summaryrefslogtreecommitdiff
path: root/plugins/wma/libwma/fft-ffmpeg.c
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/wma/libwma/fft-ffmpeg.c')
-rw-r--r--plugins/wma/libwma/fft-ffmpeg.c481
1 files changed, 481 insertions, 0 deletions
diff --git a/plugins/wma/libwma/fft-ffmpeg.c b/plugins/wma/libwma/fft-ffmpeg.c
new file mode 100644
index 00000000..e2d1777d
--- /dev/null
+++ b/plugins/wma/libwma/fft-ffmpeg.c
@@ -0,0 +1,481 @@
+/*
+ * FFT/IFFT transforms converted to integer precision
+ * Copyright (c) 2010 Dave Hooper, Mohamed Tarek, Michael Giacomelli
+ * Copyright (c) 2008 Loren Merritt
+ * Copyright (c) 2002 Fabrice Bellard
+ * Partly based on libdjbfft by D. J. Bernstein
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file libavcodec/fft.c
+ * FFT/IFFT transforms.
+ */
+
+
+#ifdef CPU_ARM
+// we definitely want CONFIG_SMALL undefined for ipod
+// so we get the inlined version of fft16 (which is measurably faster)
+#undef CONFIG_SMALL
+#else
+#undef CONFIG_SMALL
+#endif
+
+#include "fft.h"
+#include <string.h>
+#include <stdlib.h>
+#include <math.h>
+#include <inttypes.h>
+#include <time.h>
+
+#include "codeclib_misc.h"
+#include "mdct_lookup.h"
+
+/* constants for fft_16 (same constants as in mdct_arm.S ... ) */
+#define cPI1_8 (0x7641af3d) /* cos(pi/8) s.31 */
+#define cPI2_8 (0x5a82799a) /* cos(2pi/8) = 1/sqrt(2) s.31 */
+#define cPI3_8 (0x30fbc54d) /* cos(3pi/8) s.31 */
+
+/* asm-optimised functions and/or macros */
+#include "fft-ffmpeg_arm.h"
+
+#ifndef ICODE_ATTR_TREMOR_MDCT
+#define ICODE_ATTR_TREMOR_MDCT ICODE_ATTR
+#endif
+
+/* Use to give gcc hints on which branch is most likely taken */
+#if defined(__GNUC__) && __GNUC__ >= 3
+#define LIKELY(x) __builtin_expect(!!(x), 1)
+#define UNLIKELY(x) __builtin_expect(!!(x), 0)
+#else
+#define LIKELY(x) (x)
+#define UNLIKELY(x) (x)
+#endif
+
+#if 0
+static int split_radix_permutation(int i, int n, int inverse)
+{
+ int m;
+ if(n <= 2) return i&1;
+ m = n >> 1;
+ if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
+ m >>= 1;
+ if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
+ else return split_radix_permutation(i, m, inverse)*4 - 1;
+}
+
+static void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
+{
+ int j, k, np;
+ FFTComplex tmp;
+ //const uint16_t *revtab = s->revtab;
+ np = 1 << s->nbits;
+
+ const int revtab_shift = (12 - s->nbits);
+
+ /* reverse */
+ for(j=0;j<np;j++) {
+ k = revtab[j]>>revtab_shift;
+ if (k < j) {
+ tmp = z[k];
+ z[k] = z[j];
+ z[j] = tmp;
+ }
+ }
+}
+#endif
+
+#define BF(x,y,a,b) {\
+ x = a - b;\
+ y = a + b;\
+}
+
+#define BF_REV(x,y,a,b) {\
+ x = a + b;\
+ y = a - b;\
+}
+
+#ifndef FFT_FFMPEG_INCL_OPTIMISED_BUTTERFLIES
+#define BUTTERFLIES(a0,a1,a2,a3) {\
+ {\
+ FFTSample temp1,temp2;\
+ BF(temp1, temp2, t5, t1);\
+ BF(a2.re, a0.re, a0.re, temp2);\
+ BF(a3.im, a1.im, a1.im, temp1);\
+ }\
+ {\
+ FFTSample temp1,temp2;\
+ BF(temp1, temp2, t2, t6);\
+ BF(a3.re, a1.re, a1.re, temp1);\
+ BF(a2.im, a0.im, a0.im, temp2);\
+ }\
+}
+
+// force loading all the inputs before storing any.
+// this is slightly slower for small data, but avoids store->load aliasing
+// for addresses separated by large powers of 2.
+#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
+ FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
+ {\
+ FFTSample temp1, temp2;\
+ BF(temp1, temp2, t5, t1);\
+ BF(a2.re, a0.re, r0, temp2);\
+ BF(a3.im, a1.im, i1, temp1);\
+ }\
+ {\
+ FFTSample temp1, temp2;\
+ BF(temp1, temp2, t2, t6);\
+ BF(a3.re, a1.re, r1, temp1);\
+ BF(a2.im, a0.im, i0, temp2);\
+ }\
+}
+#endif
+
+/*
+ see conjugate pair description in
+ http://www.fftw.org/newsplit.pdf
+
+ a0 = z[k]
+ a1 = z[k+N/4]
+ a2 = z[k+2N/4]
+ a3 = z[k+3N/4]
+
+ result:
+ y[k] = z[k]+w(z[k+2N/4])+w'(z[k+3N/4])
+ y[k+N/4] = z[k+N/4]-iw(z[k+2N/4])+iw'(z[k+3N/4])
+ y[k+2N/4] = z[k]-w(z[k+2N/4])-w'(z[k+3N/4])
+ y[k+3N/4] = z[k+N/4]+iw(z[k+2N/4])-iw'(z[k+3N/4])
+
+ i.e.
+
+ a0 = a0 + (w.a2 + w'.a3)
+ a1 = a1 - i(w.a2 - w'.a3)
+ a2 = a0 - (w.a2 + w'.a3)
+ a3 = a1 + i(w.a2 - w'.a3)
+
+ note re(w') = re(w) and im(w') = -im(w)
+
+ so therefore
+
+ re(a0) = re(a0) + re(w.a2) + re(w.a3)
+ im(a0) = im(a0) + im(w.a2) - im(w.a3) etc
+
+ and remember also that
+ Re([s+it][u+iv]) = su-tv
+ Im([s+it][u+iv]) = sv+tu
+
+ so
+ Re(w'.(s+it)) = Re(w').s - Im(w').t = Re(w).s + Im(w).t
+ Im(w'.(s+it)) = Re(w').t + Im(w').s = Re(w).t - Im(w).s
+
+ For inverse dft we take the complex conjugate of all twiddle factors.
+ Hence
+
+ a0 = a0 + (w'.a2 + w.a3)
+ a1 = a1 - i(w'.a2 - w.a3)
+ a2 = a0 - (w'.a2 + w.a3)
+ a3 = a1 + i(w'.a2 - w.a3)
+
+ Define t1 = Re(w'.a2) = Re(w)*Re(a2) + Im(w)*Im(a2)
+ t2 = Im(w'.a2) = Re(w)*Im(a2) - Im(w)*Re(a2)
+ t5 = Re(w.a3) = Re(w)*Re(a3) - Im(w)*Im(a3)
+ t6 = Im(w.a3) = Re(w)*Im(a3) + Im(w)*Re(a3)
+
+ Then we just output:
+ a0.re = a0.re + ( t1 + t5 )
+ a0.im = a0.im + ( t2 + t6 )
+ a1.re = a1.re + ( t2 - t6 ) // since we multiply by -i and i(-i) = 1
+ a1.im = a1.im - ( t1 - t5 ) // since we multiply by -i and 1(-i) = -i
+ a2.re = a0.re - ( t1 + t5 )
+ a2.im = a0.im - ( t1 + t5 )
+ a3.re = a1.re - ( t2 - t6 ) // since we multiply by +i and i(+i) = -1
+ a3.im = a1.im + ( t1 - t5 ) // since we multiply by +i and 1(+i) = i
+
+
+*/
+
+#ifndef FFT_FFMPEG_INCL_OPTIMISED_TRANSFORM
+static inline FFTComplex* TRANSFORM(FFTComplex * z, unsigned int n, FFTSample wre, FFTSample wim)
+{
+ register FFTSample t1,t2,t5,t6,r_re,r_im;
+ r_re = z[n*2].re;
+ r_im = z[n*2].im;
+ XPROD31_R(r_re, r_im, wre, wim, t1,t2);
+ r_re = z[n*3].re;
+ r_im = z[n*3].im;
+ XNPROD31_R(r_re, r_im, wre, wim, t5,t6);
+ BUTTERFLIES(z[0],z[n],z[n*2],z[n*3]);
+ return z+1;
+}
+
+static inline FFTComplex* TRANSFORM_W01(FFTComplex * z, unsigned int n, const FFTSample * w)
+{
+ register const FFTSample wre=w[0],wim=w[1];
+ register FFTSample t1,t2,t5,t6,r_re,r_im;
+ r_re = z[n*2].re;
+ r_im = z[n*2].im;
+ XPROD31_R(r_re, r_im, wre, wim, t1,t2);
+ r_re = z[n*3].re;
+ r_im = z[n*3].im;
+ XNPROD31_R(r_re, r_im, wre, wim, t5,t6);
+ BUTTERFLIES(z[0],z[n],z[n*2],z[n*3]);
+ return z+1;
+}
+
+static inline FFTComplex* TRANSFORM_W10(FFTComplex * z, unsigned int n, const FFTSample * w)
+{
+ register const FFTSample wim=w[0],wre=w[1];
+ register FFTSample t1,t2,t5,t6,r_re,r_im;
+ r_re = z[n*2].re;
+ r_im = z[n*2].im;
+ XPROD31_R(r_re, r_im, wre, wim, t1,t2);
+ r_re = z[n*3].re;
+ r_im = z[n*3].im;
+ XNPROD31_R(r_re, r_im, wre, wim, t5,t6);
+ BUTTERFLIES(z[0],z[n],z[n*2],z[n*3]);
+ return z+1;
+}
+
+static inline FFTComplex* TRANSFORM_EQUAL(FFTComplex * z, unsigned int n)
+{
+ register FFTSample t1,t2,t5,t6,temp1,temp2;
+ register FFTSample * my_z = (FFTSample *)(z);
+ my_z += n*4;
+ t2 = MULT31(my_z[0], cPI2_8);
+ temp1 = MULT31(my_z[1], cPI2_8);
+ my_z += n*2;
+ temp2 = MULT31(my_z[0], cPI2_8);
+ t5 = MULT31(my_z[1], cPI2_8);
+ t1 = ( temp1 + t2 );
+ t2 = ( temp1 - t2 );
+ t6 = ( temp2 + t5 );
+ t5 = ( temp2 - t5 );
+ my_z -= n*6;
+ BUTTERFLIES(z[0],z[n],z[n*2],z[n*3]);
+ return z+1;
+}
+
+static inline FFTComplex* TRANSFORM_ZERO(FFTComplex * z, unsigned int n)
+{
+ FFTSample t1,t2,t5,t6;
+ t1 = z[n*2].re;
+ t2 = z[n*2].im;
+ t5 = z[n*3].re;
+ t6 = z[n*3].im;
+ BUTTERFLIES(z[0],z[n],z[n*2],z[n*3]);
+ return z+1;
+}
+#endif
+
+/* z[0...8n-1], w[1...2n-1] */
+#define ICODE_ATTR
+static void pass(FFTComplex *z_arg, unsigned int STEP_arg, unsigned int n_arg) ICODE_ATTR_TREMOR_MDCT;
+static void pass(FFTComplex *z_arg, unsigned int STEP_arg, unsigned int n_arg)
+{
+ register FFTComplex * z = z_arg;
+ register unsigned int STEP = STEP_arg;
+ register unsigned int n = n_arg;
+
+ register const FFTSample *w = sincos_lookup0+STEP;
+ /* wre = *(wim+1) . ordering is sin,cos */
+ register const FFTSample *w_end = sincos_lookup0+1024;
+
+ /* first two are special (well, first one is special, but we need to do pairs) */
+ z = TRANSFORM_ZERO(z,n);
+ z = TRANSFORM_W10(z,n,w);
+ w += STEP;
+ /* first pass forwards through sincos_lookup0*/
+ do {
+ z = TRANSFORM_W10(z,n,w);
+ w += STEP;
+ z = TRANSFORM_W10(z,n,w);
+ w += STEP;
+ } while(LIKELY(w < w_end));
+ /* second half: pass backwards through sincos_lookup0*/
+ /* wim and wre are now in opposite places so ordering now [0],[1] */
+ w_end=sincos_lookup0;
+ while(LIKELY(w>w_end))
+ {
+ z = TRANSFORM_W01(z,n,w);
+ w -= STEP;
+ z = TRANSFORM_W01(z,n,w);
+ w -= STEP;
+ }
+}
+
+/* what is STEP?
+ sincos_lookup0 has sin,cos pairs for 1/4 cycle, in 1024 points
+ so half cycle would be 2048 points
+ ff_cos_16 has 8 elements corresponding to 4 cos points and 4 sin points
+ so each of the 4 points pairs corresponds to a 256*2-byte jump in sincos_lookup0
+ 8192/16 (from "ff_cos_16") is 512 bytes.
+ i.e. for fft16, STEP = 8192/16 */
+#define DECL_FFT(n,n2,n4)\
+static void fft##n(FFTComplex *z) ICODE_ATTR_TREMOR_MDCT;\
+static void fft##n(FFTComplex *z)\
+{\
+ fft##n2(z);\
+ fft##n4(z+n4*2);\
+ fft##n4(z+n4*3);\
+ pass(z,8192/n,n4);\
+}
+
+#ifndef FFT_FFMPEG_INCL_OPTIMISED_FFT4
+static inline void fft4(FFTComplex *z)
+{
+ FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
+
+ BF(t3, t1, z[0].re, z[1].re); // t3=r1-r3 ; t1 = r1+r3
+ BF(t8, t6, z[3].re, z[2].re); // t8=r7-r5 ; t6 = r7+r5
+
+ BF(z[2].re, z[0].re, t1, t6); // r5=t1-t6 ; r1 = t1+t6
+
+ BF(t4, t2, z[0].im, z[1].im); // t4=r2-r4 ; t2 = r2+r4
+ BF(t7, t5, z[2].im, z[3].im); // t7=r6-r8 ; t5 = r6+r8
+
+ BF(z[3].im, z[1].im, t4, t8); // r8=t4-t8 ; r4 = t4+t8
+ BF(z[3].re, z[1].re, t3, t7); // r7=t3-t7 ; r3 = t3+t7
+ BF(z[2].im, z[0].im, t2, t5); // r6=t2-t5 ; r2 = t2+t5
+}
+#endif
+
+static void fft4_dispatch(FFTComplex *z)
+{
+ fft4(z);
+}
+
+#ifndef FFT_FFMPEG_INCL_OPTIMISED_FFT8
+static inline void fft8(FFTComplex *z)
+{
+ fft4(z);
+ FFTSample t1,t2,t3,t4,t7,t8;
+
+ BF(t1, z[5].re, z[4].re, -z[5].re);
+ BF(t2, z[5].im, z[4].im, -z[5].im);
+ BF(t3, z[7].re, z[6].re, -z[7].re);
+ BF(t4, z[7].im, z[6].im, -z[7].im);
+ BF(t8, t1, t3, t1);
+ BF(t7, t2, t2, t4);
+ BF(z[4].re, z[0].re, z[0].re, t1);
+ BF(z[4].im, z[0].im, z[0].im, t2);
+ BF(z[6].re, z[2].re, z[2].re, t7);
+ BF(z[6].im, z[2].im, z[2].im, t8);
+
+ z++;
+ TRANSFORM_EQUAL(z,2);
+}
+#endif
+
+static void fft8_dispatch(FFTComplex *z)
+{
+ fft8(z);
+}
+
+#ifndef CONFIG_SMALL
+static void fft16(FFTComplex *z) ICODE_ATTR_TREMOR_MDCT;
+static void fft16(FFTComplex *z)
+{
+ fft8(z);
+ fft4(z+8);
+ fft4(z+12);
+
+ TRANSFORM_ZERO(z,4);
+ z+=2;
+ TRANSFORM_EQUAL(z,4);
+ z-=1;
+ TRANSFORM(z,4,cPI1_8,cPI3_8);
+ z+=2;
+ TRANSFORM(z,4,cPI3_8,cPI1_8);
+}
+#else
+DECL_FFT(16,8,4)
+#endif
+DECL_FFT(32,16,8)
+DECL_FFT(64,32,16)
+DECL_FFT(128,64,32)
+DECL_FFT(256,128,64)
+DECL_FFT(512,256,128)
+DECL_FFT(1024,512,256)
+DECL_FFT(2048,1024,512)
+DECL_FFT(4096,2048,1024)
+
+static void (*fft_dispatch[])(FFTComplex*) = {
+ fft4_dispatch, fft8_dispatch, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
+ fft2048, fft4096
+};
+
+void ff_fft_calc_c(int nbits, FFTComplex *z)
+{
+ fft_dispatch[nbits-2](z);
+}
+
+#if 0
+int main (void)
+{
+#define PRECISION 16
+#define FFT_SIZE 1024
+#define ftofix32(x) ((fixed32)((x) * (float)(1 << PRECISION) + ((x) < 0 ? -0.5 : 0.5)))
+#define itofix32(x) ((x) << PRECISION)
+#define fixtoi32(x) ((x) >> PRECISION)
+
+ int j;
+ const long N = FFT_SIZE;
+ double r[FFT_SIZE] = {0.0}, i[FFT_SIZE] = {0.0};
+ long n;
+ double t;
+ double amp, phase;
+ clock_t start, end;
+ double exec_time = 0;
+ FFTContext s;
+ FFTComplex z[FFT_SIZE];
+ memset(z, 0, 64*sizeof(FFTComplex));
+
+ /* Generate saw-tooth test data */
+ for (n = 0; n < FFT_SIZE; n++)
+ {
+ t = (2 * M_PI * n)/N;
+ /*z[n].re = 1.1 + sin( t) +
+ 0.5 * sin(2.0 * t) +
+ (1.0/3.0) * sin(3.0 * t) +
+ 0.25 * sin(4.0 * t) +
+ 0.2 * sin(5.0 * t) +
+ (1.0/6.0) * sin(6.0 * t) +
+ (1.0/7.0) * sin(7.0 * t) ;*/
+ z[n].re = ftofix32(cos(2*M_PI*n/64));
+ //printf("z[%d] = %f\n", n, z[n].re);
+ //getchar();
+ }
+
+ ff_fft_init(&s, 10, 1);
+//start = clock();
+//for(n = 0; n < 1000000; n++)
+ ff_fft_permute_c(&s, z);
+ ff_fft_calc_c(&s, z);
+//end = clock();
+//exec_time = (((double)end-(double)start)/CLOCKS_PER_SEC);
+ for(j = 0; j < FFT_SIZE; j++)
+ {
+ printf("%8.4f\n", sqrt(pow(fixtof32(z[j].re),2)+ pow(fixtof32(z[j].im), 2)));
+ //getchar();
+ }
+ printf("muls = %d, adds = %d\n", muls, adds);
+//printf(" Time elapsed = %f\n", exec_time);
+ //ff_fft_end(&s);
+
+}
+#endif