summaryrefslogtreecommitdiff
path: root/plugins/wma/libwma/wmadeci.c
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/wma/libwma/wmadeci.c')
-rw-r--r--plugins/wma/libwma/wmadeci.c1480
1 files changed, 1480 insertions, 0 deletions
diff --git a/plugins/wma/libwma/wmadeci.c b/plugins/wma/libwma/wmadeci.c
new file mode 100644
index 00000000..d7a6f9ae
--- /dev/null
+++ b/plugins/wma/libwma/wmadeci.c
@@ -0,0 +1,1480 @@
+/*
+ * WMA compatible decoder
+ * Copyright (c) 2002 The FFmpeg Project.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+/**
+ * @file wmadec.c
+ * WMA compatible decoder.
+ */
+
+#include <libasf/asf.h>
+#include "wmadec.h"
+#include "wmafixed.h"
+#include "wmadata.h"
+
+#define trace(...) { fprintf (stderr, __VA_ARGS__); }
+//#define trace(fmt,...)
+#define DEBUGF trace
+
+static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
+
+/*declarations of statically allocated variables used to remove malloc calls*/
+
+# define IBSS_ATTR
+
+/*MDCT reconstruction windows*/
+static fixed32 stat0[2048] IBSS_ATTR_WMA_XL_IRAM MEM_ALIGN_ATTR;
+static fixed32 stat1[1024] IBSS_ATTR_WMA_XL_IRAM MEM_ALIGN_ATTR;
+static fixed32 stat2[ 512] IBSS_ATTR_WMA_XL_IRAM MEM_ALIGN_ATTR;
+static fixed32 stat3[ 256] IBSS_ATTR_WMA_XL_IRAM MEM_ALIGN_ATTR;
+static fixed32 stat4[ 128] IBSS_ATTR_WMA_XL_IRAM MEM_ALIGN_ATTR;
+
+/*VLC lookup tables*/
+static uint16_t *runtabarray[2];
+static uint16_t *levtabarray[2];
+
+static uint16_t runtab_big[1336] MEM_ALIGN_ATTR;
+static uint16_t runtab_small[1072] MEM_ALIGN_ATTR;
+static uint16_t levtab_big[1336] MEM_ALIGN_ATTR;
+static uint16_t levtab_small[1072] MEM_ALIGN_ATTR;
+
+#define VLCBUF1SIZE 4598
+#define VLCBUF2SIZE 3574
+#define VLCBUF3SIZE 360
+#define VLCBUF4SIZE 540
+
+/*putting these in IRAM actually makes PP slower*/
+
+static VLC_TYPE vlcbuf1[VLCBUF1SIZE][2] IBSS_ATTR_WMA_XL_IRAM MEM_ALIGN_ATTR;
+static VLC_TYPE vlcbuf2[VLCBUF2SIZE][2] MEM_ALIGN_ATTR;
+/* This buffer gets reused for lsp tables */
+static VLC_TYPE vlcbuf3[VLCBUF3SIZE][2] MEM_ALIGN_ATTR;
+static VLC_TYPE vlcbuf4[VLCBUF4SIZE][2] MEM_ALIGN_ATTR;
+
+
+
+
+/**
+ * Apply MDCT window and add into output.
+ *
+ * We ensure that when the windows overlap their squared sum
+ * is always 1 (MDCT reconstruction rule).
+ *
+ * The Vorbis I spec has a great diagram explaining this process.
+ * See section 1.3.2.3 of http://xiph.org/vorbis/doc/Vorbis_I_spec.html
+ */
+ static void wma_window(WMADecodeContext *s, fixed32 *in, fixed32 *out)
+ {
+ //float *in = s->output;
+ int block_len, bsize, n;
+
+ /* left part */
+
+ /* previous block was larger, so we'll use the size of the current
+ * block to set the window size*/
+ if (s->block_len_bits <= s->prev_block_len_bits) {
+ block_len = s->block_len;
+ bsize = s->frame_len_bits - s->block_len_bits;
+
+ vector_fmul_add_add(out, in, s->windows[bsize], block_len);
+
+ } else {
+ /*previous block was smaller or the same size, so use it's size to set the window length*/
+ block_len = 1 << s->prev_block_len_bits;
+ /*find the middle of the two overlapped blocks, this will be the first overlapped sample*/
+ n = (s->block_len - block_len) / 2;
+ bsize = s->frame_len_bits - s->prev_block_len_bits;
+
+ vector_fmul_add_add(out+n, in+n, s->windows[bsize], block_len);
+
+ memcpy(out+n+block_len, in+n+block_len, n*sizeof(fixed32));
+ }
+ /* Advance to the end of the current block and prepare to window it for the next block.
+ * Since the window function needs to be reversed, we do it backwards starting with the
+ * last sample and moving towards the first
+ */
+ out += s->block_len;
+ in += s->block_len;
+
+ /* right part */
+ if (s->block_len_bits <= s->next_block_len_bits) {
+ block_len = s->block_len;
+ bsize = s->frame_len_bits - s->block_len_bits;
+
+ vector_fmul_reverse(out, in, s->windows[bsize], block_len);
+
+ } else {
+ block_len = 1 << s->next_block_len_bits;
+ n = (s->block_len - block_len) / 2;
+ bsize = s->frame_len_bits - s->next_block_len_bits;
+
+ memcpy(out, in, n*sizeof(fixed32));
+
+ vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
+
+ memset(out+n+block_len, 0, n*sizeof(fixed32));
+ }
+ }
+
+
+
+
+/* XXX: use same run/length optimization as mpeg decoders */
+static void init_coef_vlc(VLC *vlc,
+ uint16_t **prun_table, uint16_t **plevel_table,
+ const CoefVLCTable *vlc_table, int tab)
+{
+ int n = vlc_table->n;
+ const uint8_t *table_bits = vlc_table->huffbits;
+ const uint32_t *table_codes = vlc_table->huffcodes;
+ const uint16_t *levels_table = vlc_table->levels;
+ uint16_t *run_table, *level_table;
+ const uint16_t *p;
+ int i, l, j, level;
+
+
+ init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, INIT_VLC_USE_NEW_STATIC);
+
+ run_table = runtabarray[tab];
+ level_table= levtabarray[tab];
+
+ p = levels_table;
+ i = 2;
+ level = 1;
+ while (i < n)
+ {
+ l = *p++;
+ for(j=0;j<l;++j)
+ {
+ run_table[i] = j;
+ level_table[i] = level;
+ ++i;
+ }
+ ++level;
+ }
+ *prun_table = run_table;
+ *plevel_table = level_table;
+}
+
+const uint8_t ff_log2_tab[256]={
+ 0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
+ 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
+ 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
+ 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
+ 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
+ 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
+ 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
+ 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
+};
+
+
+#define av_log2 av_log2_c
+static inline av_const int av_log2_c(unsigned int v)
+{
+ int n = 0;
+ if (v & 0xffff0000) {
+ v >>= 16;
+ n += 16;
+ }
+ if (v & 0xff00) {
+ v >>= 8;
+ n += 8;
+ }
+ n += ff_log2_tab[v];
+
+ return n;
+}
+
+
+int wma_decode_init(WMADecodeContext* s, asf_waveformatex_t *wfx)
+{
+
+ int i, flags2;
+ fixed32 *window;
+ uint8_t *extradata;
+ fixed64 bps1;
+ fixed32 high_freq;
+ fixed64 bps;
+ int sample_rate1;
+ int coef_vlc_table;
+ // int filehandle;
+ #ifdef CPU_COLDFIRE
+ coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
+ #endif
+
+ /*clear stereo setting to avoid glitches when switching stereo->mono*/
+ s->channel_coded[0]=0;
+ s->channel_coded[1]=0;
+ s->ms_stereo=0;
+
+ s->sample_rate = wfx->rate;
+ s->nb_channels = wfx->channels;
+ s->bit_rate = wfx->bitrate;
+ s->block_align = wfx->blockalign;
+
+ if (wfx->codec_id == ASF_CODEC_ID_WMAV1) {
+ s->version = 1;
+ } else if (wfx->codec_id == ASF_CODEC_ID_WMAV2 ) {
+ s->version = 2;
+ } else {
+ /*one of those other wma flavors that don't have GPLed decoders */
+ return -1;
+ }
+
+ /* extract flag infos */
+ flags2 = 0;
+ extradata = wfx->data;
+ if (s->version == 1 && wfx->datalen >= 4) {
+ flags2 = extradata[2] | (extradata[3] << 8);
+ }else if (s->version == 2 && wfx->datalen >= 6){
+ flags2 = extradata[4] | (extradata[5] << 8);
+ }
+ s->use_exp_vlc = flags2 & 0x0001;
+ s->use_bit_reservoir = flags2 & 0x0002;
+ s->use_variable_block_len = flags2 & 0x0004;
+
+ /* compute MDCT block size */
+ if (s->sample_rate <= 16000){
+ s->frame_len_bits = 9;
+ }else if (s->sample_rate <= 22050 ||
+ (s->sample_rate <= 32000 && s->version == 1)){
+ s->frame_len_bits = 10;
+ }else{
+ s->frame_len_bits = 11;
+ }
+ s->frame_len = 1 << s->frame_len_bits;
+ if (s-> use_variable_block_len)
+ {
+ int nb_max, nb;
+ nb = ((flags2 >> 3) & 3) + 1;
+ if ((s->bit_rate / s->nb_channels) >= 32000)
+ {
+ nb += 2;
+ }
+ nb_max = s->frame_len_bits - BLOCK_MIN_BITS; //max is 11-7
+ if (nb > nb_max)
+ nb = nb_max;
+ s->nb_block_sizes = nb + 1;
+ }
+ else
+ {
+ s->nb_block_sizes = 1;
+ }
+
+ /* init rate dependant parameters */
+ s->use_noise_coding = 1;
+ high_freq = itofix64(s->sample_rate) >> 1;
+
+
+ /* if version 2, then the rates are normalized */
+ sample_rate1 = s->sample_rate;
+ if (s->version == 2)
+ {
+ if (sample_rate1 >= 44100)
+ sample_rate1 = 44100;
+ else if (sample_rate1 >= 22050)
+ sample_rate1 = 22050;
+ else if (sample_rate1 >= 16000)
+ sample_rate1 = 16000;
+ else if (sample_rate1 >= 11025)
+ sample_rate1 = 11025;
+ else if (sample_rate1 >= 8000)
+ sample_rate1 = 8000;
+ }
+
+ fixed64 tmp = itofix64(s->bit_rate);
+ fixed64 tmp2 = itofix64(s->nb_channels * s->sample_rate);
+ bps = fixdiv64(tmp, tmp2);
+ fixed64 tim = bps * s->frame_len;
+ fixed64 tmpi = fixdiv64(tim,itofix64(8));
+ s->byte_offset_bits = av_log2(fixtoi64(tmpi+0x8000)) + 2;
+
+ /* compute high frequency value and choose if noise coding should
+ be activated */
+ bps1 = bps;
+ if (s->nb_channels == 2)
+ bps1 = fixmul32(bps,0x1999a);
+ if (sample_rate1 == 44100)
+ {
+ if (bps1 >= 0x9c29)
+ s->use_noise_coding = 0;
+ else
+ high_freq = fixmul32(high_freq,0x6666);
+ }
+ else if (sample_rate1 == 22050)
+ {
+ if (bps1 >= 0x128f6)
+ s->use_noise_coding = 0;
+ else if (bps1 >= 0xb852)
+ high_freq = fixmul32(high_freq,0xb333);
+ else
+ high_freq = fixmul32(high_freq,0x999a);
+ }
+ else if (sample_rate1 == 16000)
+ {
+ if (bps > 0x8000)
+ high_freq = fixmul32(high_freq,0x8000);
+ else
+ high_freq = fixmul32(high_freq,0x4ccd);
+ }
+ else if (sample_rate1 == 11025)
+ {
+ high_freq = fixmul32(high_freq,0xb333);
+ }
+ else if (sample_rate1 == 8000)
+ {
+ if (bps <= 0xa000)
+ {
+ high_freq = fixmul32(high_freq,0x8000);
+ }
+ else if (bps > 0xc000)
+ {
+ s->use_noise_coding = 0;
+ }
+ else
+ {
+ high_freq = fixmul32(high_freq,0xa666);
+ }
+ }
+ else
+ {
+ if (bps >= 0xcccd)
+ {
+ high_freq = fixmul32(high_freq,0xc000);
+ }
+ else if (bps >= 0x999a)
+ {
+ high_freq = fixmul32(high_freq,0x999a);
+ }
+ else
+ {
+ high_freq = fixmul32(high_freq,0x8000);
+ }
+ }
+
+ /* compute the scale factor band sizes for each MDCT block size */
+ {
+ int a, b, pos, lpos, k, block_len, i, j, n;
+ const uint8_t *table;
+
+ if (s->version == 1)
+ {
+ s->coefs_start = 3;
+ }
+ else
+ {
+ s->coefs_start = 0;
+ }
+ for(k = 0; k < s->nb_block_sizes; ++k)
+ {
+ block_len = s->frame_len >> k;
+
+ if (s->version == 1)
+ {
+ lpos = 0;
+ for(i=0;i<25;++i)
+ {
+ a = wma_critical_freqs[i];
+ b = s->sample_rate;
+ pos = ((block_len * 2 * a) + (b >> 1)) / b;
+ if (pos > block_len)
+ pos = block_len;
+ s->exponent_bands[0][i] = pos - lpos;
+ if (pos >= block_len)
+ {
+ ++i;
+ break;
+ }
+ lpos = pos;
+ }
+ s->exponent_sizes[0] = i;
+ }
+ else
+ {
+ /* hardcoded tables */
+ table = NULL;
+ a = s->frame_len_bits - BLOCK_MIN_BITS - k;
+ if (a < 3)
+ {
+ if (s->sample_rate >= 44100)
+ table = exponent_band_44100[a];
+ else if (s->sample_rate >= 32000)
+ table = exponent_band_32000[a];
+ else if (s->sample_rate >= 22050)
+ table = exponent_band_22050[a];
+ }
+ if (table)
+ {
+ n = *table++;
+ for(i=0;i<n;++i)
+ s->exponent_bands[k][i] = table[i];
+ s->exponent_sizes[k] = n;
+ }
+ else
+ {
+ j = 0;
+ lpos = 0;
+ for(i=0;i<25;++i)
+ {
+ a = wma_critical_freqs[i];
+ b = s->sample_rate;
+ pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
+ pos <<= 2;
+ if (pos > block_len)
+ pos = block_len;
+ if (pos > lpos)
+ s->exponent_bands[k][j++] = pos - lpos;
+ if (pos >= block_len)
+ break;
+ lpos = pos;
+ }
+ s->exponent_sizes[k] = j;
+ }
+ }
+
+ /* max number of coefs */
+ s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
+ /* high freq computation */
+
+ fixed32 tmp1 = high_freq*2; /* high_freq is a fixed32!*/
+ fixed32 tmp2=itofix32(s->sample_rate>>1);
+ s->high_band_start[k] = fixtoi32( fixdiv32(tmp1, tmp2) * (block_len>>1) +0x8000);
+
+ /*
+ s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
+ s->sample_rate + 0.5);*/
+
+ n = s->exponent_sizes[k];
+ j = 0;
+ pos = 0;
+ for(i=0;i<n;++i)
+ {
+ int start, end;
+ start = pos;
+ pos += s->exponent_bands[k][i];
+ end = pos;
+ if (start < s->high_band_start[k])
+ start = s->high_band_start[k];
+ if (end > s->coefs_end[k])
+ end = s->coefs_end[k];
+ if (end > start)
+ s->exponent_high_bands[k][j++] = end - start;
+ }
+ s->exponent_high_sizes[k] = j;
+ }
+ }
+
+ /* ffmpeg uses malloc to only allocate as many window sizes as needed.
+ * However, we're really only interested in the worst case memory usage.
+ * In the worst case you can have 5 window sizes, 128 doubling up 2048
+ * Smaller windows are handled differently.
+ * Since we don't have malloc, just statically allocate this
+ */
+ fixed32 *temp[5];
+ temp[0] = stat0;
+ temp[1] = stat1;
+ temp[2] = stat2;
+ temp[3] = stat3;
+ temp[4] = stat4;
+
+ /* init MDCT windows : simple sinus window */
+ for(i = 0; i < s->nb_block_sizes; i++)
+ {
+ int n, j;
+ fixed32 alpha;
+ n = 1 << (s->frame_len_bits - i);
+ window = temp[i];
+
+ /* this calculates 0.5/(2*n) */
+ alpha = (1<<15)>>(s->frame_len_bits - i+1);
+ for(j=0;j<n;++j)
+ {
+ fixed32 j2 = itofix32(j) + 0x8000;
+ /*alpha between 0 and pi/2*/
+ window[j] = fsincos(fixmul32(j2,alpha)<<16, 0);
+ }
+ s->windows[i] = window;
+
+ }
+
+ s->reset_block_lengths = 1;
+
+ if (s->use_noise_coding) /* init the noise generator */
+ {
+ /* LSP values are simply 2x the EXP values */
+ if (s->use_exp_vlc)
+ {
+ s->noise_mult = 0x51f;
+ /*unlikely, but we may have previoiusly used this table for LSP,
+ so halve the values if needed*/
+ if(noisetable_exp[0] == 0x0a) {
+ for (i=0;i<NOISE_TAB_SIZE;++i)
+ noisetable_exp[i] >>= 1;
+ }
+ s->noise_table = noisetable_exp;
+ }
+ else
+ {
+ s->noise_mult = 0xa3d;
+ /*check that we haven't already doubled this table*/
+ if(noisetable_exp[0] == 0x5) {
+ for (i=0;i<NOISE_TAB_SIZE;++i)
+ noisetable_exp[i] <<= 1;
+ }
+ s->noise_table = noisetable_exp;
+ }
+#if 0
+/*TODO: Rockbox has a dither function. Consider using it for noise coding*/
+
+/* We use a lookup table computered in advance, so no need to do this*/
+ {
+ unsigned int seed;
+ fixed32 norm;
+ seed = 1;
+ norm = 0; // PJJ: near as makes any diff to 0!
+ for (i=0;i<NOISE_TAB_SIZE;++i)
+ {
+ seed = seed * 314159 + 1;
+ s->noise_table[i] = itofix32((int)seed) * norm;
+ }
+ }
+#endif
+
+ s->hgain_vlc.table = vlcbuf4;
+ s->hgain_vlc.table_allocated = VLCBUF4SIZE;
+ init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(hgain_huffbits),
+ hgain_huffbits, 1, 1,
+ hgain_huffcodes, 2, 2, INIT_VLC_USE_NEW_STATIC);
+ }
+
+ if (s->use_exp_vlc)
+ {
+
+ s->exp_vlc.table = vlcbuf3;
+ s->exp_vlc.table_allocated = VLCBUF3SIZE;
+
+ init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(scale_huffbits),
+ scale_huffbits, 1, 1,
+ scale_huffcodes, 4, 4, INIT_VLC_USE_NEW_STATIC);
+ }
+ else
+ {
+ wma_lsp_to_curve_init(s, s->frame_len);
+ }
+
+ /* choose the VLC tables for the coefficients */
+ coef_vlc_table = 2;
+ if (s->sample_rate >= 32000)
+ {
+ if (bps1 < 0xb852)
+ coef_vlc_table = 0;
+ else if (bps1 < 0x128f6)
+ coef_vlc_table = 1;
+ }
+
+ /* since the coef2 table is the biggest and that has index 2 in coef_vlcs
+ it's safe to always assign like this */
+ runtabarray[0] = runtab_big; runtabarray[1] = runtab_small;
+ levtabarray[0] = levtab_big; levtabarray[1] = levtab_small;
+
+ s->coef_vlc[0].table = vlcbuf1;
+ s->coef_vlc[0].table_allocated = VLCBUF1SIZE;
+ s->coef_vlc[1].table = vlcbuf2;
+ s->coef_vlc[1].table_allocated = VLCBUF2SIZE;
+
+
+ init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
+ &coef_vlcs[coef_vlc_table * 2], 0);
+ init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
+ &coef_vlcs[coef_vlc_table * 2 + 1], 1);
+
+ s->last_superframe_len = 0;
+ s->last_bitoffset = 0;
+
+ return 0;
+}
+
+
+/* compute x^-0.25 with an exponent and mantissa table. We use linear
+ interpolation to reduce the mantissa table size at a small speed
+ expense (linear interpolation approximately doubles the number of
+ bits of precision). */
+static inline fixed32 pow_m1_4(WMADecodeContext *s, fixed32 x)
+{
+ union {
+ float f;
+ unsigned int v;
+ } u, t;
+ unsigned int e, m;
+ fixed32 a, b;
+
+ u.f = fixtof64(x);
+ e = u.v >> 23;
+ m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
+ /* build interpolation scale: 1 <= t < 2. */
+ t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
+ a = ((fixed32*)s->lsp_pow_m_table1)[m];
+ b = ((fixed32*)s->lsp_pow_m_table2)[m];
+
+ /* lsp_pow_e_table contains 32.32 format */
+ /* TODO: Since we're unlikely have value that cover the whole
+ * IEEE754 range, we probably don't need to have all possible exponents */
+
+ return (lsp_pow_e_table[e] * (a + fixmul32(b, ftofix32(t.f))) >>32);
+}
+
+static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
+{
+ fixed32 wdel, a, b, temp2;
+ int i;
+
+ wdel = fixdiv32(itofix32(1), itofix32(frame_len));
+ for (i=0; i<frame_len; ++i)
+ {
+ /* TODO: can probably reuse the trig_init values here */
+ fsincos((wdel*i)<<15, &temp2);
+ /* get 3 bits headroom + 1 bit from not doubleing the values */
+ s->lsp_cos_table[i] = temp2>>3;
+
+ }
+ /* NOTE: these two tables are needed to avoid two operations in
+ pow_m1_4 */
+ b = itofix32(1);
+ int ix = 0;
+
+ s->lsp_pow_m_table1 = &vlcbuf3[0];
+ s->lsp_pow_m_table2 = &vlcbuf3[1<<LSP_POW_BITS];
+
+ /*double check this later*/
+ for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--)
+ {
+ a = pow_a_table[ix++]<<4;
+ ((fixed32*)s->lsp_pow_m_table1)[i] = 2 * a - b;
+ ((fixed32*)s->lsp_pow_m_table2)[i] = b - a;
+ b = a;
+ }
+
+}
+
+/* NOTE: We use the same code as Vorbis here */
+/* XXX: optimize it further with SSE/3Dnow */
+static void wma_lsp_to_curve(WMADecodeContext *s,
+ fixed32 *out,
+ fixed32 *val_max_ptr,
+ int n,
+ fixed32 *lsp)
+{
+ int i, j;
+ fixed32 p, q, w, v, val_max, temp2;
+
+ val_max = 0;
+ for(i=0;i<n;++i)
+ {
+ /* shift by 2 now to reduce rounding error,
+ * we can renormalize right before pow_m1_4
+ */
+
+ p = 0x8000<<5;
+ q = 0x8000<<5;
+ w = s->lsp_cos_table[i];
+
+ for (j=1;j<NB_LSP_COEFS;j+=2)
+ {
+ /* w is 5.27 format, lsp is in 16.16, temp2 becomes 5.27 format */
+ temp2 = ((w - (lsp[j - 1]<<11)));
+
+ /* q is 16.16 format, temp2 is 5.27, q becomes 16.16 */
+ q = fixmul32b(q, temp2 )<<4;
+ p = fixmul32b(p, (w - (lsp[j]<<11)))<<4;
+ }
+
+ /* 2 in 5.27 format is 0x10000000 */
+ p = fixmul32(p, fixmul32b(p, (0x10000000 - w)))<<3;
+ q = fixmul32(q, fixmul32b(q, (0x10000000 + w)))<<3;
+
+ v = (p + q) >>9; /* p/q end up as 16.16 */
+ v = pow_m1_4(s, v);
+ if (v > val_max)
+ val_max = v;
+ out[i] = v;
+ }
+
+ *val_max_ptr = val_max;
+}
+
+/* decode exponents coded with LSP coefficients (same idea as Vorbis)
+ * only used for low bitrate (< 16kbps) files
+ */
+static void decode_exp_lsp(WMADecodeContext *s, int ch)
+{
+ fixed32 lsp_coefs[NB_LSP_COEFS];
+ int val, i;
+
+ for (i = 0; i < NB_LSP_COEFS; ++i)
+ {
+ if (i == 0 || i >= 8)
+ val = get_bits(&s->gb, 3);
+ else
+ val = get_bits(&s->gb, 4);
+ lsp_coefs[i] = lsp_codebook[i][val];
+ }
+
+ wma_lsp_to_curve(s,
+ s->exponents[ch],
+ &s->max_exponent[ch],
+ s->block_len,
+ lsp_coefs);
+}
+
+/* decode exponents coded with VLC codes - used for bitrate >= 32kbps*/
+static int decode_exp_vlc(WMADecodeContext *s, int ch)
+{
+ int last_exp, n, code;
+ const uint16_t *ptr, *band_ptr;
+ fixed32 v, max_scale;
+ fixed32 *q,*q_end;
+
+ /*accommodate the 60 negative indices */
+ const fixed32 *pow_10_to_yover16_ptr = &pow_10_to_yover16[61];
+
+ band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
+ ptr = band_ptr;
+ q = s->exponents[ch];
+ q_end = q + s->block_len;
+ max_scale = 0;
+
+
+ if (s->version == 1) //wmav1 only
+ {
+ last_exp = get_bits(&s->gb, 5) + 10;
+
+ v = pow_10_to_yover16_ptr[last_exp];
+ max_scale = v;
+ n = *ptr++;
+ switch (n & 3) do {
+ case 0: *q++ = v;
+ case 3: *q++ = v;
+ case 2: *q++ = v;
+ case 1: *q++ = v;
+ } while ((n -= 4) > 0);
+ } else {
+ last_exp = 36;
+ }
+
+ while (q < q_end)
+ {
+ code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
+ if (code < 0)
+ {
+ return -1;
+ }
+ /* NOTE: this offset is the same as MPEG4 AAC ! */
+ last_exp += code - 60;
+
+ v = pow_10_to_yover16_ptr[last_exp];
+ if (v > max_scale)
+ {
+ max_scale = v;
+ }
+ n = *ptr++;
+ switch (n & 3) do {
+ case 0: *q++ = v;
+ case 3: *q++ = v;
+ case 2: *q++ = v;
+ case 1: *q++ = v;
+ } while ((n -= 4) > 0);
+ }
+
+ s->max_exponent[ch] = max_scale;
+ return 0;
+}
+
+/* return 0 if OK. return 1 if last block of frame. return -1 if
+ unrecorrable error. */
+static int wma_decode_block(WMADecodeContext *s)
+{
+ int n, v, a, ch, code, bsize;
+ int coef_nb_bits, total_gain;
+ int nb_coefs[MAX_CHANNELS];
+ fixed32 mdct_norm;
+
+ /*DEBUGF("***decode_block: %d (%d samples of %d in frame)\n", s->block_num, s->block_len, s->frame_len);*/
+
+ /* compute current block length */
+ if (s->use_variable_block_len)
+ {
+ n = av_log2(s->nb_block_sizes - 1) + 1;
+
+ if (s->reset_block_lengths)
+ {
+ s->reset_block_lengths = 0;
+ v = get_bits(&s->gb, n);
+ if (v >= s->nb_block_sizes)
+ {
+ return -2;
+ }
+ s->prev_block_len_bits = s->frame_len_bits - v;
+ v = get_bits(&s->gb, n);
+ if (v >= s->nb_block_sizes)
+ {
+ return -3;
+ }
+ s->block_len_bits = s->frame_len_bits - v;
+ }
+ else
+ {
+ /* update block lengths */
+ s->prev_block_len_bits = s->block_len_bits;
+ s->block_len_bits = s->next_block_len_bits;
+ }
+ v = get_bits(&s->gb, n);
+
+ if (v >= s->nb_block_sizes)
+ {
+ // rb->splash(HZ*4, "v was %d", v); //5, 7
+ return -4; //this is it
+ }
+ else{
+ //rb->splash(HZ, "passed v block (%d)!", v);
+ }
+ s->next_block_len_bits = s->frame_len_bits - v;
+ }
+ else
+ {
+ /* fixed block len */
+ s->next_block_len_bits = s->frame_len_bits;
+ s->prev_block_len_bits = s->frame_len_bits;
+ s->block_len_bits = s->frame_len_bits;
+ }
+ /* now check if the block length is coherent with the frame length */
+ s->block_len = 1 << s->block_len_bits;
+
+ if ((s->block_pos + s->block_len) > s->frame_len)
+ {
+ return -5; //oddly 32k sample from tracker fails here
+ }
+
+ if (s->nb_channels == 2)
+ {
+ s->ms_stereo = get_bits1(&s->gb);
+ }
+ v = 0;
+ for (ch = 0; ch < s->nb_channels; ++ch)
+ {
+ a = get_bits1(&s->gb);
+ s->channel_coded[ch] = a;
+ v |= a;
+ }
+ /* if no channel coded, no need to go further */
+ /* XXX: fix potential framing problems */
+ if (!v)
+ {
+ goto next;
+ }
+
+ bsize = s->frame_len_bits - s->block_len_bits;
+
+ /* read total gain and extract corresponding number of bits for
+ coef escape coding */
+ total_gain = 1;
+ for(;;)
+ {
+ a = get_bits(&s->gb, 7);
+ total_gain += a;
+ if (a != 127)
+ {
+ break;
+ }
+ }
+
+ if (total_gain < 15)
+ coef_nb_bits = 13;
+ else if (total_gain < 32)
+ coef_nb_bits = 12;
+ else if (total_gain < 40)
+ coef_nb_bits = 11;
+ else if (total_gain < 45)
+ coef_nb_bits = 10;
+ else
+ coef_nb_bits = 9;
+
+ /* compute number of coefficients */
+ n = s->coefs_end[bsize] - s->coefs_start;
+
+ for(ch = 0; ch < s->nb_channels; ++ch)
+ {
+ nb_coefs[ch] = n;
+ }
+ /* complex coding */
+ if (s->use_noise_coding)
+ {
+
+ for(ch = 0; ch < s->nb_channels; ++ch)
+ {
+ if (s->channel_coded[ch])
+ {
+ int i, n, a;
+ n = s->exponent_high_sizes[bsize];
+ for(i=0;i<n;++i)
+ {
+ a = get_bits1(&s->gb);
+ s->high_band_coded[ch][i] = a;
+ /* if noise coding, the coefficients are not transmitted */
+ if (a)
+ nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
+ }
+ }
+ }
+ for(ch = 0; ch < s->nb_channels; ++ch)
+ {
+ if (s->channel_coded[ch])
+ {
+ int i, n, val, code;
+
+ n = s->exponent_high_sizes[bsize];
+ val = (int)0x80000000;
+ for(i=0;i<n;++i)
+ {
+ if (s->high_band_coded[ch][i])
+ {
+ if (val == (int)0x80000000)
+ {
+ val = get_bits(&s->gb, 7) - 19;
+ }
+ else
+ {
+ //code = get_vlc(&s->gb, &s->hgain_vlc);
+ code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
+ if (code < 0)
+ {
+ return -6;
+ }
+ val += code - 18;
+ }
+ s->high_band_values[ch][i] = val;
+ }
+ }
+ }
+ }
+ }
+
+ /* exponents can be reused in short blocks. */
+ if ((s->block_len_bits == s->frame_len_bits) || get_bits1(&s->gb))
+ {
+ for(ch = 0; ch < s->nb_channels; ++ch)
+ {
+ if (s->channel_coded[ch])
+ {
+ if (s->use_exp_vlc)
+ {
+ if (decode_exp_vlc(s, ch) < 0)
+ {
+ return -7;
+ }
+ }
+ else
+ {
+ decode_exp_lsp(s, ch);
+ }
+ s->exponents_bsize[ch] = bsize;
+ }
+ }
+ }
+
+ /* parse spectral coefficients : just RLE encoding */
+ for(ch = 0; ch < s->nb_channels; ++ch)
+ {
+ if (s->channel_coded[ch])
+ {
+ VLC *coef_vlc;
+ int level, run, sign, tindex;
+ int16_t *ptr, *eptr;
+ const int16_t *level_table, *run_table;
+
+ /* special VLC tables are used for ms stereo because
+ there is potentially less energy there */
+ tindex = (ch == 1 && s->ms_stereo);
+ coef_vlc = &s->coef_vlc[tindex];
+ run_table = s->run_table[tindex];
+ level_table = s->level_table[tindex];
+ /* XXX: optimize */
+ ptr = &s->coefs1[ch][0];
+ eptr = ptr + nb_coefs[ch];
+ memset(ptr, 0, s->block_len * sizeof(int16_t));
+
+ for(;;)
+ {
+ code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX);
+
+ if (code < 0)
+ {
+ return -8;
+ }
+ if (code == 1)
+ {
+ /* EOB */
+ break;
+ }
+ else if (code == 0)
+ {
+ /* escape */
+ level = get_bits(&s->gb, coef_nb_bits);
+ /* NOTE: this is rather suboptimal. reading
+ block_len_bits would be better */
+ run = get_bits(&s->gb, s->frame_len_bits);
+ }
+ else
+ {
+ /* normal code */
+ run = run_table[code];
+ level = level_table[code];
+ }
+ sign = get_bits1(&s->gb);
+ if (!sign)
+ level = -level;
+ ptr += run;
+ if (ptr >= eptr)
+ {
+ break;
+ }
+ *ptr++ = level;
+
+
+ /* NOTE: EOB can be omitted */
+ if (ptr >= eptr)
+ break;
+ }
+ }
+ if (s->version == 1 && s->nb_channels >= 2)
+ {
+ align_get_bits(&s->gb);
+ }
+ }
+
+ {
+ int n4 = s->block_len >> 1;
+
+
+ mdct_norm = 0x10000>>(s->block_len_bits-1);
+
+ if (s->version == 1)
+ {
+ mdct_norm *= fixtoi32(fixsqrt32(itofix32(n4)));
+ }
+ }
+
+
+ /* finally compute the MDCT coefficients */
+ for(ch = 0; ch < s->nb_channels; ++ch)
+ {
+ if (s->channel_coded[ch])
+ {
+ int16_t *coefs1;
+ fixed32 *exponents;
+ fixed32 *coefs, atemp;
+ fixed64 mult;
+ fixed64 mult1;
+ fixed32 noise, temp1, temp2, mult2;
+ int i, j, n, n1, last_high_band, esize;
+ fixed32 exp_power[HIGH_BAND_MAX_SIZE];
+
+ //total_gain, coefs1, mdctnorm are lossless
+
+ coefs1 = s->coefs1[ch];
+ exponents = s->exponents[ch];
+ esize = s->exponents_bsize[ch];
+ coefs = s->coefs[ch];
+ n=0;
+
+ /*
+ * The calculation of coefs has a shift right by 2 built in. This
+ * prepares samples for the Tremor IMDCT which uses a slightly
+ * different fixed format then the ffmpeg one. If the old ffmpeg
+ * imdct is used, each shift storing into coefs should be reduced
+ * by 1.
+ * See SVN logs for details.
+ */
+
+
+ if (s->use_noise_coding)
+ {
+ /*This case is only used for low bitrates (typically less then 32kbps)*/
+
+ /*TODO: mult should be converted to 32 bit to speed up noise coding*/
+
+ mult = fixdiv64(pow_table[total_gain+20],Fixed32To64(s->max_exponent[ch]));
+ mult = mult* mdct_norm;
+ mult1 = mult;
+
+ /* very low freqs : noise */
+ for(i = 0;i < s->coefs_start; ++i)
+ {
+ *coefs++ = fixmul32( (fixmul32(s->noise_table[s->noise_index],
+ exponents[i<<bsize>>esize])>>4),Fixed32From64(mult1)) >>2;
+ s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
+ }
+
+ n1 = s->exponent_high_sizes[bsize];
+
+ /* compute power of high bands */
+ exponents = s->exponents[ch] +(s->high_band_start[bsize]<<bsize);
+ last_high_band = 0; /* avoid warning */
+ for (j=0;j<n1;++j)
+ {
+ n = s->exponent_high_bands[s->frame_len_bits -
+ s->block_len_bits][j];
+ if (s->high_band_coded[ch][j])
+ {
+ fixed32 e2, v;
+ e2 = 0;
+ for(i = 0;i < n; ++i)
+ {
+ /*v is normalized later on so its fixed format is irrelevant*/
+ v = exponents[i<<bsize>>esize]>>4;
+ e2 += fixmul32(v, v)>>3;
+ }
+ exp_power[j] = e2/n; /*n is an int...*/
+ last_high_band = j;
+ }
+ exponents += n<<bsize;
+ }
+
+ /* main freqs and high freqs */
+ exponents = s->exponents[ch] + (s->coefs_start<<bsize);
+ for(j=-1;j<n1;++j)
+ {
+ if (j < 0)
+ {
+ n = s->high_band_start[bsize] -
+ s->coefs_start;
+ }
+ else
+ {
+ n = s->exponent_high_bands[s->frame_len_bits -
+ s->block_len_bits][j];
+ }
+ if (j >= 0 && s->high_band_coded[ch][j])
+ {
+ /* use noise with specified power */
+ fixed32 tmp = fixdiv32(exp_power[j],exp_power[last_high_band]);
+
+ /*mult1 is 48.16, pow_table is 48.16*/
+ mult1 = fixmul32(fixsqrt32(tmp),
+ pow_table[s->high_band_values[ch][j]+20]) >> 16;
+
+ /*this step has a fairly high degree of error for some reason*/
+ mult1 = fixdiv64(mult1,fixmul32(s->max_exponent[ch],s->noise_mult));
+ mult1 = mult1*mdct_norm>>PRECISION;
+ for(i = 0;i < n; ++i)
+ {
+ noise = s->noise_table[s->noise_index];
+ s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
+ *coefs++ = fixmul32((fixmul32(exponents[i<<bsize>>esize],noise)>>4),
+ Fixed32From64(mult1)) >>2;
+
+ }
+ exponents += n<<bsize;
+ }
+ else
+ {
+ /* coded values + small noise */
+ for(i = 0;i < n; ++i)
+ {
+ noise = s->noise_table[s->noise_index];
+ s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
+
+ /*don't forget to renormalize the noise*/
+ temp1 = (((int32_t)*coefs1++)<<16) + (noise>>4);
+ temp2 = fixmul32(exponents[i<<bsize>>esize], mult>>18);
+ *coefs++ = fixmul32(temp1, temp2);
+ }
+ exponents += n<<bsize;
+ }
+ }
+
+ /* very high freqs : noise */
+ n = s->block_len - s->coefs_end[bsize];
+ mult2 = fixmul32(mult>>16,exponents[((-1<<bsize))>>esize]) ;
+ for (i = 0; i < n; ++i)
+ {
+ /*renormalize the noise product and then reduce to 14.18 precison*/
+ *coefs++ = fixmul32(s->noise_table[s->noise_index],mult2) >>6;
+
+ s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
+ }
+ }
+ else
+ {
+ /*Noise coding not used, simply convert from exp to fixed representation*/
+
+ fixed32 mult3 = (fixed32)(fixdiv64(pow_table[total_gain+20],
+ Fixed32To64(s->max_exponent[ch])));
+ mult3 = fixmul32(mult3, mdct_norm);
+
+ /*zero the first 3 coefficients for WMA V1, does nothing otherwise*/
+ for(i=0; i<s->coefs_start; i++)
+ *coefs++=0;
+
+ n = nb_coefs[ch];
+
+ /* XXX: optimize more, unrolling this loop in asm
+ might be a good idea */
+
+ for(i = 0;i < n; ++i)
+ {
+ /*ffmpeg imdct needs 15.17, while tremor 14.18*/
+ atemp = (coefs1[i] * mult3)>>2;
+ *coefs++=fixmul32(atemp,exponents[i<<bsize>>esize]);
+ }
+ n = s->block_len - s->coefs_end[bsize];
+ memset(coefs, 0, n*sizeof(fixed32));
+ }
+ }
+ }
+
+
+
+ if (s->ms_stereo && s->channel_coded[1])
+ {
+ fixed32 a, b;
+ int i;
+ /* nominal case for ms stereo: we do it before mdct */
+ /* no need to optimize this case because it should almost
+ never happen */
+ if (!s->channel_coded[0])
+ {
+ memset(s->coefs[0], 0, sizeof(fixed32) * s->block_len);
+ s->channel_coded[0] = 1;
+ }
+
+ for(i = 0; i < s->block_len; ++i)
+ {
+ a = s->coefs[0][i];
+ b = s->coefs[1][i];
+ s->coefs[0][i] = a + b;
+ s->coefs[1][i] = a - b;
+ }
+ }
+
+ for(ch = 0; ch < s->nb_channels; ++ch)
+ {
+ /* BLOCK_MAX_SIZE is 2048 (samples) and MAX_CHANNELS is 2. */
+ static uint32_t scratch_buf[BLOCK_MAX_SIZE * MAX_CHANNELS] IBSS_ATTR MEM_ALIGN_ATTR;
+ if (s->channel_coded[ch])
+ {
+ int n4, index;
+
+ n4 = s->block_len >>1;
+
+ ff_imdct_calc((s->frame_len_bits - bsize + 1),
+ scratch_buf,
+ s->coefs[ch]);
+
+ /* add in the frame */
+ index = (s->frame_len / 2) + s->block_pos - n4;
+ wma_window(s, scratch_buf, &(s->frame_out[ch][index]));
+
+
+
+ /* specific fast case for ms-stereo : add to second
+ channel if it is not coded */
+ if (s->ms_stereo && !s->channel_coded[1])
+ {
+ wma_window(s, scratch_buf, &(s->frame_out[1][index]));
+ }
+ }
+ }
+next:
+ /* update block number */
+ ++s->block_num;
+ s->block_pos += s->block_len;
+ if (s->block_pos >= s->frame_len)
+ {
+ return 1;
+ }
+ else
+ {
+ return 0;
+ }
+}
+
+/* decode a frame of frame_len samples */
+static int wma_decode_frame(WMADecodeContext *s)
+{
+ int ret;
+
+ /* read each block */
+ s->block_num = 0;
+ s->block_pos = 0;
+
+
+ for(;;)
+ {
+ ret = wma_decode_block(s);
+ if (ret < 0)
+ {
+
+ DEBUGF("wma_decode_block failed with code %d\n", ret);
+ return -1;
+ }
+ if (ret)
+ {
+ break;
+ }
+ }
+
+ return 0;
+}
+
+/* Initialise the superframe decoding */
+
+int wma_decode_superframe_init(WMADecodeContext* s,
+ const uint8_t *buf, /*input*/
+ int buf_size)
+{
+ if (buf_size==0)
+ {
+ s->last_superframe_len = 0;
+ return 0;
+ }
+
+ s->current_frame = 0;
+
+ init_get_bits(&s->gb, buf, buf_size*8);
+
+ if (s->use_bit_reservoir)
+ {
+ /* read super frame header */
+ skip_bits(&s->gb, 4); /* super frame index */
+ s->nb_frames = get_bits(&s->gb, 4);
+
+ if (s->last_superframe_len == 0)
+ s->nb_frames --;
+ else if (s->nb_frames == 0)
+ s->nb_frames++;
+
+ s->bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
+ } else {
+ s->nb_frames = 1;
+ }
+
+ return 1;
+}
+
+
+/* Decode a single frame in the current superframe - return -1 if
+ there was a decoding error, or the number of samples decoded.
+*/
+
+int wma_decode_superframe_frame(WMADecodeContext* s,
+ const uint8_t *buf, /*input*/
+ int buf_size)
+{
+ int pos, len, ch;
+ uint8_t *q;
+ int done = 0;
+
+ for(ch = 0; ch < s->nb_channels; ch++)
+ memmove(&(s->frame_out[ch][0]),
+ &(s->frame_out[ch][s->frame_len]),
+ s->frame_len * sizeof(fixed32));
+
+ if ((s->use_bit_reservoir) && (s->current_frame == 0))
+ {
+ if (s->last_superframe_len > 0)
+ {
+ /* add s->bit_offset bits to last frame */
+ if ((s->last_superframe_len + ((s->bit_offset + 7) >> 3)) >
+ MAX_CODED_SUPERFRAME_SIZE)
+ {
+ DEBUGF("superframe size too large error\n");
+ goto fail;
+ }
+ q = s->last_superframe + s->last_superframe_len;
+ len = s->bit_offset;
+ while (len > 7)
+ {
+ *q++ = (get_bits)(&s->gb, 8);
+ len -= 8;
+ }
+ if (len > 0)
+ {
+ *q++ = (get_bits)(&s->gb, len) << (8 - len);
+ }
+
+ /* XXX: s->bit_offset bits into last frame */
+ init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
+ /* skip unused bits */
+ if (s->last_bitoffset > 0)
+ skip_bits(&s->gb, s->last_bitoffset);
+
+ /* this frame is stored in the last superframe and in the
+ current one */
+ if (wma_decode_frame(s) < 0)
+ {
+ goto fail;
+ }
+ done = 1;
+ }
+
+ /* read each frame starting from s->bit_offset */
+ pos = s->bit_offset + 4 + 4 + s->byte_offset_bits + 3;
+ init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
+ len = pos & 7;
+ if (len > 0)
+ skip_bits(&s->gb, len);
+
+ s->reset_block_lengths = 1;
+ }
+
+ /* If we haven't decoded a frame yet, do it now */
+ if (!done)
+ {
+ if (wma_decode_frame(s) < 0)
+ {
+ goto fail;
+ }
+ }
+
+ s->current_frame++;
+
+ if ((s->use_bit_reservoir) && (s->current_frame == s->nb_frames))
+ {
+ /* we copy the end of the frame in the last frame buffer */
+ pos = get_bits_count(&s->gb) + ((s->bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
+ s->last_bitoffset = pos & 7;
+ pos >>= 3;
+ len = buf_size - pos;
+ if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0)
+ {
+ DEBUGF("superframe size too large error after decoding\n");
+ goto fail;
+ }
+ s->last_superframe_len = len;
+ memcpy(s->last_superframe, buf + pos, len);
+ }
+
+ return s->frame_len;
+
+fail:
+ /* when error, we reset the bit reservoir */
+
+ s->last_superframe_len = 0;
+ return -1;
+}
+