summaryrefslogtreecommitdiff
path: root/plugins/ao/eng_psf/peops2/reverb2.c
blob: ceab8c544b9e54d1810eac20a62aba5b264469e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/***************************************************************************
                          reverb.c  -  description
                             -------------------
    begin                : Wed May 15 2002
    copyright            : (C) 2002 by Pete Bernert
    email                : BlackDove@addcom.de
 ***************************************************************************/

/***************************************************************************
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version. See also the license.txt file for *
 *   additional informations.                                              *
 *                                                                         *
 ***************************************************************************/

//*************************************************************************//
// History of changes:
//
// 2004/04/04 - Pete
// - changed to SPU2 functionality
//
// 2003/01/19 - Pete
// - added Neill's reverb (see at the end of file)
//
// 2002/12/26 - Pete
// - adjusted reverb handling
//
// 2002/08/14 - Pete
// - added extra reverb
//
// 2002/05/15 - Pete
// - generic cleanup for the Peops release
//
//*************************************************************************//

#include "stdafx.h"

#define _IN_REVERB

// will be included from spu.c
#ifdef _IN_SPU

////////////////////////////////////////////////////////////////////////
// globals
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
// START REVERB
////////////////////////////////////////////////////////////////////////

INLINE void StartREVERB(spu2_state_t *spu, int ch)
{
 int core=ch/24;
 
 if((spu->s_chan[ch].bReverbL || spu->s_chan[ch].bReverbR) && (spu->spuCtrl2[core]&0x80))       // reverb possible?
  {
   if(spu->iUseReverb==1) spu->s_chan[ch].bRVBActive=1;
  }
 else spu->s_chan[ch].bRVBActive=0;                         // else -> no reverb
}

////////////////////////////////////////////////////////////////////////
// HELPER FOR NEILL'S REVERB: re-inits our reverb mixing buf
////////////////////////////////////////////////////////////////////////

INLINE void InitREVERB(spu2_state_t *spu)
{
 if(spu->iUseReverb==1)
  {
   memset(spu->sRVBStart[0],0,NSSIZE*2*4);
   memset(spu->sRVBStart[1],0,NSSIZE*2*4);
  }
}

////////////////////////////////////////////////////////////////////////
// STORE REVERB
////////////////////////////////////////////////////////////////////////

INLINE void StoreREVERB(spu2_state_t *spu, int ch,int ns)
{
 int core=ch/24;
 
 if(spu->iUseReverb==0) return;
 else
 if(spu->iUseReverb==1) // -------------------------------- // Neil's reverb
  {
   const int iRxl=(spu->s_chan[ch].sval*spu->s_chan[ch].iLeftVolume*spu->s_chan[ch].bReverbL)/0x4000;
   const int iRxr=(spu->s_chan[ch].sval*spu->s_chan[ch].iRightVolume*spu->s_chan[ch].bReverbR)/0x4000;

   ns<<=1;

   *(spu->sRVBStart[core]+ns)  +=iRxl;                      // -> we mix all active reverb channels into an extra buffer
   *(spu->sRVBStart[core]+ns+1)+=iRxr;
  }
}

////////////////////////////////////////////////////////////////////////

INLINE int g_buffer(spu2_state_t *spu, int iOff,int core)                   // get_buffer content helper: takes care about wraps
{
 short * p=(short *)spu->spuMem;
 iOff=(iOff)+spu->rvb[core].CurrAddr;
 while(iOff>spu->rvb[core].EndAddr)   iOff=spu->rvb[core].StartAddr+(iOff-(spu->rvb[core].EndAddr+1));
 while(iOff<spu->rvb[core].StartAddr) iOff=spu->rvb[core].EndAddr-(spu->rvb[core].StartAddr-iOff);
 return (int)*(p+iOff);
}

////////////////////////////////////////////////////////////////////////

INLINE void s_buffer(spu2_state_t *spu, int iOff,int iVal,int core)        // set_buffer content helper: takes care about wraps and clipping
{
 short * p=(short *)spu->spuMem;
 iOff=(iOff)+spu->rvb[core].CurrAddr;
 while(iOff>spu->rvb[core].EndAddr) iOff=spu->rvb[core].StartAddr+(iOff-(spu->rvb[core].EndAddr+1));
 while(iOff<spu->rvb[core].StartAddr) iOff=spu->rvb[core].EndAddr-(spu->rvb[core].StartAddr-iOff);
 if(iVal<-32768L) iVal=-32768L;if(iVal>32767L) iVal=32767L;
 *(p+iOff)=(short)iVal;
}

////////////////////////////////////////////////////////////////////////

INLINE void s_buffer1(spu2_state_t *spu, int iOff,int iVal,int core)      // set_buffer (+1 sample) content helper: takes care about wraps and clipping
{
 short * p=(short *)spu->spuMem;
 iOff=(iOff)+spu->rvb[core].CurrAddr+1;
 while(iOff>spu->rvb[core].EndAddr) iOff=spu->rvb[core].StartAddr+(iOff-(spu->rvb[core].EndAddr+1));
 while(iOff<spu->rvb[core].StartAddr) iOff=spu->rvb[core].EndAddr-(spu->rvb[core].StartAddr-iOff);
 if(iVal<-32768L) iVal=-32768L;if(iVal>32767L) iVal=32767L;
 *(p+iOff)=(short)iVal;
}

////////////////////////////////////////////////////////////////////////

INLINE int MixREVERBLeft(spu2_state_t *spu, int ns,int core)
{
 if(spu->iUseReverb==1)
  {
   if(!spu->rvb[core].StartAddr || !spu->rvb[core].EndAddr || 
      spu->rvb[core].StartAddr>=spu->rvb[core].EndAddr)          // reverb is off
    {
     spu->rvb[core].iLastRVBLeft=spu->rvb[core].iLastRVBRight=spu->rvb[core].iRVBLeft=spu->rvb[core].iRVBRight=0;
     return 0;
    }

   spu->rvb[core].iCnt++;                                    

   if(spu->rvb[core].iCnt&1)                                // we work on every second left value: downsample to 22 khz
    {
     if((spu->spuCtrl2[core]&0x80))                         // -> reverb on? oki
      {
       int ACC0,ACC1,FB_A0,FB_A1,FB_B0,FB_B1;

       const int INPUT_SAMPLE_L=*(spu->sRVBStart[core]+(ns<<1));                         
       const int INPUT_SAMPLE_R=*(spu->sRVBStart[core]+(ns<<1)+1);                     

       const int IIR_INPUT_A0 = (g_buffer(spu, spu->rvb[core].IIR_SRC_A0,core) * spu->rvb[core].IIR_COEF)/32768L + (INPUT_SAMPLE_L * spu->rvb[core].IN_COEF_L)/32768L;
       const int IIR_INPUT_A1 = (g_buffer(spu, spu->rvb[core].IIR_SRC_A1,core) * spu->rvb[core].IIR_COEF)/32768L + (INPUT_SAMPLE_R * spu->rvb[core].IN_COEF_R)/32768L;
       const int IIR_INPUT_B0 = (g_buffer(spu, spu->rvb[core].IIR_SRC_B0,core) * spu->rvb[core].IIR_COEF)/32768L + (INPUT_SAMPLE_L * spu->rvb[core].IN_COEF_L)/32768L;
       const int IIR_INPUT_B1 = (g_buffer(spu, spu->rvb[core].IIR_SRC_B1,core) * spu->rvb[core].IIR_COEF)/32768L + (INPUT_SAMPLE_R * spu->rvb[core].IN_COEF_R)/32768L;

       const int IIR_A0 = (IIR_INPUT_A0 * spu->rvb[core].IIR_ALPHA)/32768L + (g_buffer(spu, spu->rvb[core].IIR_DEST_A0,core) * (32768L - spu->rvb[core].IIR_ALPHA))/32768L;
       const int IIR_A1 = (IIR_INPUT_A1 * spu->rvb[core].IIR_ALPHA)/32768L + (g_buffer(spu, spu->rvb[core].IIR_DEST_A1,core) * (32768L - spu->rvb[core].IIR_ALPHA))/32768L;
       const int IIR_B0 = (IIR_INPUT_B0 * spu->rvb[core].IIR_ALPHA)/32768L + (g_buffer(spu, spu->rvb[core].IIR_DEST_B0,core) * (32768L - spu->rvb[core].IIR_ALPHA))/32768L;
       const int IIR_B1 = (IIR_INPUT_B1 * spu->rvb[core].IIR_ALPHA)/32768L + (g_buffer(spu, spu->rvb[core].IIR_DEST_B1,core) * (32768L - spu->rvb[core].IIR_ALPHA))/32768L;

       s_buffer1(spu, spu->rvb[core].IIR_DEST_A0, IIR_A0,core);
       s_buffer1(spu, spu->rvb[core].IIR_DEST_A1, IIR_A1,core);
       s_buffer1(spu, spu->rvb[core].IIR_DEST_B0, IIR_B0,core);
       s_buffer1(spu, spu->rvb[core].IIR_DEST_B1, IIR_B1,core);
 
       ACC0 = (g_buffer(spu, spu->rvb[core].ACC_SRC_A0,core) * spu->rvb[core].ACC_COEF_A)/32768L +
              (g_buffer(spu, spu->rvb[core].ACC_SRC_B0,core) * spu->rvb[core].ACC_COEF_B)/32768L +
              (g_buffer(spu, spu->rvb[core].ACC_SRC_C0,core) * spu->rvb[core].ACC_COEF_C)/32768L +
              (g_buffer(spu, spu->rvb[core].ACC_SRC_D0,core) * spu->rvb[core].ACC_COEF_D)/32768L;
       ACC1 = (g_buffer(spu, spu->rvb[core].ACC_SRC_A1,core) * spu->rvb[core].ACC_COEF_A)/32768L +
              (g_buffer(spu, spu->rvb[core].ACC_SRC_B1,core) * spu->rvb[core].ACC_COEF_B)/32768L +
              (g_buffer(spu, spu->rvb[core].ACC_SRC_C1,core) * spu->rvb[core].ACC_COEF_C)/32768L +
              (g_buffer(spu, spu->rvb[core].ACC_SRC_D1,core) * spu->rvb[core].ACC_COEF_D)/32768L;

       FB_A0 = g_buffer(spu, spu->rvb[core].MIX_DEST_A0 - spu->rvb[core].FB_SRC_A,core);
       FB_A1 = g_buffer(spu, spu->rvb[core].MIX_DEST_A1 - spu->rvb[core].FB_SRC_A,core);
       FB_B0 = g_buffer(spu, spu->rvb[core].MIX_DEST_B0 - spu->rvb[core].FB_SRC_B,core);
       FB_B1 = g_buffer(spu, spu->rvb[core].MIX_DEST_B1 - spu->rvb[core].FB_SRC_B,core);

       s_buffer(spu, spu->rvb[core].MIX_DEST_A0, ACC0 - (FB_A0 * spu->rvb[core].FB_ALPHA)/32768L,core);
       s_buffer(spu, spu->rvb[core].MIX_DEST_A1, ACC1 - (FB_A1 * spu->rvb[core].FB_ALPHA)/32768L,core);
       
       s_buffer(spu, spu->rvb[core].MIX_DEST_B0, (spu->rvb[core].FB_ALPHA * ACC0)/32768L - (FB_A0 * (int)(spu->rvb[core].FB_ALPHA^0xFFFF8000))/32768L - (FB_B0 * spu->rvb[core].FB_X)/32768L,core);
       s_buffer(spu, spu->rvb[core].MIX_DEST_B1, (spu->rvb[core].FB_ALPHA * ACC1)/32768L - (FB_A1 * (int)(spu->rvb[core].FB_ALPHA^0xFFFF8000))/32768L - (FB_B1 * spu->rvb[core].FB_X)/32768L,core);
 
       spu->rvb[core].iLastRVBLeft  = spu->rvb[core].iRVBLeft;
       spu->rvb[core].iLastRVBRight = spu->rvb[core].iRVBRight;

       spu->rvb[core].iRVBLeft  = (g_buffer(spu, spu->rvb[core].MIX_DEST_A0,core)+g_buffer(spu, spu->rvb[core].MIX_DEST_B0,core))/3;
       spu->rvb[core].iRVBRight = (g_buffer(spu, spu->rvb[core].MIX_DEST_A1,core)+g_buffer(spu, spu->rvb[core].MIX_DEST_B1,core))/3;

       spu->rvb[core].iRVBLeft  = (spu->rvb[core].iRVBLeft  * spu->rvb[core].VolLeft)  / 0x4000;
       spu->rvb[core].iRVBRight = (spu->rvb[core].iRVBRight * spu->rvb[core].VolRight) / 0x4000;

       spu->rvb[core].CurrAddr++;
       if(spu->rvb[core].CurrAddr>spu->rvb[core].EndAddr) spu->rvb[core].CurrAddr=spu->rvb[core].StartAddr;

       return spu->rvb[core].iLastRVBLeft+(spu->rvb[core].iRVBLeft-spu->rvb[core].iLastRVBLeft)/2;
      }
     else                                              // -> reverb off
      {
       spu->rvb[core].iLastRVBLeft=spu->rvb[core].iLastRVBRight=spu->rvb[core].iRVBLeft=spu->rvb[core].iRVBRight=0;
      }

     spu->rvb[core].CurrAddr++;
     if(spu->rvb[core].CurrAddr>spu->rvb[core].EndAddr) spu->rvb[core].CurrAddr=spu->rvb[core].StartAddr;
    }

   return spu->rvb[core].iLastRVBLeft;
  }
 return 0;
}

////////////////////////////////////////////////////////////////////////

INLINE int MixREVERBRight(spu2_state_t *spu, int core)
{
 if(spu->iUseReverb==1)                                     // Neill's reverb:
  {
   int i=spu->rvb[core].iLastRVBRight+(spu->rvb[core].iRVBRight-spu->rvb[core].iLastRVBRight)/2;
   spu->rvb[core].iLastRVBRight=spu->rvb[core].iRVBRight;
   return i;                                           // -> just return the last right reverb val (little bit scaled by the previous right val)
  }
 return 0;
}

////////////////////////////////////////////////////////////////////////

#endif

/*
-----------------------------------------------------------------------------
PSX reverb hardware notes
by Neill Corlett
-----------------------------------------------------------------------------

Yadda yadda disclaimer yadda probably not perfect yadda well it's okay anyway
yadda yadda.

-----------------------------------------------------------------------------

Basics
------

- The reverb buffer is 22khz 16-bit mono PCM.
- It starts at the reverb address given by 1DA2, extends to
  the end of sound RAM, and wraps back to the 1DA2 address.

Setting the address at 1DA2 resets the current reverb work address.

This work address ALWAYS increments every 1/22050 sec., regardless of
whether reverb is enabled (bit 7 of 1DAA set).

And the contents of the reverb buffer ALWAYS play, scaled by the
"reverberation depth left/right" volumes (1D84/1D86).
(which, by the way, appear to be scaled so 3FFF=approx. 1.0, 4000=-1.0)

-----------------------------------------------------------------------------

Register names
--------------

These are probably not their real names.
These are probably not even correct names.
We will use them anyway, because we can.

1DC0: FB_SRC_A       (offset)
1DC2: FB_SRC_B       (offset)
1DC4: IIR_ALPHA      (coef.)
1DC6: ACC_COEF_A     (coef.)
1DC8: ACC_COEF_B     (coef.)
1DCA: ACC_COEF_C     (coef.)
1DCC: ACC_COEF_D     (coef.)
1DCE: IIR_COEF       (coef.)
1DD0: FB_ALPHA       (coef.)
1DD2: FB_X           (coef.)
1DD4: IIR_DEST_A0    (offset)
1DD6: IIR_DEST_A1    (offset)
1DD8: ACC_SRC_A0     (offset)
1DDA: ACC_SRC_A1     (offset)
1DDC: ACC_SRC_B0     (offset)
1DDE: ACC_SRC_B1     (offset)
1DE0: IIR_SRC_A0     (offset)
1DE2: IIR_SRC_A1     (offset)
1DE4: IIR_DEST_B0    (offset)
1DE6: IIR_DEST_B1    (offset)
1DE8: ACC_SRC_C0     (offset)
1DEA: ACC_SRC_C1     (offset)
1DEC: ACC_SRC_D0     (offset)
1DEE: ACC_SRC_D1     (offset)
1DF0: IIR_SRC_B1     (offset)
1DF2: IIR_SRC_B0     (offset)
1DF4: MIX_DEST_A0    (offset)
1DF6: MIX_DEST_A1    (offset)
1DF8: MIX_DEST_B0    (offset)
1DFA: MIX_DEST_B1    (offset)
1DFC: IN_COEF_L      (coef.)
1DFE: IN_COEF_R      (coef.)

The coefficients are signed fractional values.
-32768 would be -1.0
 32768 would be  1.0 (if it were possible... the highest is of course 32767)

The offsets are (byte/8) offsets into the reverb buffer.
i.e. you multiply them by 8, you get byte offsets.
You can also think of them as (samples/4) offsets.
They appear to be signed.  They can be negative.
None of the documented presets make them negative, though.

Yes, 1DF0 and 1DF2 appear to be backwards.  Not a typo.

-----------------------------------------------------------------------------

What it does
------------

We take all reverb sources:
- regular channels that have the reverb bit on
- cd and external sources, if their reverb bits are on
and mix them into one stereo 44100hz signal.

Lowpass/downsample that to 22050hz.  The PSX uses a proper bandlimiting
algorithm here, but I haven't figured out the hysterically exact specifics.
I use an 8-tap filter with these coefficients, which are nice but probably
not the real ones:

0.037828187894
0.157538631280
0.321159685278
0.449322115345
0.449322115345
0.321159685278
0.157538631280
0.037828187894

So we have two input samples (INPUT_SAMPLE_L, INPUT_SAMPLE_R) every 22050hz.

* IN MY EMULATION, I divide these by 2 to make it clip less.
  (and of course the L/R output coefficients are adjusted to compensate)
  The real thing appears to not do this.

At every 22050hz tick:
- If the reverb bit is enabled (bit 7 of 1DAA), execute the reverb
  steady-state algorithm described below
- AFTERWARDS, retrieve the "wet out" L and R samples from the reverb buffer
  (This part may not be exactly right and I guessed at the coefs. TODO: check later.)
  L is: 0.333 * (buffer[MIX_DEST_A0] + buffer[MIX_DEST_B0])
  R is: 0.333 * (buffer[MIX_DEST_A1] + buffer[MIX_DEST_B1])
- Advance the current buffer position by 1 sample

The wet out L and R are then upsampled to 44100hz and played at the
"reverberation depth left/right" (1D84/1D86) volume, independent of the main
volume.

-----------------------------------------------------------------------------

Reverb steady-state
-------------------

The reverb steady-state algorithm is fairly clever, and of course by
"clever" I mean "batshit insane".

buffer[x] is relative to the current buffer position, not the beginning of
the buffer.  Note that all buffer offsets must wrap around so they're
contained within the reverb work area.

Clipping is performed at the end... maybe also sooner, but definitely at
the end.

IIR_INPUT_A0 = buffer[IIR_SRC_A0] * IIR_COEF + INPUT_SAMPLE_L * IN_COEF_L;
IIR_INPUT_A1 = buffer[IIR_SRC_A1] * IIR_COEF + INPUT_SAMPLE_R * IN_COEF_R;
IIR_INPUT_B0 = buffer[IIR_SRC_B0] * IIR_COEF + INPUT_SAMPLE_L * IN_COEF_L;
IIR_INPUT_B1 = buffer[IIR_SRC_B1] * IIR_COEF + INPUT_SAMPLE_R * IN_COEF_R;

IIR_A0 = IIR_INPUT_A0 * IIR_ALPHA + buffer[IIR_DEST_A0] * (1.0 - IIR_ALPHA);
IIR_A1 = IIR_INPUT_A1 * IIR_ALPHA + buffer[IIR_DEST_A1] * (1.0 - IIR_ALPHA);
IIR_B0 = IIR_INPUT_B0 * IIR_ALPHA + buffer[IIR_DEST_B0] * (1.0 - IIR_ALPHA);
IIR_B1 = IIR_INPUT_B1 * IIR_ALPHA + buffer[IIR_DEST_B1] * (1.0 - IIR_ALPHA);

buffer[IIR_DEST_A0 + 1sample] = IIR_A0;
buffer[IIR_DEST_A1 + 1sample] = IIR_A1;
buffer[IIR_DEST_B0 + 1sample] = IIR_B0;
buffer[IIR_DEST_B1 + 1sample] = IIR_B1;

ACC0 = buffer[ACC_SRC_A0] * ACC_COEF_A +
       buffer[ACC_SRC_B0] * ACC_COEF_B +
       buffer[ACC_SRC_C0] * ACC_COEF_C +
       buffer[ACC_SRC_D0] * ACC_COEF_D;
ACC1 = buffer[ACC_SRC_A1] * ACC_COEF_A +
       buffer[ACC_SRC_B1] * ACC_COEF_B +
       buffer[ACC_SRC_C1] * ACC_COEF_C +
       buffer[ACC_SRC_D1] * ACC_COEF_D;

FB_A0 = buffer[MIX_DEST_A0 - FB_SRC_A];
FB_A1 = buffer[MIX_DEST_A1 - FB_SRC_A];
FB_B0 = buffer[MIX_DEST_B0 - FB_SRC_B];
FB_B1 = buffer[MIX_DEST_B1 - FB_SRC_B];

buffer[MIX_DEST_A0] = ACC0 - FB_A0 * FB_ALPHA;
buffer[MIX_DEST_A1] = ACC1 - FB_A1 * FB_ALPHA;
buffer[MIX_DEST_B0] = (FB_ALPHA * ACC0) - FB_A0 * (FB_ALPHA^0x8000) - FB_B0 * FB_X;
buffer[MIX_DEST_B1] = (FB_ALPHA * ACC1) - FB_A1 * (FB_ALPHA^0x8000) - FB_B1 * FB_X;

-----------------------------------------------------------------------------
*/