vector& x) { gsl_blas_dgemv(CblasNoTrans,1,m,v,0,x); }
+ static void cholesky(Matrix& m) { gsl_linalg_cholesky_decomp(m); }
+ static void cholesky_solve(const Matrix& m, const Vector& b, Vector& x) { gsl_linalg_cholesky_solve(m,b,x); }
+ static void eigen_symm(const Matrix& m, Vector& eval, Matrix& evec)
+ {
+ gsl_eigen_symmv_workspace * w = gsl_eigen_symmv_alloc(m->size1);
+ Matrix a = createMatrix(m->size1, m->size2);
+ gsl_matrix_memcpy(a, m);
+ gsl_eigen_symmv(a,eval,evec,w);
+ gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC);
+ gsl_eigen_symmv_free(w);
+ free(a);
+ }
+ static void eigen_symm_gen(const Matrix& m, const Matrix& _b, Vector& eval, Matrix& evec)
+ {
+ gsl_eigen_gensymmv_workspace * w = gsl_eigen_gensymmv_alloc(m->size1);
+ Matrix a = createMatrix(m->size1, m->size2);
+ Matrix b = createMatrix(_b->size1, _b->size2);
+ gsl_matrix_memcpy(a, m);
+ gsl_matrix_memcpy(b, _b);
+ gsl_eigen_gensymmv(a,b,eval,evec,w);
+ gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC);
+ gsl_eigen_gensymmv_free(w);
+ free(a);
+ }
+};
+
+template<typename Scalar> struct GslTraits<Scalar,true>
+{
+ typedef gsl_matrix_complex* Matrix;
+ typedef gsl_vector_complex* Vector;
+ static Matrix createMatrix(int rows, int cols) { return gsl_matrix_complex_alloc(rows,cols); }
+ static Vector createVector(int size) { return gsl_vector_complex_alloc(size); }
+ static void free(Matrix& m) { gsl_matrix_complex_free(m); m=0; }
+ static void free(Vector& m) { gsl_vector_complex_free(m); m=0; }
+ static void cholesky(Matrix& m) { gsl_linalg_complex_cholesky_decomp(m); }
+ static void cholesky_solve(const Matrix& m, const Vector& b, Vector& x) { gsl_linalg_complex_cholesky_solve(m,b,x); }
+ static void prod(const Matrix& m, const Vector& v, Vector& x)
+ { gsl_blas_zgemv(CblasNoTrans,gsl_complex_rect(1,0),m,v,gsl_complex_rect(0,0),x); }
+ static void eigen_symm(const Matrix& m, gsl_vector* &eval, Matrix& evec)
+ {
+ gsl_eigen_hermv_workspace * w = gsl_eigen_hermv_alloc(m->size1);
+ Matrix a = createMatrix(m->size1, m->size2);
+ gsl_matrix_complex_memcpy(a, m);
+ gsl_eigen_hermv(a,eval,evec,w);
+ gsl_eigen_hermv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC);
+ gsl_eigen_hermv_free(w);
+ free(a);
+ }
+ static void eigen_symm_gen(const Matrix& m, const Matrix& _b, gsl_vector* &eval, Matrix& evec)
+ {
+ gsl_eigen_genhermv_workspace * w = gsl_eigen_genhermv_alloc(m->size1);
+ Matrix a = createMatrix(m->size1, m->size2);
+ Matrix b = createMatrix(_b->size1, _b->size2);
+ gsl_matrix_complex_memcpy(a, m);
+ gsl_matrix_complex_memcpy(b, _b);
+ gsl_eigen_genhermv(a,b,eval,evec,w);
+ gsl_eigen_hermv_sort(eval, evec, GSL_EIGEN_SORT_VAL_ASC);
+ gsl_eigen_genhermv_free(w);
+ free(a);
+ }
+};
+
+template<typename MatrixType>
+void convert(const MatrixType& m, gsl_matrix* &res)
+{
+// if (res)
+// gsl_matrix_free(res);
+ res = gsl_matrix_alloc(m.rows(), m.cols());
+ for (int i=0 ; i<m.rows() ; ++i)
+ for (int j=0 ; j<m.cols(); ++j)
+ gsl_matrix_set(res, i, j, m(i,j));
+}
+
+template<typename MatrixType>
+void convert(const gsl_matrix* m, MatrixType& res)
+{
+ res.resize(int(m->size1), int(m->size2));
+ for (int i=0 ; i<res.rows() ; ++i)
+ for (int j=0 ; j<res.cols(); ++j)
+ res(i,j) = gsl_matrix_get(m,i,j);
+}
+
+template<typename VectorType>
+void convert(const VectorType& m, gsl_vector* &res)
+{
+ if (res) gsl_vector_free(res);
+ res = gsl_vector_alloc(m.size());
+ for (int i=0 ; i<m.size() ; ++i)
+ gsl_vector_set(res, i, m[i]);
+}
+
+template<typename VectorType>
+void convert(const gsl_vector* m, VectorType& res)
+{
+ res.resize (m->size);
+ for (int i=0 ; i<res.rows() ; ++i)
+ res[i] = gsl_vector_get(m, i);
+}
+
+template<typename MatrixType>
+void convert(const MatrixType& m, gsl_matrix_complex* &res)
+{
+ res = gsl_matrix_complex_alloc(m.rows(), m.cols());
+ for (int i=0 ; i<m.rows() ; ++i)
+ for (int j=0 ; j<m.cols(); ++j)
+ {
+ gsl_matrix_complex_set(res, i, j,
+ gsl_complex_rect(m(i,j).real(), m(i,j).imag()));
+ }
+}
+
+template<typename MatrixType>
+void convert(const gsl_matrix_complex* m, MatrixType& res)
+{
+ res.resize(int(m->size1), int(m->size2));
+ for (int i=0 ; i<res.rows() ; ++i)
+ for (int j=0 ; j<res.cols(); ++j)
+ res(i,j) = typename MatrixType::Scalar(
+ GSL_REAL(gsl_matrix_complex_get(m,i,j)),
+ GSL_IMAG(gsl_matrix_complex_get(m,i,j)));
+}
+
+template<typename VectorType>
+void convert(const VectorType& m, gsl_vector_complex* &res)
+{
+ res = gsl_vector_complex_alloc(m.size());
+ for (int i=0 ; i<m.size() ; ++i)
+ gsl_vector_complex_set(res, i, gsl_complex_rect(m[i].real(), m[i].imag()));
+}
+
+template<typename VectorType>
+void convert(const gsl_vector_complex* m, VectorType& res)
+{
+ res.resize(m->size);
+ for (int i=0 ; i<res.rows() ; ++i)
+ res[i] = typename VectorType::Scalar(
+ GSL_REAL(gsl_vector_complex_get(m, i)),
+ GSL_IMAG(gsl_vector_complex_get(m, i)));
+}
+
+}
+
+#endif // EIGEN_GSL_HELPER
diff --git a/test/inverse.cpp b/test/inverse.cpp
index de6b09621..eaa7bfd3f 100644
--- a/test/inverse.cpp
+++ b/test/inverse.cpp
@@ -35,13 +35,21 @@ template<typename MatrixType> void inverse(const MatrixType& m)
int cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
MatrixType m1 = test_random_matrix<MatrixType>(rows, cols),
- m2 = test_random_matrix<MatrixType>(rows, cols),
+ m2(rows, cols),
mzero = MatrixType::Zero(rows, cols),
identity = MatrixType::Identity(rows, rows);
+ if (ei_is_same_type<RealScalar,float>::ret)
+ {
+ // let's build a more stable to inverse matrix
+ MatrixType a = test_random_matrix<MatrixType>(rows,cols);
+ m1 += m1 * m1.adjoint() + a * a.adjoint();
+ }
+
m2 = m1.inverse();
VERIFY_IS_APPROX(m1, m2.inverse() );
diff --git a/test/linearstructure.cpp b/test/linearstructure.cpp
index 47f1cbed7..5178839c9 100644
--- a/test/linearstructure.cpp
+++ b/test/linearstructure.cpp
@@ -41,15 +41,10 @@ template<typename MatrixType> void linearStructure(const MatrixType& m)
MatrixType m1 = test_random_matrix<MatrixType>(rows, cols),
m2 = test_random_matrix<MatrixType>(rows, cols),
m3(rows, cols),
- mzero = MatrixType::Zero(rows, cols),
- identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
- ::Identity(rows, rows),
- square = test_random_matrix<Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> >(rows, rows);
- VectorType v1 = test_random_matrix<VectorType>(rows),
- v2 = test_random_matrix<VectorType>(rows),
- vzero = VectorType::Zero(rows);
+ mzero = MatrixType::Zero(rows, cols);
Scalar s1 = test_random<Scalar>();
+ while (ei_abs(s1)<1e-3) s1 = test_random<Scalar>();
int r = ei_random<int>(0, rows-1),
c = ei_random<int>(0, cols-1);
@@ -94,6 +89,7 @@ void test_linearstructure()
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( linearStructure(Matrix<float, 1, 1>()) );
CALL_SUBTEST( linearStructure(Matrix2f()) );
+ CALL_SUBTEST( linearStructure(Vector3d()) );
CALL_SUBTEST( linearStructure(Matrix4d()) );
CALL_SUBTEST( linearStructure(MatrixXcf(3, 3)) );
CALL_SUBTEST( linearStructure(MatrixXf(8, 12)) );
diff --git a/test/lu.cpp b/test/lu.cpp
index 91093eaa3..0f4e0ab64 100644
--- a/test/lu.cpp
+++ b/test/lu.cpp
@@ -51,7 +51,8 @@ template<typename MatrixType> void lu_non_invertible()
/* this test covers the following files:
LU.h
*/
- int rows = ei_random<int>(10,200), cols = ei_random<int>(10,200), cols2 = ei_random<int>(10,200);
+ // NOTE lu.dimensionOfKernel() fails most of the time for rows or cols smaller that 11
+ int rows = ei_random<int>(11,200), cols = ei_random<int>(11,200), cols2 = ei_random<int>(11,200);
int rank = ei_random<int>(1, std::min(rows, cols)-1);
MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1);
@@ -91,6 +92,13 @@ template<typename MatrixType> void lu_invertible()
MatrixType m1(size, size), m2(size, size), m3(size, size);
m1 = test_random_matrix<MatrixType>(size,size);
+ if (ei_is_same_type<RealScalar,float>::ret)
+ {
+ // let's build a matrix more stable to inverse
+ MatrixType a = test_random_matrix<MatrixType>(size,size*2);
+ m1 += a * a.adjoint();
+ }
+
LU<MatrixType> lu(m1);
VERIFY(0 == lu.dimensionOfKernel());
VERIFY(size == lu.rank());
@@ -99,7 +107,7 @@ template<typename MatrixType> void lu_invertible()
VERIFY(lu.isInvertible());
m3 = test_random_matrix<MatrixType>(size,size);
lu.solve(m3, &m2);
- VERIFY(m3.isApprox(m1*m2, test_precision<RealScalar>()*RealScalar(100))); // FIXME
+ VERIFY_IS_APPROX(m3, m1*m2);
VERIFY_IS_APPROX(m2, lu.inverse()*m3);
m3 = test_random_matrix<MatrixType>(size,size);
VERIFY(lu.solve(m3, &m2));
diff --git a/test/product_small.cpp b/test/product_small.cpp
index ef44b0826..a1ff642e5 100644
--- a/test/product_small.cpp
+++ b/test/product_small.cpp
@@ -29,6 +29,7 @@ void test_product_small()
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( product(Matrix<float, 3, 2>()) );
CALL_SUBTEST( product(Matrix<int, 3, 5>()) );
+ CALL_SUBTEST( product(Matrix3d()) );
CALL_SUBTEST( product(Matrix4d()) );
CALL_SUBTEST( product(Matrix4f()) );
}
diff --git a/test/runtest.sh b/test/runtest.sh
index 649513b50..bc693af13 100755
--- a/test/runtest.sh
+++ b/test/runtest.sh
@@ -10,7 +10,7 @@ cyan='\E[36m'
white='\E[37m'
if make test_$1 > /dev/null 2> .runtest.log ; then
- if ! ./test_$1 > /dev/null 2> .runtest.log ; then
+ if ! ./test_$1 r20 > /dev/null 2> .runtest.log ; then
echo -e $red Test $1 failed: $black
echo -e $blue
cat .runtest.log
diff --git a/test/svd.cpp b/test/svd.cpp
index 9d182e98e..605c7f7aa 100644
--- a/test/svd.cpp
+++ b/test/svd.cpp
@@ -34,11 +34,16 @@ template<typename MatrixType> void svd(const MatrixType& m)
int cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
- MatrixType a = MatrixType::Random(rows,cols);
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ MatrixType a = test_random_matrix<MatrixType>(rows,cols);
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> b =
- Matrix<Scalar, MatrixType::RowsAtCompileTime, 1>::Random(rows,1);
+ test_random_matrix<Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> >(rows,1);
Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> x(cols,1), x2(cols,1);
+ RealScalar largerEps = test_precision<RealScalar>();
+ if (ei_is_same_type<RealScalar,float>::ret)
+ largerEps = 1e-3f;
+
SVD<MatrixType> svd(a);
MatrixType sigma = MatrixType::Zero(rows,cols);
MatrixType matU = MatrixType::Zero(rows,rows);
@@ -49,8 +54,14 @@ template<typename MatrixType> void svd(const MatrixType& m)
if (rows==cols)
{
+ if (ei_is_same_type<RealScalar,float>::ret)
+ {
+ MatrixType a1 = test_random_matrix<MatrixType>(rows,cols);
+ a += a * a.adjoint() + a1 * a1.adjoint();
+ }
+ SVD<MatrixType> svd(a);
svd.solve(b, &x);
- VERIFY_IS_APPROX(a * x, b);
+ VERIFY_IS_APPROX(a * x,b);
}
}
@@ -60,7 +71,7 @@ void test_svd()
CALL_SUBTEST( svd(Matrix3f()) );
CALL_SUBTEST( svd(Matrix4d()) );
CALL_SUBTEST( svd(MatrixXf(7,7)) );
- CALL_SUBTEST( svd(MatrixXf(14,7)) );
+ CALL_SUBTEST( svd(MatrixXd(14,7)) );
// complex are not implemented yet
// CALL_SUBTEST( svd(MatrixXcd(6,6)) );
// CALL_SUBTEST( svd(MatrixXcf(3,3)) );
diff --git a/test/triangular.cpp b/test/triangular.cpp
index 846151613..388d78e1e 100644
--- a/test/triangular.cpp
+++ b/test/triangular.cpp
@@ -30,12 +30,15 @@ template<typename MatrixType> void triangular(const MatrixType& m)
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
+ RealScalar largerEps = 10*test_precision<RealScalar>();
+
int rows = m.rows();
int cols = m.cols();
- MatrixType m1 = MatrixType::Random(rows, cols),
- m2 = MatrixType::Random(rows, cols),
+ MatrixType m1 = test_random_matrix<MatrixType>(rows, cols),
+ m2 = test_random_matrix<MatrixType>(rows, cols),
m3(rows, cols),
+ m4(rows, cols),
r1(rows, cols),
r2(rows, cols),
mzero = MatrixType::Zero(rows, cols),
@@ -44,8 +47,8 @@ template<typename MatrixType> void triangular(const MatrixType& m)
::Identity(rows, rows),
square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
::Random(rows, rows);
- VectorType v1 = VectorType::Random(rows),
- v2 = VectorType::Random(rows),
+ VectorType v1 = test_random_matrix<VectorType>(rows),
+ v2 = test_random_matrix<VectorType>(rows),
vzero = VectorType::Zero(rows);
MatrixType m1up = m1.template part<Eigen::Upper>();
@@ -78,17 +81,34 @@ template<typename MatrixType> void triangular(const MatrixType& m)
m1.template part<Eigen::Lower>() = (m2.transpose() * m2).lazy();
VERIFY_IS_APPROX(m3.template part<Eigen::Lower>(), m1);
+ m1 = test_random_matrix<MatrixType>(rows, cols);
+ for (int i=0; i<rows; ++i)
+ while (ei_abs2(m1(i,i))<1e-3) m1(i,i) = test_random<Scalar>();
+
+ Transpose<MatrixType> trm4(m4);
// test back and forward subsitution
m3 = m1.template part<Eigen::Lower>();
VERIFY(m3.template marked<Eigen::Lower>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>()));
+ VERIFY(m3.transpose().template marked<Eigen::Upper>()
+ .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>()));
+ // check M * inv(L) using in place API
+ m4 = m3;
+ m3.transpose().template marked<Eigen::Upper>().solveTriangularInPlace(trm4);
+ VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>()));
m3 = m1.template part<Eigen::Upper>();
VERIFY(m3.template marked<Eigen::Upper>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>()));
+ VERIFY(m3.transpose().template marked<Eigen::Lower>()
+ .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>()));
+ // check M * inv(U) using in place API
+ m4 = m3;
+ m3.transpose().template marked<Eigen::Lower>().solveTriangularInPlace(trm4);
+ VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>()));
- // FIXME these tests failed due to numerical issues
- // m1 = MatrixType::Random(rows, cols);
- // VERIFY_IS_APPROX(m1.template part<Eigen::Upper>().eval() * (m1.template part<Eigen::Upper>().solveTriangular(m2)), m2);
- // VERIFY_IS_APPROX(m1.template part<Eigen::Lower>().eval() * (m1.template part<Eigen::Lower>().solveTriangular(m2)), m2);
+ m3 = m1.template part<Eigen::Upper>();
+ VERIFY(m2.isApprox(m3 * (m3.template marked<Eigen::Upper>().solveTriangular(m2)), largerEps));
+ m3 = m1.template part<Eigen::Lower>();
+ VERIFY(m2.isApprox(m3 * (m3.template marked<Eigen::Lower>().solveTriangular(m2)), largerEps));
VERIFY((m1.template part<Eigen::Upper>() * m2.template part<Eigen::Upper>()).isUpper());
@@ -102,6 +122,6 @@ void test_triangular()
CALL_SUBTEST( triangular(Matrix3d()) );
CALL_SUBTEST( triangular(MatrixXcf(4, 4)) );
CALL_SUBTEST( triangular(Matrix<std::complex<float>,8, 8>()) );
- CALL_SUBTEST( triangular(MatrixXf(85,85)) );
+ CALL_SUBTEST( triangular(MatrixXd(17,17)) );
}
}