summaryrefslogtreecommitdiff
path: root/plugins/gme/Game_Music_Emu-0.5.2/design.txt
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/gme/Game_Music_Emu-0.5.2/design.txt')
-rw-r--r--plugins/gme/Game_Music_Emu-0.5.2/design.txt194
1 files changed, 0 insertions, 194 deletions
diff --git a/plugins/gme/Game_Music_Emu-0.5.2/design.txt b/plugins/gme/Game_Music_Emu-0.5.2/design.txt
deleted file mode 100644
index 8c8c65b1..00000000
--- a/plugins/gme/Game_Music_Emu-0.5.2/design.txt
+++ /dev/null
@@ -1,194 +0,0 @@
-Game_Music_Emu 0.5.2 Design
----------------------------
-This might be slightly out-of-date at times, but will be a big help in
-understanding the library implementation.
-
-
-Architecture
-------------
-The library is essentially a bunch of independent game music file
-emulators unified with a common interface.
-
-Gme_File and Music_Emu provide a common interface to the emulators. The
-virtual functions are protected rather than public to allow pre- and
-post-processing of arguments and data in one place. This allows the
-emulator classes to assume that everything is set up properly when
-starting a track and playing samples.
-
-All file input is done with the Data_Reader interface. Many derived
-classes are present, for the usual disk-based file and block of memory,
-to specialized adaptors for things like reading a subset of data or
-combining a block of memory with a Data_Reader to the remaining data.
-This makes the library much more flexible with regard to the source of
-game music file data. I still added a specialized load_mem() function to
-have the emulator keep a pointer to data already read in memory, for
-those formats whose files can be absolutely huge (GYM, some VGMs). This
-is important if for some reason the caller must load the data ahead of
-time, but doesn't want the emulator needlessly making a copy.
-
-Since silence checking and fading are relatively complex, they are kept
-separate from basic file loading and track information, which are
-handled in the base class Gme_File. My original intent was to use
-Gme_File as the common base class for full emulators and track
-information-only readers, but implementing the C interface was much
-simpler if both derived from Music_Emu. User C++ code can still benefit
-from static checking by using Gme_File where only track information will
-be accessed.
-
-Each emulator generally has three components: main emulator, CPU
-emulator, and sound chip emulator(s). Each component has minimal
-coupling, so use in a full emulator or stand alone is fairly easy. This
-modularity really helps reduce complexity. Blip_Buffer helps a lot with
-simplifying the APU interfaces and implementation.
-
-The "classic" emulators derive from Classic_Emu, which handles
-Blip_Buffer filling and multiple channels. It uses Multi_Buffer for
-output, allowing you to derive a custom buffer that could output each
-voice to a separate sound channel and do different processing on each.
-At some point I'm going to implement a better Effects_Buffer that allows
-individual control of every channel.
-
-In implementing the C interface, I wanted a way to specify an emulator
-type that didn't require linking in all the emulators. For each emulator
-type there is a global object with pointers to functions to create the
-emulator or a track information reader. The emulator type is thus a
-pointer to this, which conveniently allows for a NULL value. The user
-referencing this emulator type object is what ultimately links the
-emulator in (unless new Foo_Emu is used in C++, of course). This type
-also serves as a useful substitute for RTTI on older C++ compilers.
-
-Addendum: I have since added gme_type_list(), which causes all listed
-emulators to be linked in. To avoid this, I make the list itself
-editable in blargg_config.h. Having a built-in list allows
-gme_load_file() to take a path and give back an emulator with the file
-loaded, which is extremely useful for new users.
-
-
-Interface conventions
-----------------------
-If a function retains a pointer to or replaces the value of an object
-passed, it takes a pointer so that it will be clear in the caller's
-source code that care is required.
-
-Multi-word names have an underscore '_' separator between individual
-words.
-
-Functions are named with lowercase words. Functions which perform an
-action with side-effects are named with a verb phrase (i.e. load, move,
-run). Functions which return the value of a piece of state are named
-using a noun phrase (i.e. loaded, moved, running).
-
-Classes are named with capitalized words. Only the first letter of an
-acronym is capitalized. Class names are nouns, sometimes suggestive of
-what they do (i.e. File_Scanner).
-
-Structure, enumeration, and typedefs to these and built-in types are
-named using lowercase words with a _t suffix.
-
-Macros are named with all-uppercase words.
-
-Internal names which can't be hidden due to technical reasons have an
-underscore '_' suffix.
-
-
-Managing Complexity
--------------------
-Complexity has been a factor in most library decisions. Many features
-have been passed by due to the complexity they would add. Once
-complexity goes past a certain level, it mentally grasping the library
-in its entirety, at which point more defects will occur and be hard to
-find.
-
-I chose 16-bit signed samples because it seems to be the most common
-format. Supporting multiple formats would add too much complexity to be
-worth it. Other formats can be obtained via conversion.
-
-I've kept interfaces fairly lean, leaving many possible features
-untapped but easy to add if necessary. For example the classic emulators
-could have volume and frequency equalization adjusted separately for
-each channel, since they each have an associated Blip_Synth.
-
-Source files of 400 lines or less seem to be the best size to limit
-complexity. In a few cases there is no reasonable way to split longer
-files, or there is benefit from having the source together in one file.
-
-
-Preventing Bugs
----------------
-I've done many things to reduce the opportunity for defects. A general
-principle is to write code so that defects will be as visible as
-possible. I've used several techniques to achieve this.
-
-I put assertions at key points where defects seem likely or where
-corruption due to a defect is likely to be visible. I've also put
-assertions where violations of the interface are likely. In emulators
-where I am unsure of exact hardware operation in a particular case, I
-output a debug-only message noting that this has occurred; many times I
-haven't implemented a hardware feature because nothing uses it. I've
-made code brittle where there is no clear reason flexibility; code
-written to handle every possibility sacrifices quality and reliability
-to handle vaguely defined situations.
-
-
-Flexibility through indirection
--------------------------------
-I've tried to allow the most flexibility of modules by using indirection
-to allow extension by the user. This keeps each module simpler and more
-focused on its unique task.
-
-The classic emulators use Multi_Buffer, which potentially allows a
-separate Blip_Buffer for each channel. This keeps emulators free of
-typical code to allow output in mono, stereo, panning, etc.
-
-All emulators use a reader object to access file data, allowing it to be
-stored in a regular file, compressed archive, memory, or generated
-on-the-fly. Again, the library can be kept free of the particulars of
-file access and changes required to support new formats.
-
-
-Emulators in general
---------------------
-When I wrote the first NES sound emulator, I stored most of the state in
-an emulator-specific format, with significant redundancy. In the
-register write function I decoded everything into named variables. I
-became tired of the verbosity and wanted to more closely model the
-hardware, so I moved to a style of storing the last written value to
-each register, along with as little other state as possible, mostly the
-internal hardware registers. While this involves slightly more
-recalculation, in most cases the emulation code is of comparable size.
-It also makes state save/restore (for use in a full emulator) much
-simpler. Finally, it makes debugging easier since the hardware registers
-used in emulation are obvious.
-
-
-CPU Cores
----------
-I've spent lots of time coming up with techniques to optimize the CPU
-cores. Some of the most important: execute multiple instructions during
-an emulation call, keep state in local variables to allow register
-assignment, optimize state representation for most common instructions,
-defer status flag calculation until actually needed, read program code
-directly without a call to the memory read function, always pre-fetch
-the operand byte before decoding instruction, and emulate instructions
-using common blocks of code.
-
-I've successfully used Nes_Cpu in a fairly complete NES emulator, and
-I'd like to make all the CPU emulators suitable for use in emulators. It
-seems a waste for them to be used only for the small amount of emulation
-necessary for game music files.
-
-I debugged the CPU cores by writing a test shell that ran them in
-parallel with other CPU cores and compared all memory accesses and
-processor states at each step. This provided good value at little cost.
-
-The CPU mapping page size is adjustable to allow the best tradeoff
-between memory/cache usage and handler granularity. The interface allows
-code to be somewhat independent of the page size.
-
-I optimize program memory accesses to direct reads rather than calls to
-the memory read function. My assumption is that it would be difficult to
-get useful code out of hardware I/O addresses, so no software will
-intentionally execute out of I/O space. Since the page size can be
-changed easily, most program memory mapping schemes can be accommodated.
-This greatly reduces memory access function calls.
-