summaryrefslogtreecommitdiff
path: root/theories7/ZArith/Zlogarithm.v
blob: dc8507383f4401515a1ca18d0e89c5c5c58bccab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Zlogarithm.v,v 1.1.2.1 2004/07/16 19:31:43 herbelin Exp $ i*)

(**********************************************************************)
(** The integer logarithms with base 2. 

    There are three logarithms,
    depending on the rounding of the real 2-based logarithm:
    - [Log_inf]: [y = (Log_inf x) iff 2^y <= x < 2^(y+1)]
      i.e. [Log_inf x] is the biggest integer that is smaller than [Log x]
    - [Log_sup]: [y = (Log_sup x) iff 2^(y-1) < x <= 2^y]
      i.e. [Log_inf x] is the smallest integer that is bigger than [Log x]
    - [Log_nearest]: [y= (Log_nearest x) iff 2^(y-1/2) < x <= 2^(y+1/2)]
      i.e. [Log_nearest x] is the integer nearest from [Log x] *)

Require ZArith_base.
Require Omega.
Require Zcomplements.
Require Zpower.
V7only [Import Z_scope.].
Open Local Scope Z_scope.

Section Log_pos. (* Log of positive integers *)

(** First we build [log_inf] and [log_sup] *)

Fixpoint log_inf [p:positive] : Z :=  
  Cases p of
    xH => `0`	 				(* 1 *)
  | (xO q) => (Zs (log_inf q))		(* 2n *)
  | (xI q) => (Zs (log_inf q))		(* 2n+1 *)
  end.
Fixpoint log_sup [p:positive] : Z :=
  Cases p of
    xH => `0`					(* 1 *)
  | (xO n) => (Zs (log_sup n)) 		(* 2n *)
  | (xI n) => (Zs (Zs (log_inf n)))		(* 2n+1 *)
  end.

Hints Unfold log_inf log_sup.

(** Then we give the specifications of [log_inf] and [log_sup] 
    and prove their validity *)

(*i Hints Resolve ZERO_le_S : zarith. i*)
Hints Resolve Zle_trans : zarith.

Theorem log_inf_correct : (x:positive) ` 0 <= (log_inf x)` /\
  ` (two_p (log_inf x)) <= (POS x) < (two_p (Zs (log_inf x)))`.
Induction x; Intros; Simpl;
[ Elim H; Intros Hp HR; Clear H; Split;
  [ Auto with zarith
  | Conditional (Apply Zle_le_S; Trivial) Rewrite two_p_S with x:=(Zs (log_inf p));
    Conditional Trivial Rewrite two_p_S;
    Conditional Trivial Rewrite two_p_S in HR;
    Rewrite (POS_xI p); Omega ]
| Elim H; Intros Hp HR; Clear H; Split;
  [ Auto with zarith
  | Conditional (Apply Zle_le_S; Trivial) Rewrite two_p_S with x:=(Zs (log_inf p));
    Conditional Trivial Rewrite two_p_S;
    Conditional Trivial Rewrite two_p_S in HR;
    Rewrite (POS_xO p); Omega ]
| Unfold two_power_pos; Unfold shift_pos; Simpl; Omega 
].
Qed.

Definition log_inf_correct1 :=
	[p:positive](proj1 ? ? (log_inf_correct p)).
Definition log_inf_correct2 := 
	[p:positive](proj2 ? ? (log_inf_correct p)).

Opaque log_inf_correct1 log_inf_correct2.

Hints Resolve log_inf_correct1 log_inf_correct2 : zarith.

Lemma log_sup_correct1 : (p:positive)` 0 <= (log_sup p)`.
Induction p; Intros; Simpl; Auto with zarith.
Qed.

(** For every [p], either [p] is a power of two and [(log_inf p)=(log_sup p)]
    either [(log_sup p)=(log_inf p)+1] *)

Theorem log_sup_log_inf : (p:positive)
  IF (POS p)=(two_p (log_inf p)) 
  then (POS p)=(two_p (log_sup p))
  else ` (log_sup p)=(Zs (log_inf p))`.

Induction p; Intros;
[ Elim H; Right; Simpl;
  Rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
  Rewrite POS_xI; Unfold Zs; Omega
| Elim H; Clear H; Intro Hif;
  [ Left; Simpl;
    Rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
    Rewrite (two_p_S (log_sup p0) (log_sup_correct1 p0));
    Rewrite <- (proj1 ? ? Hif); Rewrite <- (proj2 ? ? Hif);
    Auto
  | Right; Simpl;
    Rewrite (two_p_S (log_inf p0) (log_inf_correct1 p0));
    Rewrite POS_xO; Unfold Zs; Omega ]
| Left; Auto ].
Qed.

Theorem log_sup_correct2 : (x:positive)
  ` (two_p (Zpred (log_sup x))) < (POS x) <= (two_p (log_sup x))`.

Intro.
Elim (log_sup_log_inf x).
(* x is a power of two and [log_sup = log_inf] *)
Intros (E1,E2); Rewrite E2.
Split ; [ Apply two_p_pred; Apply log_sup_correct1 | Apply Zle_n ].
Intros (E1,E2); Rewrite E2.
Rewrite <- (Zpred_Sn (log_inf x)).
Generalize (log_inf_correct2 x); Omega.
Qed.

Lemma log_inf_le_log_sup : 
	(p:positive) `(log_inf p) <= (log_sup p)`.
Induction p; Simpl; Intros; Omega.
Qed.

Lemma log_sup_le_Slog_inf : 
	(p:positive) `(log_sup p) <= (Zs (log_inf p))`.
Induction p; Simpl; Intros; Omega.
Qed.

(** Now it's possible to specify and build the [Log] rounded to the nearest *)

Fixpoint log_near[x:positive] : Z :=
  Cases x of 
    xH => `0`
  | (xO xH) => `1`
  | (xI xH) => `2`
  | (xO y)  => (Zs (log_near y))
  | (xI y)  => (Zs (log_near y))
  end.    

Theorem log_near_correct1 : (p:positive)` 0 <= (log_near p)`.
Induction p; Simpl; Intros; 
[Elim p0; Auto with zarith | Elim p0; Auto with zarith | Trivial with zarith ].
Intros; Apply Zle_le_S.
Generalize H0; Elim p1; Intros; Simpl;
    [ Assumption | Assumption | Apply ZERO_le_POS ].
Intros; Apply Zle_le_S.
Generalize H0; Elim p1; Intros; Simpl;
    [ Assumption | Assumption | Apply ZERO_le_POS ].
Qed.

Theorem log_near_correct2: (p:positive)
  (log_near p)=(log_inf p)
\/(log_near p)=(log_sup p).
Induction p.
Intros p0 [Einf|Esup].
Simpl. Rewrite Einf.
Case p0; [Left | Left | Right]; Reflexivity.
Simpl; Rewrite Esup.
Elim (log_sup_log_inf p0).
Generalize (log_inf_le_log_sup p0).
Generalize (log_sup_le_Slog_inf p0).
Case p0; Auto with zarith.
Intros; Omega.
Case p0; Intros; Auto with zarith.
Intros p0 [Einf|Esup].
Simpl.
Repeat Rewrite Einf.
Case p0; Intros; Auto with zarith.
Simpl.
Repeat Rewrite Esup.
Case p0; Intros; Auto with zarith.
Auto.
Qed.

(*i******************
Theorem log_near_correct: (p:positive)
  `| (two_p (log_near p)) - (POS p) | <= (POS p)-(two_p (log_inf p))`
  /\`| (two_p (log_near p)) - (POS p) | <= (two_p (log_sup p))-(POS p)`.
Intro.
Induction p.
Intros p0 [(Einf1,Einf2)|(Esup1,Esup2)].
Unfold log_near log_inf log_sup. Fold log_near log_inf log_sup.
Rewrite Einf1.
Repeat Rewrite two_p_S.
Case p0; [Left | Left | Right].

Split.
Simpl.
Rewrite E1; Case p0; Try Reflexivity.
Compute.
Unfold log_near; Fold log_near.
Unfold log_inf; Fold log_inf.
Repeat Rewrite E1.
Split.
**********************************i*)

End Log_pos.

Section divers.

(** Number of significative digits. *)

Definition N_digits :=
  [x:Z]Cases x of 
       	  (POS p) => (log_inf p)
        | (NEG p) => (log_inf p)
	|  ZERO   => `0`
       end.

Lemma ZERO_le_N_digits : (x:Z) ` 0 <= (N_digits x)`.
Induction x; Simpl;
[ Apply Zle_n
| Exact log_inf_correct1
| Exact log_inf_correct1].
Qed.

Lemma log_inf_shift_nat : 
  (n:nat)(log_inf (shift_nat n xH))=(inject_nat n).
Induction n; Intros;
[ Try Trivial
| Rewrite -> inj_S; Rewrite <- H; Reflexivity].
Qed.

Lemma log_sup_shift_nat : 
  (n:nat)(log_sup (shift_nat n xH))=(inject_nat n).
Induction n; Intros;
[ Try Trivial
| Rewrite -> inj_S; Rewrite <- H; Reflexivity].
Qed.

(** [Is_power p] means that p is a power of two *)
Fixpoint Is_power[p:positive] : Prop :=
  Cases p of
    xH => True
  | (xO q) => (Is_power q)
  | (xI q) => False
  end.

Lemma Is_power_correct :
  (p:positive) (Is_power p) <-> (Ex [y:nat](p=(shift_nat y xH))).

Split; 
[ Elim p; 
   [ Simpl; Tauto
   | Simpl; Intros; Generalize (H H0); Intro H1; Elim H1; Intros y0 Hy0;
     Exists (S y0); Rewrite Hy0; Reflexivity
   | Intro; Exists O; Reflexivity]
| Intros; Elim H; Intros; Rewrite -> H0; Elim x; Intros; Simpl; Trivial].
Qed.

Lemma Is_power_or : (p:positive) (Is_power p)\/~(Is_power p).
Induction p;
[ Intros; Right; Simpl; Tauto
| Intros; Elim H; 
   [ Intros; Left; Simpl; Exact H0
   | Intros; Right; Simpl; Exact H0]
| Left; Simpl; Trivial].
Qed.

End divers.