diff options
author | Chen-Pang He <jdh8@ms63.hinet.net> | 2013-07-10 02:43:10 +0800 |
---|---|---|
committer | Chen-Pang He <jdh8@ms63.hinet.net> | 2013-07-10 02:43:10 +0800 |
commit | 159a3bed9e26274ccc8da07a08ea394285d05bd3 (patch) | |
tree | 79a0e238e30da86c76183b3ea9a8511488bfc3fe | |
parent | 25544dbec3429848226c9a567ccd7e82973c04e7 (diff) |
Write doc for complex power of a matrix.
-rw-r--r-- | unsupported/Eigen/MatrixFunctions | 9 |
1 files changed, 5 insertions, 4 deletions
diff --git a/unsupported/Eigen/MatrixFunctions b/unsupported/Eigen/MatrixFunctions index df49fdafd..0bdd379d7 100644 --- a/unsupported/Eigen/MatrixFunctions +++ b/unsupported/Eigen/MatrixFunctions @@ -228,15 +228,16 @@ const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(RealScalar p) con \endcode \param[in] M base of the matrix power, should be a square matrix. -\param[in] p exponent of the matrix power, should be real. +\param[in] p exponent of the matrix power. The matrix power \f$ M^p \f$ is defined as \f$ \exp(p \log(M)) \f$, where exp denotes the matrix exponential, and log denotes the matrix logarithm. -The matrix \f$ M \f$ should meet the conditions to be an argument of -matrix logarithm. If \p p is not of the real scalar type of \p M, it -is casted into the real scalar type of \p M. +If \p p is complex, the scalar type of \p M should be the type of \p +p . \f$ M^p \f$ simply evaluates into \f$ \exp(p \log(M)) \f$. +Therefore, the matrix \f$ M \f$ should meet the conditions to be an +argument of matrix logarithm. This function computes the matrix power using the Schur-Padé algorithm as implemented by class MatrixPower. The exponent is split |