summaryrefslogtreecommitdiff
path: root/plugins/ao/eng_ssf/scsp.c
blob: f3a3d9dacdee79374a7b4dfa0f6b3038724320df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
/*
    Sega/Yamaha YMF292-F (SCSP = Saturn Custom Sound Processor) emulation
    By ElSemi
    MAME/M1 conversion and cleanup by R. Belmont
    Additional code and bugfixes by kingshriek

    This chip has 32 voices.  Each voice can play a sample or be part of
    an FM construct.  Unlike traditional Yamaha FM chips, the base waveform
    for the FM still comes from the wavetable RAM.

    ChangeLog:
    * November 25, 2003 (ES) Fixed buggy timers and envelope overflows.
                        (RB) Improved sample rates other than 44100, multiple
                             chips now works properly.
    * December 02, 2003 (ES) Added DISDL register support, improves mix.
    * April 28, 2004    (ES) Corrected envelope rates, added key-rate scaling,
                             added ringbuffer support.
    * January 8, 2005   (RB) Added ability to specify region offset for RAM.
    * January 26, 2007  (ES) Added on-board DSP capability
    * December 16, 2007 (kingshriek) Many EG bug fixes, implemented effects mixer,
                             implemented FM.
*/

#include <math.h>
#include <string.h>
#include "ao.h"
#include "cpuintrf.h"
#include "scsp.h"
#include "scspdsp.h"
#include "sat_hw.h"

#define ICLIP16(x) (x<-32768)?-32768:((x>32767)?32767:x)

#define SHIFT	12
#define FIX(v)	((UINT32) ((float) (1<<SHIFT)*(v)))


#define EG_SHIFT	16
#define FM_DELAY    0   // delay in number of slots processed before samples are written to the FM ring buffer

// include the LFO handling code
#include "scsplfo.c"

/*
    SCSP features 32 programmable slots
    that can generate FM and PCM (from ROM/RAM) sound
*/

//SLOT PARAMETERS
#define KEYONEX(slot)		((slot->udata.data[0x0]>>0x0)&0x1000)
#define KEYONB(slot)		((slot->udata.data[0x0]>>0x0)&0x0800)
#define SBCTL(slot)		((slot->udata.data[0x0]>>0x9)&0x0003)
#define SSCTL(slot)		((slot->udata.data[0x0]>>0x7)&0x0003)
#define LPCTL(slot)		((slot->udata.data[0x0]>>0x5)&0x0003)
#define PCM8B(slot)		((slot->udata.data[0x0]>>0x0)&0x0010)

#define SA(slot)		(((slot->udata.data[0x0]&0xF)<<16)|(slot->udata.data[0x1]))

#define LSA(slot)		(slot->udata.data[0x2])

#define LEA(slot)		(slot->udata.data[0x3])

#define D2R(slot)		((slot->udata.data[0x4]>>0xB)&0x001F)
#define D1R(slot)		((slot->udata.data[0x4]>>0x6)&0x001F)
#define EGHOLD(slot)		((slot->udata.data[0x4]>>0x0)&0x0020)
#define AR(slot)		((slot->udata.data[0x4]>>0x0)&0x001F)

#define LPSLNK(slot)		((slot->udata.data[0x5]>>0x0)&0x4000)
#define KRS(slot)		((slot->udata.data[0x5]>>0xA)&0x000F)
#define DL(slot)		((slot->udata.data[0x5]>>0x5)&0x001F)
#define RR(slot)		((slot->udata.data[0x5]>>0x0)&0x001F)

#define STWINH(slot)		((slot->udata.data[0x6]>>0x0)&0x0200)
#define SDIR(slot)		((slot->udata.data[0x6]>>0x0)&0x0100)
#define TL(slot)		((slot->udata.data[0x6]>>0x0)&0x00FF)

#define MDL(slot)		((slot->udata.data[0x7]>>0xC)&0x000F)
#define MDXSL(slot)		((slot->udata.data[0x7]>>0x6)&0x003F)
#define MDYSL(slot)		((slot->udata.data[0x7]>>0x0)&0x003F)

#define OCT(slot)		((slot->udata.data[0x8]>>0xB)&0x000F)
#define FNS(slot)		((slot->udata.data[0x8]>>0x0)&0x03FF)

#define LFORE(slot)		((slot->udata.data[0x9]>>0x0)&0x8000)
#define LFOF(slot)		((slot->udata.data[0x9]>>0xA)&0x001F)
#define PLFOWS(slot)		((slot->udata.data[0x9]>>0x8)&0x0003)
#define PLFOS(slot)		((slot->udata.data[0x9]>>0x5)&0x0007)
#define ALFOWS(slot)		((slot->udata.data[0x9]>>0x3)&0x0003)
#define ALFOS(slot)		((slot->udata.data[0x9]>>0x0)&0x0007)

#define ISEL(slot)		((slot->udata.data[0xA]>>0x3)&0x000F)
#define IMXL(slot)		((slot->udata.data[0xA]>>0x0)&0x0007)

#define DISDL(slot)		((slot->udata.data[0xB]>>0xD)&0x0007)
#define DIPAN(slot)		((slot->udata.data[0xB]>>0x8)&0x001F)
#define EFSDL(slot)		((slot->udata.data[0xB]>>0x5)&0x0007)
#define EFPAN(slot)		((slot->udata.data[0xB]>>0x0)&0x001F)

//Envelope times in ms
static const double ARTimes[64]={100000/*infinity*/,100000/*infinity*/,8100.0,6900.0,6000.0,4800.0,4000.0,3400.0,3000.0,2400.0,2000.0,1700.0,1500.0,
					1200.0,1000.0,860.0,760.0,600.0,500.0,430.0,380.0,300.0,250.0,220.0,190.0,150.0,130.0,110.0,95.0,
					76.0,63.0,55.0,47.0,38.0,31.0,27.0,24.0,19.0,15.0,13.0,12.0,9.4,7.9,6.8,6.0,4.7,3.8,3.4,3.0,2.4,
					2.0,1.8,1.6,1.3,1.1,0.93,0.85,0.65,0.53,0.44,0.40,0.35,0.0,0.0};
static const double DRTimes[64]={100000/*infinity*/,100000/*infinity*/,118200.0,101300.0,88600.0,70900.0,59100.0,50700.0,44300.0,35500.0,29600.0,25300.0,22200.0,17700.0,
					14800.0,12700.0,11100.0,8900.0,7400.0,6300.0,5500.0,4400.0,3700.0,3200.0,2800.0,2200.0,1800.0,1600.0,1400.0,1100.0,
					920.0,790.0,690.0,550.0,460.0,390.0,340.0,270.0,230.0,200.0,170.0,140.0,110.0,98.0,85.0,68.0,57.0,49.0,43.0,34.0,
					28.0,25.0,22.0,18.0,14.0,12.0,11.0,8.5,7.1,6.1,5.4,4.3,3.6,3.1};
static UINT32 FNS_Table[0x400];
static INT32 EG_TABLE[0x400];

typedef enum {ATTACK,DECAY1,DECAY2,RELEASE} _STATE;
struct _EG
{
	int volume;	//
	_STATE state;
	int step;
	//step vals
	int AR;		//Attack
	int D1R;	//Decay1
	int D2R;	//Decay2
	int RR;		//Release

	int DL;		//Decay level
	UINT8 EGHOLD;
	UINT8 LPLINK;
};

struct _SLOT
{
	union
	{
		UINT16 data[0x10];	//only 0x1a bytes used
		UINT8 datab[0x20];
	} udata;
	UINT8 active;	//this slot is currently playing
	UINT8 *base;		//samples base address
	UINT32 cur_addr;	//current play address (24.8)
	UINT32 nxt_addr;	//next play address
	UINT32 step;		//pitch step (24.8)
	UINT8 Backwards;	//the wave is playing backwards
	struct _EG EG;			//Envelope
	struct _LFO PLFO;		//Phase LFO
	struct _LFO ALFO;		//Amplitude LFO
	int slot;
	signed short Prev;	//Previous sample (for interpolation)
};

#define MEM4B(scsp)		((scsp->udata.data[0]>>0x0)&0x0200)
#define DAC18B(scsp)		((scsp->udata.data[0]>>0x0)&0x0100)
#define MVOL(scsp)		((scsp->udata.data[0]>>0x0)&0x000F)
#define RBL(scsp)		((scsp->udata.data[1]>>0x7)&0x0003)
#define RBP(scsp)		((scsp->udata.data[1]>>0x0)&0x003F)
#define MOFULL(scsp)   		((scsp->udata.data[2]>>0x0)&0x1000)
#define MOEMPTY(scsp)		((scsp->udata.data[2]>>0x0)&0x0800)
#define MIOVF(scsp)		((scsp->udata.data[2]>>0x0)&0x0400)
#define MIFULL(scsp)		((scsp->udata.data[2]>>0x0)&0x0200)
#define MIEMPTY(scsp)		((scsp->udata.data[2]>>0x0)&0x0100)

#define SCILV0(scsp)    	((scsp->udata.data[0x24/2]>>0x0)&0xff)
#define SCILV1(scsp)    	((scsp->udata.data[0x26/2]>>0x0)&0xff)
#define SCILV2(scsp)    	((scsp->udata.data[0x28/2]>>0x0)&0xff)

#define SCIEX0	0
#define SCIEX1	1
#define SCIEX2	2
#define SCIMID	3
#define SCIDMA	4
#define SCIIRQ	5
#define SCITMA	6
#define SCITMB	7

#define USEDSP

struct m68ki_cpu_core_s;

struct _SCSP
{
	union
	{
		UINT16 data[0x30/2];
		UINT8 datab[0x30];
	} udata;
	struct _SLOT Slots[32];
	signed short RINGBUF[64];
	unsigned char BUFPTR;
#if FM_DELAY
	signed short DELAYBUF[FM_DELAY];
	unsigned char DELAYPTR;
#endif
	unsigned char *SCSPRAM;
	UINT32 SCSPRAM_LENGTH;
	char Master;
	void (*Int68kCB)(struct m68ki_cpu_core_s *cpu, int irq);

	INT32 *buffertmpl, *buffertmpr;

	UINT32 IrqTimA;
	UINT32 IrqTimBC;
	UINT32 IrqMidi;

	UINT8 MidiOutW,MidiOutR;
	UINT8 MidiStack[16];
	UINT8 MidiW,MidiR;

	int LPANTABLE[0x10000];
	int RPANTABLE[0x10000];

	int TimPris[3];
	int TimCnt[3];

	// DMA stuff
	UINT32 scsp_dmea;
	UINT16 scsp_drga;
	UINT16 scsp_dtlg;

	int ARTABLE[64], DRTABLE[64];

    struct m68ki_cpu_core_s *cpu;
	struct _SCSPDSP DSP;

    INT16 *bufferl;
    INT16 *bufferr;

    int length;

    signed short *RBUFDST;	//this points to where the sample will be stored in the RingBuf
};

static void dma_scsp(struct _SCSP *SCSP); 		/*SCSP DMA transfer function*/
#define	scsp_dgate		scsp_regs[0x16/2] & 0x4000
#define	scsp_ddir		scsp_regs[0x16/2] & 0x2000
#define scsp_dexe 		scsp_regs[0x16/2] & 0x1000
#define dma_transfer_end	((scsp_regs[0x24/2] & 0x10)>>4)|(((scsp_regs[0x26/2] & 0x10)>>4)<<1)|(((scsp_regs[0x28/2] & 0x10)>>4)<<2)

static const float SDLT[8]={-1000000.0,-36.0,-30.0,-24.0,-18.0,-12.0,-6.0,0.0};

static unsigned char DecodeSCI(struct _SCSP *SCSP,unsigned char irq)
{
	unsigned char SCI=0;
	unsigned char v;
	v=(SCILV0((SCSP))&(1<<irq))?1:0;
	SCI|=v;
	v=(SCILV1((SCSP))&(1<<irq))?1:0;
	SCI|=v<<1;
	v=(SCILV2((SCSP))&(1<<irq))?1:0;
	SCI|=v<<2;
	return SCI;
}

static void ResetInterrupts(struct _SCSP *SCSP)
{
	UINT32 reset = SCSP->udata.data[0x22/2];
	if (reset & 0x40)
		SCSP->Int68kCB(SCSP->cpu, -SCSP->IrqTimA);
	if (reset & 0x180)
		SCSP->Int68kCB(SCSP->cpu, -SCSP->IrqTimBC);
}

static void CheckPendingIRQ(struct _SCSP *SCSP)
{
	UINT32 pend=SCSP->udata.data[0x20/2];
	UINT32 en=SCSP->udata.data[0x1e/2];
	if(SCSP->MidiW!=SCSP->MidiR)
	{
		SCSP->Int68kCB(SCSP->cpu, SCSP->IrqMidi);
		return;
	}
	if(!pend)
		return;
	if(pend&0x40)
		if(en&0x40)
		{
			SCSP->Int68kCB(SCSP->cpu, SCSP->IrqTimA);
			return;
		}
	if(pend&0x80)
		if(en&0x80)
		{
			SCSP->Int68kCB(SCSP->cpu, SCSP->IrqTimBC);
			return;
		}
	if(pend&0x100)
		if(en&0x100)
		{
			SCSP->Int68kCB(SCSP->cpu, SCSP->IrqTimBC);
			return;
		}

	SCSP->Int68kCB(SCSP->cpu, 0);
}

static int Get_AR(struct _SCSP *SCSP,int base,int R)
{
	int Rate=base+(R<<1);
	if(Rate>63)	Rate=63;
	if(Rate<0) Rate=0;
	return SCSP->ARTABLE[Rate];
}

static int Get_DR(struct _SCSP *SCSP,int base,int R)
{
	int Rate=base+(R<<1);
	if(Rate>63)	Rate=63;
	if(Rate<0) Rate=0;
	return SCSP->DRTABLE[Rate];
}

static int Get_RR(struct _SCSP *SCSP,int base,int R)
{
	int Rate=base+(R<<1);
	if(Rate>63)	Rate=63;
	if(Rate<0) Rate=0;
	return SCSP->DRTABLE[Rate];
}

static void Compute_EG(struct _SCSP *SCSP,struct _SLOT *slot)
{
	int octave=OCT(slot);
	int rate;
	if(octave&8) octave=octave-16;
	if(KRS(slot)!=0xf)
		rate=octave+2*KRS(slot)+((FNS(slot)>>9)&1);
	else
		rate=0; //rate=((FNS(slot)>>9)&1);

	slot->EG.volume=0x17F<<EG_SHIFT;
	slot->EG.AR=Get_AR(SCSP,rate,AR(slot));
	slot->EG.D1R=Get_DR(SCSP,rate,D1R(slot));
	slot->EG.D2R=Get_DR(SCSP,rate,D2R(slot));
	slot->EG.RR=Get_RR(SCSP,rate,RR(slot));
	slot->EG.DL=0x1f-DL(slot);
	slot->EG.EGHOLD=EGHOLD(slot);
}

static void SCSP_StopSlot(struct _SLOT *slot,int keyoff);

static int EG_Update(struct _SLOT *slot)
{
	switch(slot->EG.state)
	{
		case ATTACK:
			slot->EG.volume+=slot->EG.AR;
			if(slot->EG.volume>=(0x3ff<<EG_SHIFT))
			{
				if (!LPSLNK(slot)) 
				{
					slot->EG.state=DECAY1;
					if(slot->EG.D1R>=(1024<<EG_SHIFT)) //Skip DECAY1, go directly to DECAY2
						slot->EG.state=DECAY2;
				}
				slot->EG.volume=0x3ff<<EG_SHIFT;
			}
			if(slot->EG.EGHOLD)
				return 0x3ff<<(SHIFT-10);
			break;
		case DECAY1:
			slot->EG.volume-=slot->EG.D1R;
			if(slot->EG.volume<=0)
				slot->EG.volume=0;
			if(slot->EG.volume>>(EG_SHIFT+5)<=slot->EG.DL)
				slot->EG.state=DECAY2;
			break;
		case DECAY2:
			if(D2R(slot)==0)
				return (slot->EG.volume>>EG_SHIFT)<<(SHIFT-10);
			slot->EG.volume-=slot->EG.D2R;
			if(slot->EG.volume<=0)
				slot->EG.volume=0;

			break;
		case RELEASE:
			slot->EG.volume-=slot->EG.RR;
			if(slot->EG.volume<=0)
			{
				slot->EG.volume=0;
				SCSP_StopSlot(slot,0);
				//slot->EG.volume=0x17F<<EG_SHIFT;
				//slot->EG.state=ATTACK;
			}
			break;
		default:
			return 1<<SHIFT;
	}
	return (slot->EG.volume>>EG_SHIFT)<<(SHIFT-10);
}

static UINT32 SCSP_Step(struct _SLOT *slot)
{
	int octave=OCT(slot);
	UINT64 Fn;

	Fn=(FNS_Table[FNS(slot)]);	//24.8
	if(octave&8)
		Fn>>=(16-octave);
	else
		Fn<<=octave;

	return Fn/(44100);
}


static void Compute_LFO(struct _SLOT *slot)
{
	if(PLFOS(slot)!=0)
		LFO_ComputeStep(&(slot->PLFO),LFOF(slot),PLFOWS(slot),PLFOS(slot),0);
	if(ALFOS(slot)!=0)
		LFO_ComputeStep(&(slot->ALFO),LFOF(slot),ALFOWS(slot),ALFOS(slot),1);
}

static void SCSP_StartSlot(struct _SCSP *SCSP, struct _SLOT *slot)
{
	UINT32 start_offset;
	slot->active=1;
	slot->Backwards=0;
	slot->cur_addr=0; slot->nxt_addr=1<<SHIFT;
	start_offset = PCM8B(slot) ? SA(slot) : SA(slot) & 0x7FFFE;
	slot->base=SCSP->SCSPRAM + start_offset;
	slot->step=SCSP_Step(slot);
	Compute_EG(SCSP,slot);
	slot->EG.state=ATTACK;
	slot->EG.volume=0x17F<<EG_SHIFT;
	slot->Prev=0;
	Compute_LFO(slot);

//	printf("StartSlot: SA %x PCM8B %x LPCTL %x ALFOS %x STWINH %x TL %x EFSDL %x\n", SA(slot), PCM8B(slot), LPCTL(slot), ALFOS(slot), STWINH(slot), TL(slot), EFSDL(slot));
//	printf("           AR %x D1R %x D2R %x RR %x DL %x KRS %x EGHOLD %x LPSLNK %x\n", AR(slot), D1R(slot), D2R(slot), RR(slot), DL(slot), KRS(slot), EGHOLD(slot), LPSLNK(slot));
}

static void SCSP_StopSlot(struct _SLOT *slot,int keyoff)
{
	if(keyoff /*&& slot->EG.state!=RELEASE*/)
	{
		slot->EG.state=RELEASE;
	}
	else
	{
		slot->active=0;
	}
	slot->udata.data[0]&=~0x800;
}

#define log_base_2(n) (log((float) n)/log((float) 2))

static void SCSP_Init(struct _SCSP *SCSP, const struct SCSPinterface *intf)
{
	int i=0;

	SCSP->IrqTimA = SCSP->IrqTimBC = SCSP->IrqMidi = 0;
	SCSP->MidiR=SCSP->MidiW=0;
	SCSP->MidiOutR=SCSP->MidiOutW=0;

	// get SCSP RAM
	{
		memset(SCSP,0,sizeof(*SCSP));
        SCSP->cpu = intf->cpu;

		if (!i)
		{
			SCSP->Master=1;
		}
		else
		{
			SCSP->Master=0;
		}

		if (intf->region)
		{
			SCSP->SCSPRAM = (unsigned char *)intf->region[0];
			SCSP->SCSPRAM_LENGTH = 512*1024;
			SCSP->DSP.SCSPRAM = (UINT16 *)SCSP->SCSPRAM;
			SCSP->DSP.SCSPRAM_LENGTH =  (512*1024)/2;
//			SCSP->SCSPRAM += intf->roffset;
		}
	}

	for(i=0;i<0x400;++i)
	{
		float fcent=(double) 1200.0*log_base_2((double)(((double) 1024.0+(double)i)/(double)1024.0));
		fcent=(double) 44100.0*pow(2.0,fcent/1200.0);
		FNS_Table[i]=(float) (1<<SHIFT) *fcent;
	}
	
	for(i=0;i<0x400;++i)
	{
		float envDB=((float)(3*(i-0x3ff)))/32.0;
		float scale=(float)(1<<SHIFT);
		EG_TABLE[i]=(INT32)(pow(10.0,envDB/20.0)*scale);
	}

	for(i=0;i<0x10000;++i)
	{
		int iTL =(i>>0x0)&0xff;
		int iPAN=(i>>0x8)&0x1f;
		int iSDL=(i>>0xD)&0x07;
		float TL=1.0;
		float SegaDB=0;
		float fSDL=1.0;
		float PAN=1.0;
		float LPAN,RPAN;

		if(iTL&0x01) SegaDB-=0.4;
		if(iTL&0x02) SegaDB-=0.8;
		if(iTL&0x04) SegaDB-=1.5;
		if(iTL&0x08) SegaDB-=3;
		if(iTL&0x10) SegaDB-=6;
		if(iTL&0x20) SegaDB-=12;
		if(iTL&0x40) SegaDB-=24;
		if(iTL&0x80) SegaDB-=48;

		TL=pow(10.0,SegaDB/20.0);

		SegaDB=0;
		if(iPAN&0x1) SegaDB-=3;
		if(iPAN&0x2) SegaDB-=6;
		if(iPAN&0x4) SegaDB-=12;
		if(iPAN&0x8) SegaDB-=24;

		if((iPAN&0xf)==0xf) PAN=0.0;
		else PAN=pow(10.0,SegaDB/20.0);

		if(iPAN<0x10)
		{
			LPAN=PAN;
			RPAN=1.0;
		}
		else
		{
			RPAN=PAN;
			LPAN=1.0;
		}

		if(iSDL)
			fSDL=pow(10.0,(SDLT[iSDL])/20.0);
		else
			fSDL=0.0;

		SCSP->LPANTABLE[i]=FIX((4.0*LPAN*TL*fSDL));
		SCSP->RPANTABLE[i]=FIX((4.0*RPAN*TL*fSDL));
	}

	SCSP->ARTABLE[0]=SCSP->DRTABLE[0]=0;	//Infinite time
	SCSP->ARTABLE[1]=SCSP->DRTABLE[1]=0;	//Infinite time
	for(i=2;i<64;++i)
	{
		double t,step,scale;
		t=ARTimes[i];	//In ms
		if(t!=0.0)
		{
			step=(1023*1000.0)/((float) 44100.0f*t);
			scale=(double) (1<<EG_SHIFT);
			SCSP->ARTABLE[i]=(int) (step*scale);
		}
		else
			SCSP->ARTABLE[i]=1024<<EG_SHIFT;

		t=DRTimes[i];	//In ms
		step=(1023*1000.0)/((float) 44100.0f*t);
		scale=(double) (1<<EG_SHIFT);
		SCSP->DRTABLE[i]=(int) (step*scale);
	}

	// make sure all the slots are off
	for(i=0;i<32;++i)
	{
		SCSP->Slots[i].slot=i;
		SCSP->Slots[i].active=0;
		SCSP->Slots[i].base=NULL;
	}

	LFO_Init();
	SCSP->buffertmpl=(signed int*) malloc(44100*sizeof(signed int));
	SCSP->buffertmpr=(signed int*) malloc(44100*sizeof(signed int));
	memset(SCSP->buffertmpl,0,44100*sizeof(signed int));
	memset(SCSP->buffertmpr,0,44100*sizeof(signed int));

	// no "pend"
	SCSP[0].udata.data[0x20/2] = 0;
	//SCSP[1].udata.data[0x20/2] = 0;
	SCSP->TimCnt[0] = 0xffff;
	SCSP->TimCnt[1] = 0xffff;
	SCSP->TimCnt[2] = 0xffff;
}

static void SCSP_UpdateSlotReg(struct _SCSP *SCSP,int s,int r)
{
	struct _SLOT *slot=SCSP->Slots+s;
	int sl;
	switch(r&0x3f)
	{
		case 0:
		case 1:
			if(KEYONEX(slot))
			{
				for(sl=0;sl<32;++sl)
				{
					struct _SLOT *s2=SCSP->Slots+sl;
					{
						if(KEYONB(s2) && s2->EG.state==RELEASE/*&& !s2->active*/)
						{
							SCSP_StartSlot(SCSP, s2);
						}
						if(!KEYONB(s2) /*&& s2->active*/)
						{
							SCSP_StopSlot(s2,1);
						}
					}
				}
				slot->udata.data[0]&=~0x1000;
			}
			break;
		case 0x10:
		case 0x11:
			slot->step=SCSP_Step(slot);
			break;
		case 0xA:
		case 0xB:
			slot->EG.RR=Get_RR(SCSP,0,RR(slot));
			slot->EG.DL=0x1f-DL(slot);
			break;
		case 0x12:
		case 0x13:
			Compute_LFO(slot);
			break;
	}
}

static void SCSP_UpdateReg(struct _SCSP *SCSP, int reg)
{
	switch(reg&0x3f)
	{
		case 0x2:
		case 0x3:
			{
				unsigned int v=RBL(SCSP);
				SCSP->DSP.RBP=RBP(SCSP);
				if(v==0)
					SCSP->DSP.RBL=8*1024;
				else if(v==1)
					SCSP->DSP.RBL=16*1024;
				if(v==2)
					SCSP->DSP.RBL=32*1024;
				if(v==3)
					SCSP->DSP.RBL=64*1024;
			}
			break;
		case 0x6:
		case 0x7:
			SCSP_MidiIn(SCSP, 0, SCSP->udata.data[0x6/2]&0xff, 0);
			break;
		case 0x12:
		case 0x13:
		case 0x14:
		case 0x15:
		case 0x16:
		case 0x17:
			break;
		case 0x18:
		case 0x19:
			if(SCSP->Master)
			{
				SCSP->TimPris[0]=1<<((SCSP->udata.data[0x18/2]>>8)&0x7);
				SCSP->TimCnt[0]=(SCSP->udata.data[0x18/2]&0xff)<<8;
			}
			break;
		case 0x1a:
		case 0x1b:
			if(SCSP->Master)
			{
				SCSP->TimPris[1]=1<<((SCSP->udata.data[0x1A/2]>>8)&0x7);
				SCSP->TimCnt[1]=(SCSP->udata.data[0x1A/2]&0xff)<<8;
			}
			break;
		case 0x1C:
		case 0x1D:
			if(SCSP->Master)
			{
				SCSP->TimPris[2]=1<<((SCSP->udata.data[0x1C/2]>>8)&0x7);
				SCSP->TimCnt[2]=(SCSP->udata.data[0x1C/2]&0xff)<<8;
			}
			break;
		case 0x22:	//SCIRE
		case 0x23:

			if(SCSP->Master)		   
			{
				SCSP->udata.data[0x20/2]&=~SCSP->udata.data[0x22/2];
				ResetInterrupts(SCSP);

				// behavior from real hardware: if you SCIRE a timer that's expired,
				// it'll immediately pop up again.  ask Sakura Taisen on the Saturn...
				if (SCSP->TimCnt[0] >= 0xff00)
				{
					SCSP->udata.data[0x20/2] |= 0x40;
				}
				if (SCSP->TimCnt[1] >= 0xff00)
				{
					SCSP->udata.data[0x20/2] |= 0x80;
				}
				if (SCSP->TimCnt[2] >= 0xff00)
				{
					SCSP->udata.data[0x20/2] |= 0x100;
				}
			}
			break;
		case 0x24:
		case 0x25:
		case 0x26:
		case 0x27:
		case 0x28:
		case 0x29:
			if(SCSP->Master)
			{
				SCSP->IrqTimA=DecodeSCI(SCSP,SCITMA);
				SCSP->IrqTimBC=DecodeSCI(SCSP,SCITMB);
				SCSP->IrqMidi=DecodeSCI(SCSP,SCIMID);
			}
			break;
	}
}

static void SCSP_UpdateSlotRegR(struct _SCSP *SCSP, int slot,int reg)
{

}

static void SCSP_UpdateRegR(struct _SCSP *SCSP, int reg)
{
	switch(reg&0x3f)
	{
		case 4:
		case 5:
			{
				unsigned short v=SCSP->udata.data[0x5/2];
				v&=0xff00;
				v|=SCSP->MidiStack[SCSP->MidiR];
				SCSP->Int68kCB(SCSP->cpu, 0);	// cancel the IRQ
				if(SCSP->MidiR!=SCSP->MidiW)
				{
					++SCSP->MidiR;
					SCSP->MidiR&=15;
				}
				SCSP->udata.data[0x5/2]=v;
			}
			break;
		case 8:
		case 9:
			{
				unsigned char slot=SCSP->udata.data[0x8/2]>>11;
				unsigned int CA=SCSP->Slots[slot&0x1f].cur_addr>>(SHIFT+12);
				SCSP->udata.data[0x8/2]&=~(0x780);
				SCSP->udata.data[0x8/2]|=CA<<7;
			}
			break;
	}
}

static void SCSP_w16(struct _SCSP *SCSP,unsigned int addr,unsigned short val)
{
	addr&=0xffff;
	if(addr<0x400)
	{
		int slot=addr/0x20;
		addr&=0x1f;
		*((unsigned short *) (SCSP->Slots[slot].udata.datab+(addr))) = val;
		SCSP_UpdateSlotReg(SCSP,slot,addr&0x1f);
	}
	else if(addr<0x600)
	{
		if (addr < 0x430)
		{
			*((unsigned short *) (SCSP->udata.datab+((addr&0x3f)))) = val;
			SCSP_UpdateReg(SCSP, addr&0x3f);
		}
	}
	else if(addr<0x700)
		SCSP->RINGBUF[(addr-0x600)/2]=val;
	else
	{
		//DSP
		if(addr<0x780)	//COEF
			*((unsigned short *) (SCSP->DSP.COEF+(addr-0x700)/2))=val;
		else if(addr<0x800)
			*((unsigned short *) (SCSP->DSP.MADRS+(addr-0x780)/2))=val;
		else if(addr<0xC00)
			*((unsigned short *) (SCSP->DSP.MPRO+(addr-0x800)/2))=val;

		if(addr==0xBF0)
		{
//			printf("DSP start\n");
			SCSPDSP_Start(&SCSP->DSP);
		}
	}
}

static unsigned short SCSP_r16(struct _SCSP *SCSP, unsigned int addr)
{
	unsigned short v=0;
	addr&=0xffff;
	if(addr<0x400)
	{
		int slot=addr/0x20;
		addr&=0x1f;
		SCSP_UpdateSlotRegR(SCSP, slot,addr&0x1f);
		v=*((unsigned short *) (SCSP->Slots[slot].udata.datab+(addr)));
	}
	else if(addr<0x600)
	{
		if (addr < 0x430)
		{
			SCSP_UpdateRegR(SCSP, addr&0x3f);
			v= *((unsigned short *) (SCSP->udata.datab+((addr&0x3f))));
		}
	}
	else if(addr<0x700)
		v=SCSP->RINGBUF[(addr-0x600)/2];
	return v;
}


#define REVSIGN(v) ((~v)+1)

void SCSP_TimersAddTicks(struct _SCSP *SCSP, int ticks)
{
	if(SCSP->TimCnt[0]<=0xff00)
	{
 		SCSP->TimCnt[0] += ticks << (8-((SCSP->udata.data[0x18/2]>>8)&0x7));
		if (SCSP->TimCnt[0] > 0xFF00)
		{
			SCSP->TimCnt[0] = 0xFFFF;
			SCSP->udata.data[0x20/2]|=0x40;
		}
		SCSP->udata.data[0x18/2]&=0xff00;
		SCSP->udata.data[0x18/2]|=SCSP->TimCnt[0]>>8;
	}

	if(SCSP->TimCnt[1]<=0xff00)
	{
		SCSP->TimCnt[1] += ticks << (8-((SCSP->udata.data[0x1a/2]>>8)&0x7));
		if (SCSP->TimCnt[1] > 0xFF00)
		{
			SCSP->TimCnt[1] = 0xFFFF;
			SCSP->udata.data[0x20/2]|=0x80;
		}
		SCSP->udata.data[0x1a/2]&=0xff00;
		SCSP->udata.data[0x1a/2]|=SCSP->TimCnt[1]>>8;
	}

	if(SCSP->TimCnt[2]<=0xff00)
	{
		SCSP->TimCnt[2] += ticks << (8-((SCSP->udata.data[0x1c/2]>>8)&0x7));
		if (SCSP->TimCnt[2] > 0xFF00)
		{
			SCSP->TimCnt[2] = 0xFFFF;
			SCSP->udata.data[0x20/2]|=0x100;
		}
		SCSP->udata.data[0x1c/2]&=0xff00;
		SCSP->udata.data[0x1c/2]|=SCSP->TimCnt[2]>>8;
	}
}

INLINE INT32 SCSP_UpdateSlot(struct _SCSP *SCSP, struct _SLOT *slot)
{
	INT32 sample;
	int step=slot->step;
	UINT32 addr1,addr2,addr_select;                                   // current and next sample addresses
	UINT32 *addr[2]      = {&addr1, &addr2};                          // used for linear interpolation
	UINT32 *slot_addr[2] = {&(slot->cur_addr), &(slot->nxt_addr)};    //

	if(SSCTL(slot)!=0)	//no FM or noise yet
		return 0;

	if(PLFOS(slot)!=0)
	{
		step=step*PLFO_Step(&(slot->PLFO));
		step>>=SHIFT;
	}

	if(PCM8B(slot))
	{
		addr1=slot->cur_addr>>SHIFT;
		addr2=slot->nxt_addr>>SHIFT;
	}
	else
	{
		addr1=(slot->cur_addr>>(SHIFT-1))&0x7fffe;
		addr2=(slot->nxt_addr>>(SHIFT-1))&0x7fffe;
	}

	if(MDL(slot)!=0 || MDXSL(slot)!=0 || MDYSL(slot)!=0)
	{
		INT32 smp=(SCSP->RINGBUF[(SCSP->BUFPTR+MDXSL(slot))&63]+SCSP->RINGBUF[(SCSP->BUFPTR+MDYSL(slot))&63])/2;

		smp<<=0xA; // associate cycle with 1024
		smp>>=0x1A-MDL(slot); // ex. for MDL=0xF, sample range corresponds to +/- 64 pi (32=2^5 cycles) so shift by 11 (16-5 == 0x1A-0xF)
		if(!PCM8B(slot)) smp<<=1;
		
		addr1+=smp; addr2+=smp;
	}

	if(PCM8B(slot))	//8 bit signed
	{
		INT8 *p1=(signed char *) (SCSP->SCSPRAM+(((SA(slot)+addr1)^1)&0x7FFFF));
		INT8 *p2=(signed char *) (SCSP->SCSPRAM+(((SA(slot)+addr2)^1)&0x7FFFF));
		//sample=(p[0])<<8;
		INT32 s;
		INT32 fpart=slot->cur_addr&((1<<SHIFT)-1);
		s=(int) (p1[0]<<8)*((1<<SHIFT)-fpart)+(int) (p2[0]<<8)*fpart;
		sample=(s>>SHIFT);
	}
	else	//16 bit signed (endianness?)
	{
		INT16 *p1=(signed short *) (SCSP->SCSPRAM+((SA(slot)+addr1)&0x7FFFE));
		INT16 *p2=(signed short *) (SCSP->SCSPRAM+((SA(slot)+addr2)&0x7FFFE));
		//sample=LE16(p[0]);
		INT32 s;
		INT32 fpart=slot->cur_addr&((1<<SHIFT)-1);
		s=(int) LE16(p1[0])*((1<<SHIFT)-fpart)+(int) LE16(p2[0])*fpart;
		sample=(s>>SHIFT);
	}

	if(SBCTL(slot)&0x1)
		sample ^= 0x7FFF;
	if(SBCTL(slot)&0x2)
		sample = (INT16)(sample^0x8000);

	if(slot->Backwards)
		slot->cur_addr-=step;
	else
		slot->cur_addr+=step;
	slot->nxt_addr=slot->cur_addr+(1<<SHIFT);
	
	addr1=slot->cur_addr>>SHIFT;
	addr2=slot->nxt_addr>>SHIFT;
	
	if(addr1>=LSA(slot) && !(slot->Backwards))
	{
		if(LPSLNK(slot) && slot->EG.state==ATTACK)
			slot->EG.state = DECAY1;
	}
	
	for (addr_select=0;addr_select<2;addr_select++)
	{
		INT32 rem_addr;
		switch(LPCTL(slot))
		{
		case 0:	//no loop
			if(*addr[addr_select]>=LSA(slot) && *addr[addr_select]>=LEA(slot))
			{
			//slot->active=0;
			SCSP_StopSlot(slot,0);
			}
			break;
		case 1: //normal loop
			if(*addr[addr_select]>=LEA(slot))
			{
				rem_addr = *slot_addr[addr_select] - (LEA(slot)<<SHIFT);
				*slot_addr[addr_select]=(LSA(slot)<<SHIFT) + rem_addr;
			}
			break;
		case 2:	//reverse loop
			if((*addr[addr_select]>=LSA(slot)) && !(slot->Backwards))
			{
				rem_addr = *slot_addr[addr_select] - (LSA(slot)<<SHIFT);
				*slot_addr[addr_select]=(LEA(slot)<<SHIFT) - rem_addr;
				slot->Backwards=1;
			}
			else if((*addr[addr_select]<LSA(slot) || (*slot_addr[addr_select]&0x80000000)) && slot->Backwards)
			{
				rem_addr = (LSA(slot)<<SHIFT) - *slot_addr[addr_select];
				*slot_addr[addr_select]=(LEA(slot)<<SHIFT) - rem_addr;
			}
			break;
		case 3: //ping-pong
			if(*addr[addr_select]>=LEA(slot)) //reached end, reverse till start
			{
				rem_addr = *slot_addr[addr_select] - (LEA(slot)<<SHIFT); 
				*slot_addr[addr_select]=(LEA(slot)<<SHIFT) - rem_addr;
				slot->Backwards=1;
			}
			else if((*addr[addr_select]<LSA(slot) || (*slot_addr[addr_select]&0x80000000)) && slot->Backwards)//reached start or negative
			{
				rem_addr = (LSA(slot)<<SHIFT) - *slot_addr[addr_select];
				*slot_addr[addr_select]=(LSA(slot)<<SHIFT) + rem_addr;
				slot->Backwards=0;
			}
			break;
		}
	}

	if(ALFOS(slot)!=0)
	{
		sample=sample*ALFO_Step(&(slot->ALFO));
		sample>>=SHIFT;
	}

	if(slot->EG.state==ATTACK)
		sample=(sample*EG_Update(slot))>>SHIFT;
	else
		sample=(sample*EG_TABLE[EG_Update(slot)>>(SHIFT-10)])>>SHIFT;

	if(!STWINH(slot))
	{
		unsigned short Enc=((TL(slot))<<0x0)|(0x7<<0xd);
		*SCSP->RBUFDST=(sample*SCSP->LPANTABLE[Enc])>>(SHIFT+1);
	}
		
	return sample;
}

static void SCSP_DoMasterSamples(struct _SCSP *SCSP, int nsamples)
{
	INT16 *bufr,*bufl;
	int sl, s, i;

	bufr=SCSP->bufferr;
	bufl=SCSP->bufferl;

	for(s=0;s<nsamples;++s)
	{
		INT32 smpl, smpr;

		smpl = smpr = 0;

		for(sl=0;sl<32;++sl)
		{
#if FM_DELAY
			SCSP->RBUFDST=SCSP->DELAYBUF+SCSP->DELAYPTR;
#else
			SCSP->RBUFDST=SCSP->RINGBUF+SCSP->BUFPTR;
#endif
			if(SCSP->Slots[sl].active)
			{
				struct _SLOT *slot=SCSP->Slots+sl;
				unsigned short Enc;
				signed int sample;

				sample=SCSP_UpdateSlot(SCSP, slot);

				Enc=((TL(slot))<<0x0)|((IMXL(slot))<<0xd);
				SCSPDSP_SetSample(&SCSP->DSP,(sample*SCSP->LPANTABLE[Enc])>>(SHIFT-2),ISEL(slot),IMXL(slot));
				Enc=((TL(slot))<<0x0)|((DIPAN(slot))<<0x8)|((DISDL(slot))<<0xd);
				{
					smpl+=(sample*SCSP->LPANTABLE[Enc])>>SHIFT;
					smpr+=(sample*SCSP->RPANTABLE[Enc])>>SHIFT;
				}
			}
			
#if FM_DELAY
			SCSP->RINGBUF[(SCSP->BUFPTR+64-(FM_DELAY-1))&63] = SCSP->DELAYBUF[(SCSP->DELAYPTR+FM_DELAY-(FM_DELAY-1))%FM_DELAY];
#endif
			++SCSP->BUFPTR;
			SCSP->BUFPTR&=63;
#if FM_DELAY
			++SCSP->DELAYPTR;
			if(SCSP->DELAYPTR>FM_DELAY-1) SCSP->DELAYPTR=0;
#endif
		}

		SCSPDSP_Step(&SCSP->DSP);

		for(i=0;i<16;++i)
		{
			struct _SLOT *slot=SCSP->Slots+i;
			if(EFSDL(slot))
			{
				unsigned short Enc=((EFPAN(slot))<<0x8)|((EFSDL(slot))<<0xd);
				smpl+=(SCSP->DSP.EFREG[i]*SCSP->LPANTABLE[Enc])>>SHIFT;
				smpr+=(SCSP->DSP.EFREG[i]*SCSP->RPANTABLE[Enc])>>SHIFT;
			}
		}

		*bufl++ = ICLIP16(smpl>>2);
		*bufr++ = ICLIP16(smpr>>2);

		SCSP_TimersAddTicks(SCSP, 1);
		CheckPendingIRQ(SCSP);
	}

}

static void dma_scsp(struct _SCSP *SCSP)
{
	static UINT16 tmp_dma[3], *scsp_regs;

	scsp_regs = (UINT16 *)SCSP->udata.datab;

	printf("SCSP: DMA transfer START\n"
			 "DMEA: %04x DRGA: %04x DTLG: %04x\n"
			 "DGATE: %d  DDIR: %d\n",SCSP->scsp_dmea,SCSP->scsp_drga,SCSP->scsp_dtlg,scsp_dgate ? 1 : 0,scsp_ddir ? 1 : 0);

	/* Copy the dma values in a temp storage for resuming later *
     * (DMA *can't* overwrite his parameters).                  */
	if(!(scsp_ddir))
	{
		tmp_dma[0] = scsp_regs[0x12/2];
		tmp_dma[1] = scsp_regs[0x14/2];
		tmp_dma[2] = scsp_regs[0x16/2];
	}

	if(scsp_ddir)
	{
		for(;SCSP->scsp_dtlg > 0;SCSP->scsp_dtlg-=2)
		{
//			program_write_word(SCSP->scsp_dmea, program_read_word(0x100000|SCSP->scsp_drga));
			SCSP->scsp_dmea+=2;
			SCSP->scsp_drga+=2;
		}
	}
	else
	{
		for(;SCSP->scsp_dtlg > 0;SCSP->scsp_dtlg-=2)
		{
//  			program_write_word(0x100000|SCSP->scsp_drga,program_read_word(SCSP->scsp_dmea));
			SCSP->scsp_dmea+=2;
			SCSP->scsp_drga+=2;
		}
	}

	/*Resume the values*/
	if(!(scsp_ddir))
	{
	 	scsp_regs[0x12/2] = tmp_dma[0];
		scsp_regs[0x14/2] = tmp_dma[1];
		scsp_regs[0x16/2] = tmp_dma[2];
	}

	/*Job done,request a dma end irq*/
//	if(scsp_regs[0x1e/2] & 0x10)
//		cpunum_set_input_line(2,dma_transfer_end,HOLD_LINE);
}

int SCSP_IRQCB(void *param)
{
	CheckPendingIRQ(param);
	return -1;
}

void SCSP_Update(void *param, INT16 **inputs, INT16 **buf, int samples)
{
	struct _SCSP *SCSP = param;
	SCSP->bufferl = buf[0];
	SCSP->bufferr = buf[1];
	SCSP->length = samples;
	SCSP_DoMasterSamples(SCSP, samples);
}

void *SCSP_Start(const void *config)
{
	const struct SCSPinterface *intf;

	struct _SCSP *SCSP;

	SCSP = malloc(sizeof(*SCSP));
	memset(SCSP, 0, sizeof(*SCSP));

	intf = config;

	// init the emulation
	SCSP_Init(SCSP, intf);

	// set up the IRQ callbacks
	{
		SCSP->Int68kCB = intf->irq_callback[0];

//		SCSP->stream = stream_create(0, 2, 44100, SCSP, SCSP_Update);
	}

	return SCSP;
}

void SCSP_Exit (void *param) {
    if (param) {
        struct _SCSP *SCSP = param;
        if (SCSP->buffertmpl) {
            free (SCSP->buffertmpl);
        }
        if (SCSP->buffertmpr) {
            free (SCSP->buffertmpr);
        }
        free (param);
    }
}


void SCSP_set_ram_base(struct _SCSP *SCSP, int which, void *base)
{
	if (SCSP)
	{
		SCSP->SCSPRAM = base;
		SCSP->DSP.SCSPRAM = base;
	}
}


READ16_HANDLER( SCSP_0_r )
{
	return SCSP_r16(param, offset*2);
}

WRITE16_HANDLER( SCSP_0_w )
{
	struct _SCSP *SCSP = param;
	UINT16 tmp, *scsp_regs;

	tmp = SCSP_r16(SCSP, offset*2);
	COMBINE_DATA(&tmp);
	SCSP_w16(SCSP,offset*2, tmp);

	scsp_regs = (UINT16 *)SCSP->udata.datab;

	switch(offset*2)
	{
		// check DMA
		case 0x412:
		/*DMEA [15:1]*/
		/*Sound memory address*/
		SCSP->scsp_dmea = (((scsp_regs[0x14/2] & 0xf000)>>12)*0x10000) | (scsp_regs[0x12/2] & 0xfffe);
		break;
		case 0x414:
		/*DMEA [19:16]*/
		SCSP->scsp_dmea = (((scsp_regs[0x14/2] & 0xf000)>>12)*0x10000) | (scsp_regs[0x12/2] & 0xfffe);
		/*DRGA [11:1]*/
		/*Register memory address*/
		SCSP->scsp_drga = scsp_regs[0x14/2] & 0x0ffe;
		break;
		case 0x416:
		/*DGATE[14]*/
		/*DDIR[13]*/
		/*if 0 sound_mem -> reg*/
		/*if 1 sound_mem <- reg*/
		/*DEXE[12]*/
		/*starting bit*/
		/*DTLG[11:1]*/
		/*size of transfer*/
		SCSP->scsp_dtlg = scsp_regs[0x16/2] & 0x0ffe;
		if(scsp_dexe)
		{
			dma_scsp(SCSP);
			scsp_regs[0x16/2]^=0x1000;//disable starting bit
		}
		break;
		//check main cpu IRQ
		case 0x42a:
#if 0
        extern UINT32* stv_scu;

			if(stv_scu && !(stv_scu[40] & 0x40) /*&& scsp_regs[0x42c/2] & 0x20*/)/*Main CPU allow sound irq*/
			{
				cpunum_set_input_line_and_vector(0, 9, HOLD_LINE , 0x46);
			    logerror("SCSP: Main CPU interrupt\n");
			}
#endif
		break;
		case 0x42c:
		break;
		case 0x42e:
		break;
	}
}

WRITE16_HANDLER( SCSP_MidiIn )
{
	struct _SCSP *SCSP = param; 
	SCSP->MidiStack[SCSP->MidiW++]=data;
	SCSP->MidiW &= 15;
}

READ16_HANDLER( SCSP_MidiOutR )
{
	struct _SCSP *SCSP = param; 
	unsigned char val;

	val=SCSP->MidiStack[SCSP->MidiR++];
	SCSP->MidiR&=7;
	return val;
}