summaryrefslogtreecommitdiff
path: root/plugins/alac/alac.c
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/alac/alac.c')
-rw-r--r--plugins/alac/alac.c1198
1 files changed, 1198 insertions, 0 deletions
diff --git a/plugins/alac/alac.c b/plugins/alac/alac.c
new file mode 100644
index 00000000..1779eb67
--- /dev/null
+++ b/plugins/alac/alac.c
@@ -0,0 +1,1198 @@
+/*
+ * ALAC (Apple Lossless Audio Codec) decoder
+ * Copyright (c) 2005 David Hammerton
+ * All rights reserved.
+ *
+ * This is the actual decoder.
+ *
+ * http://crazney.net/programs/itunes/alac.html
+ *
+ * Permission is hereby granted, free of charge, to any person
+ * obtaining a copy of this software and associated documentation
+ * files (the "Software"), to deal in the Software without
+ * restriction, including without limitation the rights to use,
+ * copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
+ * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
+ * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+ * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#ifdef _WIN32
+ #include "stdint_win.h"
+#else
+ #include <stdint.h>
+#endif
+
+#include "decomp.h"
+
+#define _Swap32(v) do { \
+ v = (((v) & 0x000000FF) << 0x18) | \
+ (((v) & 0x0000FF00) << 0x08) | \
+ (((v) & 0x00FF0000) >> 0x08) | \
+ (((v) & 0xFF000000) >> 0x18); } while(0)
+
+#define _Swap16(v) do { \
+ v = (((v) & 0x00FF) << 0x08) | \
+ (((v) & 0xFF00) >> 0x08); } while (0)
+
+struct {signed int x:24;} se_struct_24;
+#define SignExtend24(val) (se_struct_24.x = val)
+
+extern int host_bigendian;
+
+struct alac_file
+{
+ unsigned char *input_buffer;
+ int input_buffer_bitaccumulator; /* used so we can do arbitary
+ bit reads */
+
+ int samplesize;
+ int numchannels;
+ int bytespersample;
+
+
+ /* buffers */
+ int32_t *predicterror_buffer_a;
+ int32_t *predicterror_buffer_b;
+
+ int32_t *outputsamples_buffer_a;
+ int32_t *outputsamples_buffer_b;
+
+ int32_t *uncompressed_bytes_buffer_a;
+ int32_t *uncompressed_bytes_buffer_b;
+
+
+
+ /* stuff from setinfo */
+ uint32_t setinfo_max_samples_per_frame; /* 0x1000 = 4096 */ /* max samples per frame? */
+ uint8_t setinfo_7a; /* 0x00 */
+ uint8_t setinfo_sample_size; /* 0x10 */
+ uint8_t setinfo_rice_historymult; /* 0x28 */
+ uint8_t setinfo_rice_initialhistory; /* 0x0a */
+ uint8_t setinfo_rice_kmodifier; /* 0x0e */
+ uint8_t setinfo_7f; /* 0x02 */
+ uint16_t setinfo_80; /* 0x00ff */
+ uint32_t setinfo_82; /* 0x000020e7 */ /* max sample size?? */
+ uint32_t setinfo_86; /* 0x00069fe4 */ /* bit rate (avarge)?? */
+ uint32_t setinfo_8a_rate; /* 0x0000ac44 */
+ /* end setinfo stuff */
+
+};
+
+
+static void allocate_buffers(alac_file *alac)
+{
+ alac->predicterror_buffer_a = malloc(alac->setinfo_max_samples_per_frame * 4);
+ alac->predicterror_buffer_b = malloc(alac->setinfo_max_samples_per_frame * 4);
+
+ alac->outputsamples_buffer_a = malloc(alac->setinfo_max_samples_per_frame * 4);
+ alac->outputsamples_buffer_b = malloc(alac->setinfo_max_samples_per_frame * 4);
+
+ alac->uncompressed_bytes_buffer_a = malloc(alac->setinfo_max_samples_per_frame * 4);
+ alac->uncompressed_bytes_buffer_b = malloc(alac->setinfo_max_samples_per_frame * 4);
+}
+
+void alac_set_info(alac_file *alac, char *inputbuffer)
+{
+ char *ptr = inputbuffer;
+ ptr += 4; /* size */
+ ptr += 4; /* frma */
+ ptr += 4; /* alac */
+ ptr += 4; /* size */
+ ptr += 4; /* alac */
+
+ ptr += 4; /* 0 ? */
+
+ alac->setinfo_max_samples_per_frame = *(uint32_t*)ptr; /* buffer size / 2 ? */
+ if (!host_bigendian)
+ _Swap32(alac->setinfo_max_samples_per_frame);
+ ptr += 4;
+ alac->setinfo_7a = *(uint8_t*)ptr;
+ ptr += 1;
+ alac->setinfo_sample_size = *(uint8_t*)ptr;
+ ptr += 1;
+ alac->setinfo_rice_historymult = *(uint8_t*)ptr;
+ ptr += 1;
+ alac->setinfo_rice_initialhistory = *(uint8_t*)ptr;
+ ptr += 1;
+ alac->setinfo_rice_kmodifier = *(uint8_t*)ptr;
+ ptr += 1;
+ alac->setinfo_7f = *(uint8_t*)ptr;
+ ptr += 1;
+ alac->setinfo_80 = *(uint16_t*)ptr;
+ if (!host_bigendian)
+ _Swap16(alac->setinfo_80);
+ ptr += 2;
+ alac->setinfo_82 = *(uint32_t*)ptr;
+ if (!host_bigendian)
+ _Swap32(alac->setinfo_82);
+ ptr += 4;
+ alac->setinfo_86 = *(uint32_t*)ptr;
+ if (!host_bigendian)
+ _Swap32(alac->setinfo_86);
+ ptr += 4;
+ alac->setinfo_8a_rate = *(uint32_t*)ptr;
+ if (!host_bigendian)
+ _Swap32(alac->setinfo_8a_rate);
+
+ ptr += 4;
+
+ allocate_buffers(alac);
+
+}
+
+int
+alac_get_samplerate(alac_file *alac) {
+ return alac->setinfo_8a_rate;
+}
+
+/* stream reading */
+
+/* supports reading 1 to 16 bits, in big endian format */
+static uint32_t readbits_16(alac_file *alac, int bits)
+{
+ uint32_t result;
+ int new_accumulator;
+
+ result = (alac->input_buffer[0] << 16) |
+ (alac->input_buffer[1] << 8) |
+ (alac->input_buffer[2]);
+
+ /* shift left by the number of bits we've already read,
+ * so that the top 'n' bits of the 24 bits we read will
+ * be the return bits */
+ result = result << alac->input_buffer_bitaccumulator;
+
+ result = result & 0x00ffffff;
+
+ /* and then only want the top 'n' bits from that, where
+ * n is 'bits' */
+ result = result >> (24 - bits);
+
+ new_accumulator = (alac->input_buffer_bitaccumulator + bits);
+
+ /* increase the buffer pointer if we've read over n bytes. */
+ alac->input_buffer += (new_accumulator >> 3);
+
+ /* and the remainder goes back into the bit accumulator */
+ alac->input_buffer_bitaccumulator = (new_accumulator & 7);
+
+ return result;
+}
+
+/* supports reading 1 to 32 bits, in big endian format */
+static uint32_t readbits(alac_file *alac, int bits)
+{
+ int32_t result = 0;
+
+ if (bits > 16)
+ {
+ bits -= 16;
+ result = readbits_16(alac, 16) << bits;
+ }
+
+ result |= readbits_16(alac, bits);
+
+ return result;
+}
+
+/* reads a single bit */
+static int readbit(alac_file *alac)
+{
+ int result;
+ int new_accumulator;
+
+ result = alac->input_buffer[0];
+
+ result = result << alac->input_buffer_bitaccumulator;
+
+ result = result >> 7 & 1;
+
+ new_accumulator = (alac->input_buffer_bitaccumulator + 1);
+
+ alac->input_buffer += (new_accumulator / 8);
+
+ alac->input_buffer_bitaccumulator = (new_accumulator % 8);
+
+ return result;
+}
+
+static void unreadbits(alac_file *alac, int bits)
+{
+ int new_accumulator = (alac->input_buffer_bitaccumulator - bits);
+
+ alac->input_buffer += (new_accumulator >> 3);
+
+ alac->input_buffer_bitaccumulator = (new_accumulator & 7);
+ if (alac->input_buffer_bitaccumulator < 0)
+ alac->input_buffer_bitaccumulator *= -1;
+}
+
+/* various implementations of count_leading_zero:
+ * the first one is the original one, the simplest and most
+ * obvious for what it's doing. never use this.
+ * then there are the asm ones. fill in as necessary
+ * and finally an unrolled and optimised c version
+ * to fall back to
+ */
+#if 0
+/* hideously inefficient. could use a bitmask search,
+ * alternatively bsr on x86,
+ */
+static int count_leading_zeros(int32_t input)
+{
+ int i = 0;
+ while (!(0x80000000 & input) && i < 32)
+ {
+ i++;
+ input = input << 1;
+ }
+ return i;
+}
+#elif defined(__GNUC__) && (defined(_X86) || defined(__i386) || defined(i386))
+/* for some reason the unrolled version (below) is
+ * actually faster than this. yay intel!
+ */
+static int count_leading_zeros(int input)
+{
+ int output = 0;
+ if (!input) return 32;
+ __asm("bsr %1, %0\n"
+ : "=r" (output)
+ : "r" (input));
+ return (0x1f - output);
+}
+#elif defined(_MSC_VER) && defined(_M_IX86)
+static int count_leading_zeros(int input)
+{
+ int output = 0;
+ if (!input) return 32;
+ __asm
+ {
+ mov eax, input;
+ mov edx, 0x1f;
+ bsr ecx, eax;
+ sub edx, ecx;
+ mov output, edx;
+ }
+ return output;
+}
+#elif defined(__GNUC__)
+static int count_leading_zeros(int input)
+{
+ return __builtin_clz(input);
+}
+#else
+#warning using generic count leading zeroes. You may wish to write one for your CPU / compiler
+static int count_leading_zeros(int input)
+{
+ int output = 0;
+ int curbyte = 0;
+
+ curbyte = input >> 24;
+ if (curbyte) goto found;
+ output += 8;
+
+ curbyte = input >> 16;
+ if (curbyte & 0xff) goto found;
+ output += 8;
+
+ curbyte = input >> 8;
+ if (curbyte & 0xff) goto found;
+ output += 8;
+
+ curbyte = input;
+ if (curbyte & 0xff) goto found;
+ output += 8;
+
+ return output;
+
+found:
+ if (!(curbyte & 0xf0))
+ {
+ output += 4;
+ }
+ else
+ curbyte >>= 4;
+
+ if (curbyte & 0x8)
+ return output;
+ if (curbyte & 0x4)
+ return output + 1;
+ if (curbyte & 0x2)
+ return output + 2;
+ if (curbyte & 0x1)
+ return output + 3;
+
+ /* shouldn't get here: */
+ return output + 4;
+}
+#endif
+
+#define RICE_THRESHOLD 8 // maximum number of bits for a rice prefix.
+
+int32_t entropy_decode_value(alac_file* alac,
+ int readSampleSize,
+ int k,
+ int rice_kmodifier_mask)
+{
+ int32_t x = 0; // decoded value
+
+ // read x, number of 1s before 0 represent the rice value.
+ while (x <= RICE_THRESHOLD && readbit(alac))
+ {
+ x++;
+ }
+
+ if (x > RICE_THRESHOLD)
+ {
+ // read the number from the bit stream (raw value)
+ int32_t value;
+
+ value = readbits(alac, readSampleSize);
+
+ // mask value
+ value &= (((uint32_t)0xffffffff) >> (32 - readSampleSize));
+
+ x = value;
+ }
+ else
+ {
+ if (k != 1)
+ {
+ int extraBits = readbits(alac, k);
+
+ // x = x * (2^k - 1)
+ x *= (((1 << k) - 1) & rice_kmodifier_mask);
+
+ if (extraBits > 1)
+ x += extraBits - 1;
+ else
+ unreadbits(alac, 1);
+ }
+ }
+
+ return x;
+}
+
+void entropy_rice_decode(alac_file* alac,
+ int32_t* outputBuffer,
+ int outputSize,
+ int readSampleSize,
+ int rice_initialhistory,
+ int rice_kmodifier,
+ int rice_historymult,
+ int rice_kmodifier_mask)
+{
+ int outputCount;
+ int history = rice_initialhistory;
+ int signModifier = 0;
+
+ for (outputCount = 0; outputCount < outputSize; outputCount++)
+ {
+ int32_t decodedValue;
+ int32_t finalValue;
+ int32_t k;
+
+ k = 31 - rice_kmodifier - count_leading_zeros((history >> 9) + 3);
+
+ if (k < 0) k += rice_kmodifier;
+ else k = rice_kmodifier;
+
+ // note: don't use rice_kmodifier_mask here (set mask to 0xFFFFFFFF)
+ decodedValue = entropy_decode_value(alac, readSampleSize, k, 0xFFFFFFFF);
+
+ decodedValue += signModifier;
+ finalValue = (decodedValue + 1) / 2; // inc by 1 and shift out sign bit
+ if (decodedValue & 1) // the sign is stored in the low bit
+ finalValue *= -1;
+
+ outputBuffer[outputCount] = finalValue;
+
+ signModifier = 0;
+
+ // update history
+ history += (decodedValue * rice_historymult)
+ - ((history * rice_historymult) >> 9);
+
+ if (decodedValue > 0xFFFF)
+ history = 0xFFFF;
+
+ // special case, for compressed blocks of 0
+ if ((history < 128) && (outputCount + 1 < outputSize))
+ {
+ int32_t blockSize;
+
+ signModifier = 1;
+
+ k = count_leading_zeros(history) + ((history + 16) / 64) - 24;
+
+ // note: blockSize is always 16bit
+ blockSize = entropy_decode_value(alac, 16, k, rice_kmodifier_mask);
+
+ // got blockSize 0s
+ if (blockSize > 0)
+ {
+ memset(&outputBuffer[outputCount + 1], 0, blockSize * sizeof(*outputBuffer));
+ outputCount += blockSize;
+ }
+
+ if (blockSize > 0xFFFF)
+ signModifier = 0;
+
+ history = 0;
+ }
+ }
+}
+
+#define SIGN_EXTENDED32(val, bits) ((val << (32 - bits)) >> (32 - bits))
+
+#define SIGN_ONLY(v) \
+ ((v < 0) ? (-1) : \
+ ((v > 0) ? (1) : \
+ (0)))
+
+static void predictor_decompress_fir_adapt(int32_t *error_buffer,
+ int32_t *buffer_out,
+ int output_size,
+ int readsamplesize,
+ int16_t *predictor_coef_table,
+ int predictor_coef_num,
+ int predictor_quantitization)
+{
+ int i;
+
+ /* first sample always copies */
+ *buffer_out = *error_buffer;
+
+ if (!predictor_coef_num)
+ {
+ if (output_size <= 1) return;
+ memcpy(buffer_out+1, error_buffer+1, (output_size-1) * 4);
+ return;
+ }
+
+ if (predictor_coef_num == 0x1f) /* 11111 - max value of predictor_coef_num */
+ { /* second-best case scenario for fir decompression,
+ * error describes a small difference from the previous sample only
+ */
+ if (output_size <= 1) return;
+ for (i = 0; i < output_size - 1; i++)
+ {
+ int32_t prev_value;
+ int32_t error_value;
+
+ prev_value = buffer_out[i];
+ error_value = error_buffer[i+1];
+ buffer_out[i+1] = SIGN_EXTENDED32((prev_value + error_value), readsamplesize);
+ }
+ return;
+ }
+
+ /* read warm-up samples */
+ if (predictor_coef_num > 0)
+ {
+ int i;
+ for (i = 0; i < predictor_coef_num; i++)
+ {
+ int32_t val;
+
+ val = buffer_out[i] + error_buffer[i+1];
+
+ val = SIGN_EXTENDED32(val, readsamplesize);
+
+ buffer_out[i+1] = val;
+ }
+ }
+
+#if 0
+ /* 4 and 8 are very common cases (the only ones i've seen). these
+ * should be unrolled and optimised
+ */
+ if (predictor_coef_num == 4)
+ {
+ /* FIXME: optimised general case */
+ return;
+ }
+
+ if (predictor_coef_table == 8)
+ {
+ /* FIXME: optimised general case */
+ return;
+ }
+#endif
+
+
+ /* general case */
+ if (predictor_coef_num > 0)
+ {
+ for (i = predictor_coef_num + 1;
+ i < output_size;
+ i++)
+ {
+ int j;
+ int sum = 0;
+ int outval;
+ int error_val = error_buffer[i];
+
+ for (j = 0; j < predictor_coef_num; j++)
+ {
+ sum += (buffer_out[predictor_coef_num-j] - buffer_out[0]) *
+ predictor_coef_table[j];
+ }
+
+ outval = (1 << (predictor_quantitization-1)) + sum;
+ outval = outval >> predictor_quantitization;
+ outval = outval + buffer_out[0] + error_val;
+ outval = SIGN_EXTENDED32(outval, readsamplesize);
+
+ buffer_out[predictor_coef_num+1] = outval;
+
+ if (error_val > 0)
+ {
+ int predictor_num = predictor_coef_num - 1;
+
+ while (predictor_num >= 0 && error_val > 0)
+ {
+ int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
+ int sign = SIGN_ONLY(val);
+
+ predictor_coef_table[predictor_num] -= sign;
+
+ val *= sign; /* absolute value */
+
+ error_val -= ((val >> predictor_quantitization) *
+ (predictor_coef_num - predictor_num));
+
+ predictor_num--;
+ }
+ }
+ else if (error_val < 0)
+ {
+ int predictor_num = predictor_coef_num - 1;
+
+ while (predictor_num >= 0 && error_val < 0)
+ {
+ int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
+ int sign = - SIGN_ONLY(val);
+
+ predictor_coef_table[predictor_num] -= sign;
+
+ val *= sign; /* neg value */
+
+ error_val -= ((val >> predictor_quantitization) *
+ (predictor_coef_num - predictor_num));
+
+ predictor_num--;
+ }
+ }
+
+ buffer_out++;
+ }
+ }
+}
+
+void deinterlace_16(int32_t *buffer_a, int32_t *buffer_b,
+ int16_t *buffer_out,
+ int numchannels, int numsamples,
+ uint8_t interlacing_shift,
+ uint8_t interlacing_leftweight)
+{
+ int i;
+ if (numsamples <= 0) return;
+
+ /* weighted interlacing */
+ if (interlacing_leftweight)
+ {
+ for (i = 0; i < numsamples; i++)
+ {
+ int32_t difference, midright;
+ int16_t left;
+ int16_t right;
+
+ midright = buffer_a[i];
+ difference = buffer_b[i];
+
+
+ right = midright - ((difference * interlacing_leftweight) >> interlacing_shift);
+ left = right + difference;
+
+ /* output is always little endian */
+ if (host_bigendian)
+ {
+ _Swap16(left);
+ _Swap16(right);
+ }
+
+ buffer_out[i*numchannels] = left;
+ buffer_out[i*numchannels + 1] = right;
+ }
+
+ return;
+ }
+
+ /* otherwise basic interlacing took place */
+ for (i = 0; i < numsamples; i++)
+ {
+ int16_t left, right;
+
+ left = buffer_a[i];
+ right = buffer_b[i];
+
+ /* output is always little endian */
+ if (host_bigendian)
+ {
+ _Swap16(left);
+ _Swap16(right);
+ }
+
+ buffer_out[i*numchannels] = left;
+ buffer_out[i*numchannels + 1] = right;
+ }
+}
+
+void deinterlace_24(int32_t *buffer_a, int32_t *buffer_b,
+ int uncompressed_bytes,
+ int32_t *uncompressed_bytes_buffer_a, int32_t *uncompressed_bytes_buffer_b,
+ void *buffer_out,
+ int numchannels, int numsamples,
+ uint8_t interlacing_shift,
+ uint8_t interlacing_leftweight)
+{
+ int i;
+ if (numsamples <= 0) return;
+
+ /* weighted interlacing */
+ if (interlacing_leftweight)
+ {
+ for (i = 0; i < numsamples; i++)
+ {
+ int32_t difference, midright;
+ int32_t left;
+ int32_t right;
+
+ midright = buffer_a[i];
+ difference = buffer_b[i];
+
+ right = midright - ((difference * interlacing_leftweight) >> interlacing_shift);
+ left = right + difference;
+
+ if (uncompressed_bytes)
+ {
+ uint32_t mask = ~(0xFFFFFFFF << (uncompressed_bytes * 8));
+ left <<= (uncompressed_bytes * 8);
+ right <<= (uncompressed_bytes * 8);
+
+ left |= uncompressed_bytes_buffer_a[i] & mask;
+ right |= uncompressed_bytes_buffer_b[i] & mask;
+ }
+
+ ((uint8_t*)buffer_out)[i * numchannels * 3] = (left) & 0xFF;
+ ((uint8_t*)buffer_out)[i * numchannels * 3 + 1] = (left >> 8) & 0xFF;
+ ((uint8_t*)buffer_out)[i * numchannels * 3 + 2] = (left >> 16) & 0xFF;
+
+ ((uint8_t*)buffer_out)[i * numchannels * 3 + 3] = (right) & 0xFF;
+ ((uint8_t*)buffer_out)[i * numchannels * 3 + 4] = (right >> 8) & 0xFF;
+ ((uint8_t*)buffer_out)[i * numchannels * 3 + 5] = (right >> 16) & 0xFF;
+ }
+
+ return;
+ }
+
+ /* otherwise basic interlacing took place */
+ for (i = 0; i < numsamples; i++)
+ {
+ int32_t left, right;
+
+ left = buffer_a[i];
+ right = buffer_b[i];
+
+ if (uncompressed_bytes)
+ {
+ uint32_t mask = ~(0xFFFFFFFF << (uncompressed_bytes * 8));
+ left <<= (uncompressed_bytes * 8);
+ right <<= (uncompressed_bytes * 8);
+
+ left |= uncompressed_bytes_buffer_a[i] & mask;
+ right |= uncompressed_bytes_buffer_b[i] & mask;
+ }
+
+ ((uint8_t*)buffer_out)[i * numchannels * 3] = (left) & 0xFF;
+ ((uint8_t*)buffer_out)[i * numchannels * 3 + 1] = (left >> 8) & 0xFF;
+ ((uint8_t*)buffer_out)[i * numchannels * 3 + 2] = (left >> 16) & 0xFF;
+
+ ((uint8_t*)buffer_out)[i * numchannels * 3 + 3] = (right) & 0xFF;
+ ((uint8_t*)buffer_out)[i * numchannels * 3 + 4] = (right >> 8) & 0xFF;
+ ((uint8_t*)buffer_out)[i * numchannels * 3 + 5] = (right >> 16) & 0xFF;
+
+ }
+
+}
+
+void decode_frame(alac_file *alac,
+ unsigned char *inbuffer,
+ void *outbuffer, int *outputsize)
+{
+ int channels;
+ int32_t outputsamples = alac->setinfo_max_samples_per_frame;
+
+ /* setup the stream */
+ alac->input_buffer = inbuffer;
+ alac->input_buffer_bitaccumulator = 0;
+
+ channels = readbits(alac, 3);
+
+ *outputsize = outputsamples * alac->bytespersample;
+
+ switch(channels)
+ {
+ case 0: /* 1 channel */
+ {
+ int hassize;
+ int isnotcompressed;
+ int readsamplesize;
+
+ int uncompressed_bytes;
+ int ricemodifier;
+
+ /* 2^result = something to do with output waiting.
+ * perhaps matters if we read > 1 frame in a pass?
+ */
+ readbits(alac, 4);
+
+ readbits(alac, 12); /* unknown, skip 12 bits */
+
+ hassize = readbits(alac, 1); /* the output sample size is stored soon */
+
+ uncompressed_bytes = readbits(alac, 2); /* number of bytes in the (compressed) stream that are not compressed */
+
+ isnotcompressed = readbits(alac, 1); /* whether the frame is compressed */
+
+ if (hassize)
+ {
+ /* now read the number of samples,
+ * as a 32bit integer */
+ outputsamples = readbits(alac, 32);
+ *outputsize = outputsamples * alac->bytespersample;
+ }
+
+ readsamplesize = alac->setinfo_sample_size - (uncompressed_bytes * 8);
+
+ if (!isnotcompressed)
+ { /* so it is compressed */
+ int16_t predictor_coef_table[32];
+ int predictor_coef_num;
+ int prediction_type;
+ int prediction_quantitization;
+ int i;
+
+ /* skip 16 bits, not sure what they are. seem to be used in
+ * two channel case */
+ readbits(alac, 8);
+ readbits(alac, 8);
+
+ prediction_type = readbits(alac, 4);
+ prediction_quantitization = readbits(alac, 4);
+
+ ricemodifier = readbits(alac, 3);
+ predictor_coef_num = readbits(alac, 5);
+
+ /* read the predictor table */
+ for (i = 0; i < predictor_coef_num; i++)
+ {
+ predictor_coef_table[i] = (int16_t)readbits(alac, 16);
+ }
+
+ if (uncompressed_bytes)
+ {
+ int i;
+ for (i = 0; i < outputsamples; i++)
+ {
+ alac->uncompressed_bytes_buffer_a[i] = readbits(alac, uncompressed_bytes * 8);
+ }
+ }
+
+ entropy_rice_decode(alac,
+ alac->predicterror_buffer_a,
+ outputsamples,
+ readsamplesize,
+ alac->setinfo_rice_initialhistory,
+ alac->setinfo_rice_kmodifier,
+ ricemodifier * alac->setinfo_rice_historymult / 4,
+ (1 << alac->setinfo_rice_kmodifier) - 1);
+
+ if (prediction_type == 0)
+ { /* adaptive fir */
+ predictor_decompress_fir_adapt(alac->predicterror_buffer_a,
+ alac->outputsamples_buffer_a,
+ outputsamples,
+ readsamplesize,
+ predictor_coef_table,
+ predictor_coef_num,
+ prediction_quantitization);
+ }
+ else
+ {
+ fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type);
+ /* i think the only other prediction type (or perhaps this is just a
+ * boolean?) runs adaptive fir twice.. like:
+ * predictor_decompress_fir_adapt(predictor_error, tempout, ...)
+ * predictor_decompress_fir_adapt(predictor_error, outputsamples ...)
+ * little strange..
+ */
+ }
+
+ }
+ else
+ { /* not compressed, easy case */
+ if (alac->setinfo_sample_size <= 16)
+ {
+ int i;
+ for (i = 0; i < outputsamples; i++)
+ {
+ int32_t audiobits = readbits(alac, alac->setinfo_sample_size);
+
+ audiobits = SIGN_EXTENDED32(audiobits, alac->setinfo_sample_size);
+
+ alac->outputsamples_buffer_a[i] = audiobits;
+ }
+ }
+ else
+ {
+ int i;
+ for (i = 0; i < outputsamples; i++)
+ {
+ int32_t audiobits;
+
+ audiobits = readbits(alac, 16);
+ /* special case of sign extension..
+ * as we'll be ORing the low 16bits into this */
+ audiobits = audiobits << (alac->setinfo_sample_size - 16);
+ audiobits |= readbits(alac, alac->setinfo_sample_size - 16);
+ audiobits = SignExtend24(audiobits);
+
+ alac->outputsamples_buffer_a[i] = audiobits;
+ }
+ }
+ uncompressed_bytes = 0; // always 0 for uncompressed
+ }
+
+ switch(alac->setinfo_sample_size)
+ {
+ case 16:
+ {
+ int i;
+ for (i = 0; i < outputsamples; i++)
+ {
+ int16_t sample = alac->outputsamples_buffer_a[i];
+ if (host_bigendian)
+ _Swap16(sample);
+ ((int16_t*)outbuffer)[i * alac->numchannels] = sample;
+ }
+ break;
+ }
+ case 24:
+ {
+ int i;
+ for (i = 0; i < outputsamples; i++)
+ {
+ int32_t sample = alac->outputsamples_buffer_a[i];
+
+ if (uncompressed_bytes)
+ {
+ uint32_t mask;
+ sample = sample << (uncompressed_bytes * 8);
+ mask = ~(0xFFFFFFFF << (uncompressed_bytes * 8));
+ sample |= alac->uncompressed_bytes_buffer_a[i] & mask;
+ }
+
+ ((uint8_t*)outbuffer)[i * alac->numchannels * 3] = (sample) & 0xFF;
+ ((uint8_t*)outbuffer)[i * alac->numchannels * 3 + 1] = (sample >> 8) & 0xFF;
+ ((uint8_t*)outbuffer)[i * alac->numchannels * 3 + 2] = (sample >> 16) & 0xFF;
+ }
+ break;
+ }
+ case 20:
+ case 32:
+ fprintf(stderr, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
+ break;
+ default:
+ break;
+ }
+ break;
+ }
+ case 1: /* 2 channels */
+ {
+ int hassize;
+ int isnotcompressed;
+ int readsamplesize;
+
+ int uncompressed_bytes;
+
+ uint8_t interlacing_shift;
+ uint8_t interlacing_leftweight;
+
+ /* 2^result = something to do with output waiting.
+ * perhaps matters if we read > 1 frame in a pass?
+ */
+ readbits(alac, 4);
+
+ readbits(alac, 12); /* unknown, skip 12 bits */
+
+ hassize = readbits(alac, 1); /* the output sample size is stored soon */
+
+ uncompressed_bytes = readbits(alac, 2); /* the number of bytes in the (compressed) stream that are not compressed */
+
+ isnotcompressed = readbits(alac, 1); /* whether the frame is compressed */
+
+ if (hassize)
+ {
+ /* now read the number of samples,
+ * as a 32bit integer */
+ outputsamples = readbits(alac, 32);
+ *outputsize = outputsamples * alac->bytespersample;
+ }
+
+ readsamplesize = alac->setinfo_sample_size - (uncompressed_bytes * 8) + 1;
+
+ if (!isnotcompressed)
+ { /* compressed */
+ int16_t predictor_coef_table_a[32];
+ int predictor_coef_num_a;
+ int prediction_type_a;
+ int prediction_quantitization_a;
+ int ricemodifier_a;
+
+ int16_t predictor_coef_table_b[32];
+ int predictor_coef_num_b;
+ int prediction_type_b;
+ int prediction_quantitization_b;
+ int ricemodifier_b;
+
+ int i;
+
+ interlacing_shift = readbits(alac, 8);
+ interlacing_leftweight = readbits(alac, 8);
+
+ /******** channel 1 ***********/
+ prediction_type_a = readbits(alac, 4);
+ prediction_quantitization_a = readbits(alac, 4);
+
+ ricemodifier_a = readbits(alac, 3);
+ predictor_coef_num_a = readbits(alac, 5);
+
+ /* read the predictor table */
+ for (i = 0; i < predictor_coef_num_a; i++)
+ {
+ predictor_coef_table_a[i] = (int16_t)readbits(alac, 16);
+ }
+
+ /******** channel 2 *********/
+ prediction_type_b = readbits(alac, 4);
+ prediction_quantitization_b = readbits(alac, 4);
+
+ ricemodifier_b = readbits(alac, 3);
+ predictor_coef_num_b = readbits(alac, 5);
+
+ /* read the predictor table */
+ for (i = 0; i < predictor_coef_num_b; i++)
+ {
+ predictor_coef_table_b[i] = (int16_t)readbits(alac, 16);
+ }
+
+ /*********************/
+ if (uncompressed_bytes)
+ { /* see mono case */
+ int i;
+ for (i = 0; i < outputsamples; i++)
+ {
+ alac->uncompressed_bytes_buffer_a[i] = readbits(alac, uncompressed_bytes * 8);
+ alac->uncompressed_bytes_buffer_b[i] = readbits(alac, uncompressed_bytes * 8);
+ }
+ }
+
+ /* channel 1 */
+ entropy_rice_decode(alac,
+ alac->predicterror_buffer_a,
+ outputsamples,
+ readsamplesize,
+ alac->setinfo_rice_initialhistory,
+ alac->setinfo_rice_kmodifier,
+ ricemodifier_a * alac->setinfo_rice_historymult / 4,
+ (1 << alac->setinfo_rice_kmodifier) - 1);
+
+ if (prediction_type_a == 0)
+ { /* adaptive fir */
+ predictor_decompress_fir_adapt(alac->predicterror_buffer_a,
+ alac->outputsamples_buffer_a,
+ outputsamples,
+ readsamplesize,
+ predictor_coef_table_a,
+ predictor_coef_num_a,
+ prediction_quantitization_a);
+ }
+ else
+ { /* see mono case */
+ fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type_a);
+ }
+
+ /* channel 2 */
+ entropy_rice_decode(alac,
+ alac->predicterror_buffer_b,
+ outputsamples,
+ readsamplesize,
+ alac->setinfo_rice_initialhistory,
+ alac->setinfo_rice_kmodifier,
+ ricemodifier_b * alac->setinfo_rice_historymult / 4,
+ (1 << alac->setinfo_rice_kmodifier) - 1);
+
+ if (prediction_type_b == 0)
+ { /* adaptive fir */
+ predictor_decompress_fir_adapt(alac->predicterror_buffer_b,
+ alac->outputsamples_buffer_b,
+ outputsamples,
+ readsamplesize,
+ predictor_coef_table_b,
+ predictor_coef_num_b,
+ prediction_quantitization_b);
+ }
+ else
+ {
+ fprintf(stderr, "FIXME: unhandled predicition type: %i\n", prediction_type_b);
+ }
+ }
+ else
+ { /* not compressed, easy case */
+ if (alac->setinfo_sample_size <= 16)
+ {
+ int i;
+ for (i = 0; i < outputsamples; i++)
+ {
+ int32_t audiobits_a, audiobits_b;
+
+ audiobits_a = readbits(alac, alac->setinfo_sample_size);
+ audiobits_b = readbits(alac, alac->setinfo_sample_size);
+
+ audiobits_a = SIGN_EXTENDED32(audiobits_a, alac->setinfo_sample_size);
+ audiobits_b = SIGN_EXTENDED32(audiobits_b, alac->setinfo_sample_size);
+
+ alac->outputsamples_buffer_a[i] = audiobits_a;
+ alac->outputsamples_buffer_b[i] = audiobits_b;
+ }
+ }
+ else
+ {
+ int i;
+ for (i = 0; i < outputsamples; i++)
+ {
+ int32_t audiobits_a, audiobits_b;
+
+ audiobits_a = readbits(alac, 16);
+ audiobits_a = audiobits_a << (alac->setinfo_sample_size - 16);
+ audiobits_a |= readbits(alac, alac->setinfo_sample_size - 16);
+ audiobits_a = SignExtend24(audiobits_a);
+
+ audiobits_b = readbits(alac, 16);
+ audiobits_b = audiobits_b << (alac->setinfo_sample_size - 16);
+ audiobits_b |= readbits(alac, alac->setinfo_sample_size - 16);
+ audiobits_b = SignExtend24(audiobits_b);
+
+ alac->outputsamples_buffer_a[i] = audiobits_a;
+ alac->outputsamples_buffer_b[i] = audiobits_b;
+ }
+ }
+ uncompressed_bytes = 0; // always 0 for uncompressed
+ interlacing_shift = 0;
+ interlacing_leftweight = 0;
+ }
+
+ switch(alac->setinfo_sample_size)
+ {
+ case 16:
+ {
+ deinterlace_16(alac->outputsamples_buffer_a,
+ alac->outputsamples_buffer_b,
+ (int16_t*)outbuffer,
+ alac->numchannels,
+ outputsamples,
+ interlacing_shift,
+ interlacing_leftweight);
+ break;
+ }
+ case 24:
+ {
+ deinterlace_24(alac->outputsamples_buffer_a,
+ alac->outputsamples_buffer_b,
+ uncompressed_bytes,
+ alac->uncompressed_bytes_buffer_a,
+ alac->uncompressed_bytes_buffer_b,
+ (int16_t*)outbuffer,
+ alac->numchannels,
+ outputsamples,
+ interlacing_shift,
+ interlacing_leftweight);
+ break;
+ }
+ case 20:
+ case 32:
+ fprintf(stderr, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
+ break;
+ default:
+ break;
+ }
+
+ break;
+ }
+ }
+}
+
+alac_file *create_alac(int samplesize, int numchannels)
+{
+ alac_file *newfile = malloc(sizeof(alac_file));
+ memset (newfile, 0, sizeof (alac_file));
+
+ newfile->samplesize = samplesize;
+ newfile->numchannels = numchannels;
+ newfile->bytespersample = (samplesize / 8) * numchannels;
+
+ return newfile;
+}
+
+void alac_file_free (alac_file *alac) {
+ if (alac->predicterror_buffer_a) {
+ free (alac->predicterror_buffer_a);
+ }
+ if (alac->predicterror_buffer_b) {
+ free (alac->predicterror_buffer_b);
+ }
+ if (alac->outputsamples_buffer_a) {
+ free (alac->outputsamples_buffer_a);
+ }
+ if (alac->outputsamples_buffer_b) {
+ free (alac->outputsamples_buffer_b);
+ }
+ if (alac->uncompressed_bytes_buffer_a) {
+ free (alac->uncompressed_bytes_buffer_a);
+ }
+ if (alac->uncompressed_bytes_buffer_b) {
+ free (alac->uncompressed_bytes_buffer_b);
+ }
+ free (alac);
+}
+