aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Eugene Zhulenev <ezhulenev@google.com>2018-07-10 13:16:38 -0700
committerGravatar Eugene Zhulenev <ezhulenev@google.com>2018-07-10 13:16:38 -0700
commit01fd4096d395e7b816459f571bf2328c8435cc37 (patch)
tree02b928b34f77c3e63126c3175b6ea06174818f51
parent5539587b1f5b5922b2419b0a4468cf2f393def51 (diff)
Fuse computations into the Tensor contractions using output kernel
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorBase.h10
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h113
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h51
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h4
-rw-r--r--unsupported/test/cxx11_tensor_contraction.cpp51
-rw-r--r--unsupported/test/cxx11_tensor_thread_pool.cpp56
6 files changed, 248 insertions, 37 deletions
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h b/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
index bdc1a17a7..97f90f638 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
@@ -517,9 +517,15 @@ class TensorBase<Derived, ReadOnlyAccessors>
typedef Eigen::IndexPair<Index> DimensionPair;
template<typename OtherDerived, typename Dimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- const TensorContractionOp<const Dimensions, const Derived, const OtherDerived>
+ const TensorContractionOp<const Dimensions, const Derived, const OtherDerived, const NoOpOutputKernel>
contract(const OtherDerived& other, const Dimensions& dims) const {
- return TensorContractionOp<const Dimensions, const Derived, const OtherDerived>(derived(), other.derived(), dims);
+ return TensorContractionOp<const Dimensions, const Derived, const OtherDerived, const NoOpOutputKernel>(derived(), other.derived(), dims);
+ }
+
+ template<typename OtherDerived, typename Dimensions, typename OutputKernel> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorContractionOp<const Dimensions, const Derived, const OtherDerived, const OutputKernel>
+ contract(const OtherDerived& other, const Dimensions& dims, const OutputKernel& output_kernel) const {
+ return TensorContractionOp<const Dimensions, const Derived, const OtherDerived, const OutputKernel>(derived(), other.derived(), dims, output_kernel);
}
// Convolutions.
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h b/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h
index 979fcf4d9..85126a127 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h
@@ -85,8 +85,8 @@ template<typename LhsScalar, typename RhsScalar, typename Scalar>
#endif
-template<typename Dimensions, typename LhsXprType, typename RhsXprType>
-struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType> >
+template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType>
+struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> >
{
// Type promotion to handle the case where the types of the lhs and the rhs are different.
typedef typename gebp_traits<typename remove_const<typename LhsXprType::Scalar>::type,
@@ -112,23 +112,24 @@ struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType> >
};
};
-template<typename Dimensions, typename LhsXprType, typename RhsXprType>
-struct eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType>, Eigen::Dense>
+template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType>
+struct eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>, Eigen::Dense>
{
- typedef const TensorContractionOp<Dimensions, LhsXprType, RhsXprType>& type;
+ typedef const TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>& type;
};
-template<typename Dimensions, typename LhsXprType, typename RhsXprType>
-struct nested<TensorContractionOp<Dimensions, LhsXprType, RhsXprType>, 1, typename eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType> >::type>
+template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType>
+struct nested<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>, 1, typename eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> >::type>
{
- typedef TensorContractionOp<Dimensions, LhsXprType, RhsXprType> type;
+ typedef TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> type;
};
-template<typename Indices_, typename LeftArgType_, typename RightArgType_, typename Device_>
-struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_, RightArgType_>, Device_> > {
+template<typename Indices_, typename LeftArgType_, typename RightArgType_, typename OutputKernelType_, typename Device_>
+struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_, RightArgType_, OutputKernelType_>, Device_> > {
typedef Indices_ Indices;
typedef LeftArgType_ LeftArgType;
typedef RightArgType_ RightArgType;
+ typedef OutputKernelType_ OutputKernelType;
typedef Device_ Device;
// From NumDims below.
@@ -137,8 +138,52 @@ struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_,
} // end namespace internal
-template<typename Indices, typename LhsXprType, typename RhsXprType>
-class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXprType, RhsXprType>, ReadOnlyAccessors>
+// Tensor contraction params that should enable to get from output matrix
+// 2-dimensional coordinates to the output tensor dimensions.
+struct TensorContractionParams {
+ // TensorContraction evaluator assumes that both tensors are in ColMajor
+ // layout, if tensors are in RowMajor evaluator swap lhs with rhs.
+ bool swapped_arguments;
+};
+
+// Output kernel allows to fuse operations into the tensor contraction.
+//
+// Examples:
+// 1. Elementwise Relu transformation following Conv2D.
+// 2. AddBias to the Conv2D output channels dimension.
+//
+// See expected implementation in NoOpOutputKernel.
+struct OutputKernel {
+ template <typename Index, typename Scalar>
+ using OutputMapper = internal::blas_data_mapper<Scalar, Index, ColMajor>;
+};
+
+// Output kernel that does absolutely nothing.
+struct NoOpOutputKernel {
+ /**
+ * Tensor contraction evaluator calls this kernel after finishing each block
+ * of output matrix. Output blocks belong to the 2-dimensional output tensor.
+ *
+ * TensorContractionParams contains contraction dimensions information
+ * required to map output 2-d space into the expected output tensor space
+ * (potentially higher dimensional).
+ *
+ * \param[in] output_mapper Access to output tensor memory
+ * \param[in] params Tensor contraction parameters
+ * \param[in] i Index of a first row available through output_mapper
+ * \param[in] j Index of a first column available through output_mapper
+ * \param[in] num_rows Number of available rows
+ * \param[in] num_cols Number of available columns
+ */
+ template <typename Index, typename Scalar>
+ EIGEN_ALWAYS_INLINE void operator()(
+ const OutputKernel::OutputMapper<Index, Scalar>& output_mapper,
+ const TensorContractionParams& params, Index i, Index j, Index num_rows,
+ Index num_cols) const {}
+};
+
+template<typename Indices, typename LhsXprType, typename RhsXprType, typename OutputKernelType>
+class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXprType, RhsXprType, OutputKernelType>, ReadOnlyAccessors>
{
public:
typedef typename Eigen::internal::traits<TensorContractionOp>::Scalar Scalar;
@@ -149,8 +194,10 @@ class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXp
typedef typename Eigen::internal::traits<TensorContractionOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionOp(
- const LhsXprType& lhs, const RhsXprType& rhs, const Indices& dims)
- : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_indices(dims) {}
+ const LhsXprType& lhs, const RhsXprType& rhs, const Indices& dims,
+ const OutputKernelType& output_kernel = OutputKernelType())
+ : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_indices(dims),
+ m_output_kernel(output_kernel) {}
EIGEN_DEVICE_FUNC
const Indices& indices() const { return m_indices; }
@@ -164,10 +211,14 @@ class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXp
const typename internal::remove_all<typename RhsXprType::Nested>::type&
rhsExpression() const { return m_rhs_xpr; }
+ EIGEN_DEVICE_FUNC
+ const OutputKernelType& outputKernel() const { return m_output_kernel; }
+
protected:
typename LhsXprType::Nested m_lhs_xpr;
typename RhsXprType::Nested m_rhs_xpr;
const Indices m_indices;
+ const OutputKernelType m_output_kernel;
};
@@ -177,9 +228,10 @@ struct TensorContractionEvaluatorBase
typedef typename internal::traits<Derived>::Indices Indices;
typedef typename internal::traits<Derived>::LeftArgType LeftArgType;
typedef typename internal::traits<Derived>::RightArgType RightArgType;
+ typedef typename internal::traits<Derived>::OutputKernelType OutputKernelType;
typedef typename internal::traits<Derived>::Device Device;
- typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
+ typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
@@ -221,6 +273,7 @@ struct TensorContractionEvaluatorBase
op.lhsExpression(), op.rhsExpression()), device),
m_rightImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(),
op.rhsExpression(), op.lhsExpression()), device),
+ m_output_kernel(op.outputKernel()),
m_device(device),
m_result(NULL) {
EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) ==
@@ -391,6 +444,13 @@ struct TensorContractionEvaluatorBase
numext::swap(m_dimensions[i], m_dimensions[j]);
}
}
+
+ // A set of parameters that will allow output kernel to get from output
+ // tensor dimensions (i, j) into the original tensor dimensions.
+ // TODO(ezhulenev): Add parameters required to infer output tensor index for
+ // more complex contractions than 2x2 on internal dimension.
+ m_tensor_contraction_params = {
+ /**swapped_arguments=*/static_cast<int>(Layout) == RowMajor};
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
@@ -585,7 +645,15 @@ struct TensorContractionEvaluatorBase
// call gebp (matrix kernel)
// The parameters here are copied from Eigen's GEMM implementation
- gebp(output.getSubMapper(i2, j2), blockA, blockB, actual_mc, actual_kc, actual_nc, Scalar(1), -1, -1, 0, 0);
+ const auto output_mapper = output.getSubMapper(i2, j2);
+ gebp(output_mapper, blockA, blockB, actual_mc, actual_kc, actual_nc,
+ Scalar(1), -1, -1, 0, 0);
+
+ // We are done with this [i2, j2] output block.
+ if (k2 + kc >= k) {
+ m_output_kernel(output_mapper, m_tensor_contraction_params, i2, j2,
+ actual_mc, actual_nc);
+ }
}
}
}
@@ -848,23 +916,26 @@ protected:
Index m_j_size;
Index m_k_size;
+ TensorContractionParams m_tensor_contraction_params;
+
TensorEvaluator<EvalLeftArgType, Device> m_leftImpl;
TensorEvaluator<EvalRightArgType, Device> m_rightImpl;
const Device& m_device;
+ OutputKernelType m_output_kernel;
Scalar* m_result;
bool m_can_use_xsmm;
};
// evaluator for default device
-template<typename Indices, typename LeftArgType, typename RightArgType, typename Device>
-struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> :
+template<typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType, typename Device>
+struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> :
public TensorContractionEvaluatorBase<
- TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> > {
- typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
+ TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> > {
+ typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> Self;
typedef TensorContractionEvaluatorBase<Self> Base;
- typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
+ typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h b/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h
index 3c007b183..d7536bd6a 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h
@@ -56,16 +56,16 @@ struct packRhsAndKernelArg {
} // end namespace internal
#endif // EIGEN_USE_SIMPLE_THREAD_POOL
-template<typename Indices, typename LeftArgType, typename RightArgType>
-struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> :
- public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> > {
+template<typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType>
+struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice> :
+ public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice> > {
typedef ThreadPoolDevice Device;
- typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
+ typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> Self;
typedef TensorContractionEvaluatorBase<Self> Base;
- typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
+ typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
@@ -308,7 +308,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
this->m_k_strides);
Context<LhsPacker, RhsPacker, GebpKernel, LhsMapper, RhsMapper,
- OutputMapper>(this->m_device, num_threads, lhs, rhs, buffer, m, n,
+ OutputMapper>(this, num_threads, lhs, rhs, buffer, m, n,
k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, nn0,
shard_by_col, parallel_pack)
.run();
@@ -319,16 +319,18 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
typename LhsMapper, typename RhsMapper, typename OutputMapper>
class Context {
public:
- Context(const Device& device, int num_threads, LhsMapper& lhs,
+ Context(const Self* self, int num_threads, LhsMapper& lhs,
RhsMapper& rhs, Scalar* buffer, Index tm, Index tn, Index tk, Index bm,
Index bn, Index bk, Index nm, Index nn, Index nk, Index gm,
Index gn, Index nm0, Index nn0, bool shard_by_col,
bool parallel_pack)
- : device_(device),
+ : device_(self->m_device),
lhs_(lhs),
rhs_(rhs),
buffer_(buffer),
output_(buffer, tm),
+ output_kernel_(self->m_output_kernel),
+ tensor_contraction_params_(self->m_tensor_contraction_params),
num_threads_(num_threads),
shard_by_col_(shard_by_col),
parallel_pack_(parallel_pack),
@@ -420,6 +422,8 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
RhsMapper& rhs_;
Scalar* const buffer_;
OutputMapper output_;
+ OutputKernelType output_kernel_;
+ TensorContractionParams tensor_contraction_params_;
const int num_threads_;
const bool shard_by_col_;
const bool parallel_pack_;
@@ -536,19 +540,32 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
const Index mend = m * gm_ + gm(m);
if (shard_by_col_) {
for (Index n1 = n * gn_; n1 < nend; n1++) {
- for (Index m1 = m * gm_; m1 < mend; m1++)
- GebpKernel()(output_.getSubMapper(m1 * bm_, n1 * bn_),
- packed_lhs_[k % (P - 1)][m1],
+ for (Index m1 = m * gm_; m1 < mend; m1++) {
+ const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_);
+ GebpKernel()(output_mapper, packed_lhs_[k % (P - 1)][m1],
packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1),
Scalar(1), -1, -1, 0, 0);
+
+ // We are done with the last task for the [m1, n1] block.
+ if (k + 1 == nk_) {
+ output_kernel_(output_mapper, tensor_contraction_params_,
+ m1 * bm_, n1 * bn_, bm(m1), bn(n1));
+ }
+ }
}
} else {
for (Index m1 = m * gm_; m1 < mend; m1++)
for (Index n1 = n * gn_; n1 < nend; n1++) {
- GebpKernel()(output_.getSubMapper(m1 * bm_, n1 * bn_),
- packed_lhs_[k % (P - 1)][m1],
+ const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_);
+ GebpKernel()(output_mapper, packed_lhs_[k % (P - 1)][m1],
packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1),
Scalar(1), -1, -1, 0, 0);
+
+ // We are done with the last task for the [m1, n1] block.
+ if (k + 1 == nk_) {
+ output_kernel_(output_mapper, tensor_contraction_params_,
+ m1 * bm_, n1 * bn_, bm(m1), bn(n1));
+ }
}
}
signal_kernel(m, n, k + 1, false);
@@ -747,6 +764,10 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
}
#else // EIGEN_USE_SIMPLE_THREAD_POOL
+ // TODO(ezhulenev): SimpleThreadPool will be removed in the future, and seems
+ // like it's not worth adding output kernel support here.
+ static_assert(std::is_same<OutputKernelType, const NoOpOutputKernel>::value,
+ "SimpleThreadPool does not support contraction output kernels.");
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
void evalProduct(Scalar* buffer) const {
@@ -1065,6 +1086,10 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
}
#if defined(EIGEN_VECTORIZE_AVX) && defined(EIGEN_USE_LIBXSMM)
+ // TODO(ezhulenev): Add support for output kernels and LIBXSMM.
+ static_assert(std::is_same<OutputKernelType, const NoOpOutputKernel>::value,
+ "XSMM does not support contraction output kernels.");
+
template<int Alignment>
class ContextXsmm {
public:
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h b/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h
index 6c237bac3..19e456e19 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h
@@ -65,7 +65,7 @@ template<typename Op, typename Dims, typename XprType, template <class> class Ma
template<typename XprType> class TensorIndexTupleOp;
template<typename ReduceOp, typename Dims, typename XprType> class TensorTupleReducerOp;
template<typename Axis, typename LeftXprType, typename RightXprType> class TensorConcatenationOp;
-template<typename Dimensions, typename LeftXprType, typename RightXprType> class TensorContractionOp;
+template<typename Dimensions, typename LeftXprType, typename RightXprType, typename OutputKernelType> class TensorContractionOp;
template<typename TargetType, typename XprType> class TensorConversionOp;
template<typename Dimensions, typename InputXprType, typename KernelXprType> class TensorConvolutionOp;
template<typename FFT, typename XprType, int FFTDataType, int FFTDirection> class TensorFFTOp;
@@ -97,6 +97,8 @@ template<typename XprType> class TensorForcedEvalOp;
template<typename ExpressionType, typename DeviceType> class TensorDevice;
template<typename Derived, typename Device> struct TensorEvaluator;
+class NoOpOutputKernel;
+
struct DefaultDevice;
struct ThreadPoolDevice;
struct GpuDevice;
diff --git a/unsupported/test/cxx11_tensor_contraction.cpp b/unsupported/test/cxx11_tensor_contraction.cpp
index ace97057f..918c96277 100644
--- a/unsupported/test/cxx11_tensor_contraction.cpp
+++ b/unsupported/test/cxx11_tensor_contraction.cpp
@@ -510,6 +510,55 @@ static void test_const_inputs()
VERIFY_IS_APPROX(mat3(1,1), mat1(1,0)*mat2(0,1) + mat1(1,1)*mat2(1,1) + mat1(1,2)*mat2(2,1));
}
+// Apply Sqrt to all output elements.
+struct SqrtOutputKernel {
+ template <typename Index, typename Scalar>
+ EIGEN_ALWAYS_INLINE void operator()(
+ const OutputKernel::OutputMapper<Index, Scalar>& output_mapper,
+ const TensorContractionParams&, Index, Index, Index num_rows,
+ Index num_cols) const {
+ for (int i = 0; i < num_rows; ++i) {
+ for (int j = 0; j < num_cols; ++j) {
+ output_mapper(i, j) = std::sqrt(output_mapper(i, j));
+ }
+ }
+ }
+};
+
+template <int DataLayout>
+static void test_large_contraction_with_output_kernel() {
+ Tensor<float, 4, DataLayout> t_left(30, 50, 8, 31);
+ Tensor<float, 5, DataLayout> t_right(8, 31, 7, 20, 10);
+ Tensor<float, 5, DataLayout> t_result(30, 50, 7, 20, 10);
+
+ t_left.setRandom();
+ t_right.setRandom();
+ // Put trash in mat4 to verify contraction clears output memory.
+ t_result.setRandom();
+
+ // Add a little offset so that the results won't be close to zero.
+ t_left += t_left.constant(1.0f);
+ t_right += t_right.constant(1.0f);
+
+ typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf;
+ MapXf m_left(t_left.data(), 1500, 248);
+ MapXf m_right(t_right.data(), 248, 1400);
+ Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(1500, 1400);
+
+ // this contraction should be equivalent to a single matrix multiplication
+ Eigen::array<DimPair, 2> dims({{DimPair(2, 0), DimPair(3, 1)}});
+
+ // compute results by separate methods
+ t_result = t_left.contract(t_right, dims, SqrtOutputKernel());
+
+ m_result = m_left * m_right;
+
+ for (size_t i = 0; i < t_result.dimensions().TotalSize(); i++) {
+ VERIFY(&t_result.data()[i] != &m_result.data()[i]);
+ VERIFY_IS_APPROX(t_result.data()[i], std::sqrt(m_result.data()[i]));
+ }
+}
+
void test_cxx11_tensor_contraction()
{
CALL_SUBTEST(test_evals<ColMajor>());
@@ -542,4 +591,6 @@ void test_cxx11_tensor_contraction()
CALL_SUBTEST(test_tensor_product<RowMajor>());
CALL_SUBTEST(test_const_inputs<ColMajor>());
CALL_SUBTEST(test_const_inputs<RowMajor>());
+ CALL_SUBTEST(test_large_contraction_with_output_kernel<ColMajor>());
+ CALL_SUBTEST(test_large_contraction_with_output_kernel<RowMajor>());
}
diff --git a/unsupported/test/cxx11_tensor_thread_pool.cpp b/unsupported/test/cxx11_tensor_thread_pool.cpp
index 2ef665f30..ea9d8afdc 100644
--- a/unsupported/test/cxx11_tensor_thread_pool.cpp
+++ b/unsupported/test/cxx11_tensor_thread_pool.cpp
@@ -232,6 +232,60 @@ void test_multithread_contraction_agrees_with_singlethread() {
}
}
+// Apply Sqrt to all output elements.
+struct SqrtOutputKernel {
+ template <typename Index, typename Scalar>
+ EIGEN_ALWAYS_INLINE void operator()(
+ const OutputKernel::OutputMapper<Index, Scalar>& output_mapper,
+ const TensorContractionParams&, Index, Index, Index num_rows,
+ Index num_cols) const {
+ for (int i = 0; i < num_rows; ++i) {
+ for (int j = 0; j < num_cols; ++j) {
+ output_mapper(i, j) = std::sqrt(output_mapper(i, j));
+ }
+ }
+ }
+};
+
+template <int DataLayout>
+static void test_multithread_contraction_with_output_kernel() {
+ typedef Tensor<float, 1>::DimensionPair DimPair;
+
+ const int num_threads = internal::random<int>(2, 11);
+ ThreadPool threads(num_threads);
+ Eigen::ThreadPoolDevice device(&threads, num_threads);
+
+ Tensor<float, 4, DataLayout> t_left(30, 50, 8, 31);
+ Tensor<float, 5, DataLayout> t_right(8, 31, 7, 20, 10);
+ Tensor<float, 5, DataLayout> t_result(30, 50, 7, 20, 10);
+
+ t_left.setRandom();
+ t_right.setRandom();
+ // Put trash in mat4 to verify contraction clears output memory.
+ t_result.setRandom();
+
+ // Add a little offset so that the results won't be close to zero.
+ t_left += t_left.constant(1.0f);
+ t_right += t_right.constant(1.0f);
+
+ typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf;
+ MapXf m_left(t_left.data(), 1500, 248);
+ MapXf m_right(t_right.data(), 248, 1400);
+ Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(1500, 1400);
+
+ // this contraction should be equivalent to a single matrix multiplication
+ Eigen::array<DimPair, 2> dims({{DimPair(2, 0), DimPair(3, 1)}});
+
+ // compute results by separate methods
+ t_result.device(device) = t_left.contract(t_right, dims, SqrtOutputKernel());
+
+ m_result = m_left * m_right;
+
+ for (size_t i = 0; i < t_result.dimensions().TotalSize(); i++) {
+ VERIFY(&t_result.data()[i] != &m_result.data()[i]);
+ VERIFY_IS_APPROX(t_result.data()[i], std::sqrt(m_result.data()[i]));
+ }
+}
template<int DataLayout>
void test_full_contraction() {
@@ -355,6 +409,8 @@ void test_cxx11_tensor_thread_pool()
CALL_SUBTEST_3(test_multithread_contraction_agrees_with_singlethread<ColMajor>());
CALL_SUBTEST_3(test_multithread_contraction_agrees_with_singlethread<RowMajor>());
+ CALL_SUBTEST_3(test_multithread_contraction_with_output_kernel<ColMajor>());
+ CALL_SUBTEST_3(test_multithread_contraction_with_output_kernel<RowMajor>());
// Exercise various cases that have been problematic in the past.
CALL_SUBTEST_4(test_contraction_corner_cases<ColMajor>());