aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Chen-Pang He <jdh8@ms63.hinet.net>2013-07-10 02:43:10 +0800
committerGravatar Chen-Pang He <jdh8@ms63.hinet.net>2013-07-10 02:43:10 +0800
commit159a3bed9e26274ccc8da07a08ea394285d05bd3 (patch)
tree79a0e238e30da86c76183b3ea9a8511488bfc3fe
parent25544dbec3429848226c9a567ccd7e82973c04e7 (diff)
Write doc for complex power of a matrix.
-rw-r--r--unsupported/Eigen/MatrixFunctions9
1 files changed, 5 insertions, 4 deletions
diff --git a/unsupported/Eigen/MatrixFunctions b/unsupported/Eigen/MatrixFunctions
index df49fdafd..0bdd379d7 100644
--- a/unsupported/Eigen/MatrixFunctions
+++ b/unsupported/Eigen/MatrixFunctions
@@ -228,15 +228,16 @@ const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(RealScalar p) con
\endcode
\param[in] M base of the matrix power, should be a square matrix.
-\param[in] p exponent of the matrix power, should be real.
+\param[in] p exponent of the matrix power.
The matrix power \f$ M^p \f$ is defined as \f$ \exp(p \log(M)) \f$,
where exp denotes the matrix exponential, and log denotes the matrix
logarithm.
-The matrix \f$ M \f$ should meet the conditions to be an argument of
-matrix logarithm. If \p p is not of the real scalar type of \p M, it
-is casted into the real scalar type of \p M.
+If \p p is complex, the scalar type of \p M should be the type of \p
+p . \f$ M^p \f$ simply evaluates into \f$ \exp(p \log(M)) \f$.
+Therefore, the matrix \f$ M \f$ should meet the conditions to be an
+argument of matrix logarithm.
This function computes the matrix power using the Schur-Pad&eacute;
algorithm as implemented by class MatrixPower. The exponent is split