summaryrefslogtreecommitdiff
path: root/theories7/Reals/Rtrigo_reg.v
blob: 02e40caf5d824ef4b59d5b365ee1173b53d00ff9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
 
(*i $Id: Rtrigo_reg.v,v 1.1.2.1 2004/07/16 19:31:36 herbelin Exp $ i*)

Require Rbase.
Require Rfunctions.
Require SeqSeries.
Require Rtrigo.
Require Ranalysis1.
Require PSeries_reg.
V7only [Import nat_scope. Import Z_scope. Import R_scope.].
Open Local Scope nat_scope.
Open Local Scope R_scope.

Lemma CVN_R_cos : (fn:nat->R->R) (fn == [N:nat][x:R]``(pow (-1) N)/(INR (fact (mult (S (S O)) N)))*(pow x (mult (S (S O)) N))``) -> (CVN_R fn).
Unfold CVN_R; Intros.
Cut (r::R)<>``0``.
Intro hyp_r; Unfold CVN_r.
Apply Specif.existT with [n:nat]``/(INR (fact (mult (S (S O)) n)))*(pow r (mult (S (S O)) n))``.
Cut (SigT ? [l:R](Un_cv [n:nat](sum_f_R0 [k:nat](Rabsolu ``/(INR (fact (mult (S (S O)) k)))*(pow r (mult (S (S O)) k))``) n) l)).
Intro; Elim X; Intros.
Apply existTT with x.
Split.
Apply p.
Intros; Rewrite H; Unfold Rdiv; Do 2 Rewrite Rabsolu_mult.
Rewrite pow_1_abs; Rewrite Rmult_1l.
Cut ``0</(INR (fact (mult (S (S O)) n)))``.
Intro; Rewrite (Rabsolu_right  ? (Rle_sym1 ? ? (Rlt_le ? ? H1))).
Apply Rle_monotony.
Left; Apply H1.
Rewrite <- Pow_Rabsolu; Apply pow_maj_Rabs.
Rewrite Rabsolu_Rabsolu.
Unfold Boule in H0; Rewrite minus_R0 in H0.
Left; Apply H0.
Apply Rlt_Rinv; Apply INR_fact_lt_0.
Apply Alembert_C2.
Intro; Apply Rabsolu_no_R0.
Apply prod_neq_R0.
Apply Rinv_neq_R0.
Apply INR_fact_neq_0.
Apply pow_nonzero; Assumption.
Assert H0 := Alembert_cos.
Unfold cos_n in H0; Unfold Un_cv in H0; Unfold Un_cv; Intros.
Cut ``0<eps/(Rsqr r)``.
Intro; Elim (H0 ? H2); Intros N0 H3.
Exists N0; Intros.
Unfold R_dist; Assert H5 := (H3 ? H4).
Unfold R_dist in H5; Replace ``(Rabsolu ((Rabsolu (/(INR (fact (mult (S (S O)) (S n))))*(pow r (mult (S (S O)) (S n)))))/(Rabsolu (/(INR (fact (mult (S (S O)) n)))*(pow r (mult (S (S O)) n))))))`` with ``(Rsqr r)*(Rabsolu ((pow ( -1) (S n))/(INR (fact (mult (S (S O)) (S n))))/((pow ( -1) n)/(INR (fact (mult (S (S O)) n))))))``.
Apply Rlt_monotony_contra with ``/(Rsqr r)``.
Apply Rlt_Rinv; Apply Rsqr_pos_lt; Assumption.
Pattern 1 ``/(Rsqr r)``; Replace ``/(Rsqr r)`` with ``(Rabsolu (/(Rsqr r)))``.
Rewrite <- Rabsolu_mult; Rewrite Rminus_distr; Rewrite Rmult_Or; Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l; Rewrite <- (Rmult_sym eps); Apply H5.
Unfold Rsqr; Apply prod_neq_R0; Assumption.
Rewrite Rabsolu_Rinv.
Rewrite Rabsolu_right.
Reflexivity.
Apply Rle_sym1; Apply pos_Rsqr.
Unfold Rsqr; Apply prod_neq_R0; Assumption.
Rewrite (Rmult_sym (Rsqr r)); Unfold Rdiv; Repeat Rewrite Rabsolu_mult; Rewrite Rabsolu_Rabsolu; Rewrite pow_1_abs; Rewrite Rmult_1l; Repeat Rewrite Rmult_assoc; Apply Rmult_mult_r.
Rewrite Rabsolu_Rinv.
Rewrite Rabsolu_mult; Rewrite (pow_1_abs n); Rewrite Rmult_1l; Rewrite <- Rabsolu_Rinv.
Rewrite Rinv_Rinv.
Rewrite Rinv_Rmult.
Rewrite Rabsolu_Rinv.
Rewrite Rinv_Rinv.
Rewrite (Rmult_sym ``(Rabsolu (Rabsolu (pow r (mult (S (S O)) (S n)))))``); Rewrite Rabsolu_mult; Rewrite Rabsolu_Rabsolu; Rewrite Rmult_assoc; Apply Rmult_mult_r.
Rewrite Rabsolu_Rinv.
Do 2 Rewrite Rabsolu_Rabsolu; Repeat Rewrite Rabsolu_right.
Replace ``(pow r (mult (S (S O)) (S n)))`` with ``(pow r (mult (S (S O)) n))*r*r``.
Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
Unfold Rsqr; Ring.
Apply pow_nonzero; Assumption.
Replace (mult (2) (S n)) with (S (S (mult (2) n))).
Simpl; Ring.
Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Apply Rle_sym1; Apply pow_le; Left; Apply (cond_pos r).
Apply Rle_sym1; Apply pow_le; Left; Apply (cond_pos r).
Apply Rabsolu_no_R0; Apply pow_nonzero; Assumption.
Apply Rabsolu_no_R0; Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply Rabsolu_no_R0; Apply Rinv_neq_R0; Apply INR_fact_neq_0.
Apply Rabsolu_no_R0; Apply pow_nonzero; Assumption.
Apply INR_fact_neq_0.
Apply Rinv_neq_R0; Apply INR_fact_neq_0.
Apply prod_neq_R0.
Apply pow_nonzero; DiscrR.
Apply Rinv_neq_R0; Apply INR_fact_neq_0.
Unfold Rdiv; Apply Rmult_lt_pos.
Apply H1.
Apply Rlt_Rinv; Apply Rsqr_pos_lt; Assumption.
Assert H0 := (cond_pos r); Red; Intro; Rewrite H1 in H0; Elim (Rlt_antirefl ? H0).
Qed.

(**********)
Lemma continuity_cos : (continuity cos).
Pose fn := [N:nat][x:R]``(pow (-1) N)/(INR (fact (mult (S (S O)) N)))*(pow x (mult (S (S O)) N))``.
Cut (CVN_R fn).
Intro; Cut (x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l)).
Intro cv; Cut ((n:nat)(continuity (fn n))).
Intro; Cut (x:R)(cos x)==(SFL fn cv x).
Intro; Cut (continuity (SFL fn cv))->(continuity cos).
Intro; Apply H1.
Apply SFL_continuity; Assumption.
Unfold continuity; Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros.
Elim (H1 x ? H2); Intros.
Exists x0; Intros.
Elim H3; Intros.
Split.
Apply H4.
Intros; Rewrite (H0 x); Rewrite (H0 x1); Apply H5; Apply H6.
Intro; Unfold cos SFL.
Case (cv x); Case (exist_cos (Rsqr x)); Intros.
Symmetry; EApply UL_sequence.
Apply u.
Unfold cos_in in c; Unfold infinit_sum in c; Unfold Un_cv; Intros.
Elim (c ? H0); Intros N0 H1.
Exists N0; Intros.
Unfold R_dist in H1; Unfold R_dist SP.
Replace (sum_f_R0 [k:nat](fn k x) n) with (sum_f_R0 [i:nat]``(cos_n i)*(pow (Rsqr x) i)`` n).
Apply H1; Assumption.
Apply sum_eq; Intros.
Unfold cos_n fn; Apply Rmult_mult_r.
Unfold Rsqr; Rewrite pow_sqr; Reflexivity.
Intro; Unfold fn; Replace [x:R]``(pow ( -1) n)/(INR (fact (mult (S (S O)) n)))*(pow x (mult (S (S O)) n))`` with (mult_fct (fct_cte ``(pow ( -1) n)/(INR (fact (mult (S (S O)) n)))``) (pow_fct (mult (S (S O)) n))); [Idtac | Reflexivity].
Apply continuity_mult.
Apply derivable_continuous; Apply derivable_const.
Apply derivable_continuous; Apply (derivable_pow (mult (2) n)).
Apply CVN_R_CVS; Apply X.
Apply CVN_R_cos; Unfold fn; Reflexivity.
Qed.

(**********)
Lemma continuity_sin : (continuity sin).
Unfold continuity; Intro.
Assert H0 := (continuity_cos ``PI/2-x``).
Unfold continuity_pt in H0; Unfold continue_in in H0; Unfold limit1_in in H0; Unfold limit_in in H0; Simpl in H0; Unfold R_dist in H0; Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros.
Elim (H0 ? H); Intros.
Exists x0; Intros.
Elim H1; Intros.
Split.
Assumption.
Intros; Rewrite <- (cos_shift x); Rewrite <- (cos_shift x1); Apply H3.
Elim H4; Intros.
Split.
Unfold D_x no_cond; Split.
Trivial.
Red; Intro; Unfold D_x no_cond in H5; Elim H5; Intros _ H8; Elim H8; Rewrite <- (Ropp_Ropp x); Rewrite <- (Ropp_Ropp x1); Apply eq_Ropp; Apply r_Rplus_plus with ``PI/2``; Apply H7.
Replace ``PI/2-x1-(PI/2-x)`` with ``x-x1``; [Idtac | Ring]; Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr3; Apply H6.
Qed.

Lemma CVN_R_sin : (fn:nat->R->R) (fn == [N:nat][x:R]``(pow ( -1) N)/(INR (fact (plus (mult (S (S O)) N) (S O))))*(pow x (mult (S (S O)) N))``) -> (CVN_R fn).
Unfold CVN_R; Unfold CVN_r; Intros fn H r.
Apply Specif.existT with [n:nat]``/(INR (fact (plus (mult (S (S O)) n) (S O))))*(pow r (mult (S (S O)) n))``.
Cut (SigT ? [l:R](Un_cv [n:nat](sum_f_R0 [k:nat](Rabsolu ``/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow r (mult (S (S O)) k))``) n) l)).
Intro; Elim X; Intros.
Apply existTT with x.
Split.
Apply p.
Intros; Rewrite H; Unfold Rdiv; Do 2 Rewrite Rabsolu_mult; Rewrite pow_1_abs; Rewrite Rmult_1l.
Cut ``0</(INR (fact (plus (mult (S (S O)) n) (S O))))``.
Intro; Rewrite (Rabsolu_right  ? (Rle_sym1 ? ? (Rlt_le ? ? H1))).
Apply Rle_monotony.
Left; Apply H1.
Rewrite <- Pow_Rabsolu; Apply pow_maj_Rabs.
Rewrite Rabsolu_Rabsolu; Unfold Boule in H0; Rewrite minus_R0 in H0; Left; Apply H0.
Apply Rlt_Rinv; Apply INR_fact_lt_0.
Cut (r::R)<>``0``.
Intro; Apply Alembert_C2.
Intro; Apply Rabsolu_no_R0.
Apply prod_neq_R0.
Apply Rinv_neq_R0; Apply INR_fact_neq_0.
Apply pow_nonzero; Assumption.
Assert H1 := Alembert_sin.
Unfold sin_n in H1; Unfold Un_cv in H1; Unfold Un_cv; Intros.
Cut ``0<eps/(Rsqr r)``.
Intro; Elim (H1 ? H3); Intros N0 H4.
Exists N0; Intros.
Unfold R_dist; Assert H6 := (H4 ? H5).
Unfold R_dist in H5; Replace ``(Rabsolu ((Rabsolu (/(INR (fact (plus (mult (S (S O)) (S n)) (S O))))*(pow r (mult (S (S O)) (S n)))))/(Rabsolu (/(INR (fact (plus (mult (S (S O)) n) (S O))))*(pow r (mult (S (S O)) n))))))`` with ``(Rsqr r)*(Rabsolu ((pow ( -1) (S n))/(INR (fact (plus (mult (S (S O)) (S n)) (S O))))/((pow ( -1) n)/(INR (fact (plus (mult (S (S O)) n) (S O)))))))``.
Apply Rlt_monotony_contra with ``/(Rsqr r)``.
Apply Rlt_Rinv; Apply Rsqr_pos_lt; Assumption.
Pattern 1 ``/(Rsqr r)``; Rewrite <- (Rabsolu_right ``/(Rsqr r)``).
Rewrite <- Rabsolu_mult.
Rewrite Rminus_distr.
Rewrite Rmult_Or; Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l; Rewrite <- (Rmult_sym eps).
Apply H6.
Unfold Rsqr; Apply prod_neq_R0; Assumption.
Apply Rle_sym1; Left; Apply Rlt_Rinv; Apply Rsqr_pos_lt; Assumption.
Unfold Rdiv; Rewrite (Rmult_sym (Rsqr r)); Repeat Rewrite Rabsolu_mult; Rewrite Rabsolu_Rabsolu; Rewrite pow_1_abs.
Rewrite Rmult_1l.
Repeat Rewrite Rmult_assoc; Apply Rmult_mult_r.
Rewrite Rinv_Rmult.
Rewrite Rinv_Rinv.
Rewrite Rabsolu_mult.
Rewrite Rabsolu_Rinv.
Rewrite pow_1_abs; Rewrite Rinv_R1; Rewrite Rmult_1l.
Rewrite Rinv_Rmult.
Rewrite <- Rabsolu_Rinv.
Rewrite Rinv_Rinv.
Rewrite Rabsolu_mult.
Do 2 Rewrite Rabsolu_Rabsolu.
Rewrite (Rmult_sym ``(Rabsolu (pow r (mult (S (S O)) (S n))))``).
Rewrite Rmult_assoc; Apply Rmult_mult_r.
Rewrite Rabsolu_Rinv.
Rewrite Rabsolu_Rabsolu.
Repeat Rewrite Rabsolu_right.
Replace ``(pow r (mult (S (S O)) (S n)))`` with ``(pow r (mult (S (S O)) n))*r*r``.
Do 2 Rewrite <- Rmult_assoc.
Rewrite <- Rinv_l_sym.
Unfold Rsqr; Ring.
Apply pow_nonzero; Assumption.
Replace (mult (2) (S n)) with (S (S (mult (2) n))).
Simpl; Ring.
Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Apply Rle_sym1; Apply pow_le; Left; Apply (cond_pos r).
Apply Rle_sym1; Apply pow_le; Left; Apply (cond_pos r).
Apply Rabsolu_no_R0; Apply pow_nonzero; Assumption.
Apply INR_fact_neq_0.
Apply Rinv_neq_R0; Apply INR_fact_neq_0.
Apply Rabsolu_no_R0; Apply Rinv_neq_R0; Apply INR_fact_neq_0.
Apply Rabsolu_no_R0; Apply pow_nonzero; Assumption.
Apply pow_nonzero; DiscrR.
Apply INR_fact_neq_0.
Apply pow_nonzero; DiscrR.
Apply Rinv_neq_R0; Apply INR_fact_neq_0.
Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Apply Rsqr_pos_lt; Assumption].
Assert H0 := (cond_pos r); Red; Intro; Rewrite H1 in H0; Elim (Rlt_antirefl ? H0).
Qed.

(* (sin h)/h -> 1 when h -> 0 *)
Lemma derivable_pt_lim_sin_0 : (derivable_pt_lim sin R0 R1).
Unfold derivable_pt_lim; Intros.
Pose fn := [N:nat][x:R]``(pow ( -1) N)/(INR (fact (plus (mult (S (S O)) N) (S O))))*(pow x (mult (S (S O)) N))``.
Cut (CVN_R fn).
Intro; Cut (x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l)).
Intro cv.
Pose r := (mkposreal ? Rlt_R0_R1).
Cut (CVN_r fn r).
Intro; Cut ((n:nat; y:R)(Boule ``0`` r y)->(continuity_pt (fn n) y)).
Intro; Cut (Boule R0 r R0).
Intro; Assert H2 := (SFL_continuity_pt ? cv ? X0 H0 ? H1).
Unfold continuity_pt in H2; Unfold continue_in in H2; Unfold limit1_in in H2; Unfold limit_in in H2; Simpl in H2; Unfold R_dist in H2.
Elim (H2 ? H); Intros alp H3.
Elim H3; Intros.
Exists (mkposreal ? H4).
Simpl; Intros.
Rewrite sin_0; Rewrite Rplus_Ol; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or.
Cut ``(Rabsolu ((SFL fn cv h)-(SFL fn cv 0))) < eps``.
Intro; Cut (SFL fn cv R0)==R1.
Intro; Cut (SFL fn cv h)==``(sin h)/h``.
Intro; Rewrite H9 in H8; Rewrite H10 in H8.
Apply H8.
Unfold SFL sin.
Case (cv h); Intros.
Case (exist_sin (Rsqr h)); Intros.
Unfold Rdiv; Rewrite (Rinv_r_simpl_m h x0 H6).
EApply UL_sequence.
Apply u.
Unfold sin_in in s; Unfold sin_n infinit_sum in s; Unfold SP fn Un_cv; Intros.
Elim (s ? H10); Intros N0 H11.
Exists N0; Intros.
Unfold R_dist; Unfold R_dist in H11.
Replace (sum_f_R0 [k:nat]``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow h (mult (S (S O)) k))`` n) with (sum_f_R0 [i:nat]``(pow ( -1) i)/(INR (fact (plus (mult (S (S O)) i) (S O))))*(pow (Rsqr h) i)`` n).
Apply H11; Assumption.
Apply sum_eq; Intros; Apply Rmult_mult_r; Unfold Rsqr; Rewrite pow_sqr; Reflexivity.
Unfold SFL sin.
Case (cv R0); Intros.
EApply UL_sequence.
Apply u.
Unfold SP fn; Unfold Un_cv; Intros; Exists (S O); Intros.
Unfold R_dist; Replace (sum_f_R0 [k:nat]``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow 0 (mult (S (S O)) k))`` n) with R1.
Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption.
Rewrite decomp_sum.
Simpl; Rewrite Rmult_1r; Unfold Rdiv; Rewrite Rinv_R1; Rewrite Rmult_1r; Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rplus_plus_r.
Symmetry; Apply sum_eq_R0; Intros.
Rewrite Rmult_Ol; Rewrite Rmult_Or; Reflexivity.
Unfold ge in H10; Apply lt_le_trans with (1); [Apply lt_n_Sn | Apply H10].
Apply H5.
Split.
Unfold D_x no_cond; Split.
Trivial.
Apply not_sym; Apply H6.
Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply H7.
Unfold Boule; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_R0; Apply (cond_pos r).
Intros; Unfold fn; Replace [x:R]``(pow ( -1) n)/(INR (fact (plus (mult (S (S O)) n) (S O))))*(pow x (mult (S (S O)) n))`` with (mult_fct (fct_cte ``(pow ( -1) n)/(INR (fact (plus (mult (S (S O)) n) (S O))))``) (pow_fct (mult (S (S O)) n))); [Idtac | Reflexivity].
Apply continuity_pt_mult.
Apply derivable_continuous_pt.
Apply derivable_pt_const.
Apply derivable_continuous_pt.
Apply (derivable_pt_pow (mult (2) n) y).
Apply (X r).
Apply (CVN_R_CVS ? X).
Apply CVN_R_sin; Unfold fn; Reflexivity.
Qed.

(* ((cos h)-1)/h -> 0 when h -> 0 *)
Lemma derivable_pt_lim_cos_0 : (derivable_pt_lim cos ``0`` ``0``).
Unfold derivable_pt_lim; Intros.
Assert H0 := derivable_pt_lim_sin_0.
Unfold derivable_pt_lim in H0.
Cut ``0<eps/2``.
Intro; Elim (H0 ? H1); Intros del H2.
Cut (continuity_pt sin ``0``).
Intro; Unfold continuity_pt in H3; Unfold continue_in in H3; Unfold limit1_in in H3; Unfold limit_in in H3; Simpl in H3; Unfold R_dist in H3.
Cut ``0<eps/2``; [Intro | Assumption].
Elim (H3 ? H4); Intros del_c H5.
Cut ``0<(Rmin del del_c)``.
Intro; Pose delta := (mkposreal ? H6).
Exists delta; Intros.
Rewrite Rplus_Ol; Replace ``((cos h)-(cos 0))`` with ``-2*(Rsqr (sin (h/2)))``.
Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or.
Unfold Rdiv; Do 2 Rewrite Ropp_mul1.
Rewrite Rabsolu_Ropp.
Replace ``2*(Rsqr (sin (h*/2)))*/h`` with ``(sin (h/2))*((sin (h/2))/(h/2)-1)+(sin (h/2))``.
Apply Rle_lt_trans with ``(Rabsolu ((sin (h/2))*((sin (h/2))/(h/2)-1)))+(Rabsolu ((sin (h/2))))``.
Apply Rabsolu_triang.
Rewrite (double_var eps); Apply Rplus_lt.
Apply Rle_lt_trans with ``(Rabsolu ((sin (h/2))/(h/2)-1))``.
Rewrite Rabsolu_mult; Rewrite Rmult_sym; Pattern 2 ``(Rabsolu ((sin (h/2))/(h/2)-1))``; Rewrite <- Rmult_1r; Apply Rle_monotony.
Apply Rabsolu_pos.
Assert H9 := (SIN_bound ``h/2``).
Unfold Rabsolu; Case (case_Rabsolu ``(sin (h/2))``); Intro.
Pattern 3 R1; Rewrite <- (Ropp_Ropp ``1``).
Apply Rle_Ropp1.
Elim H9; Intros; Assumption.
Elim H9; Intros; Assumption.
Cut ``(Rabsolu (h/2))<del``.
Intro; Cut ``h/2<>0``.
Intro; Assert H11 := (H2 ? H10 H9). 
Rewrite Rplus_Ol in H11; Rewrite sin_0 in H11.
Rewrite minus_R0 in H11; Apply H11.
Unfold Rdiv; Apply prod_neq_R0.
Apply H7.
Apply Rinv_neq_R0; DiscrR.
Apply Rlt_trans with ``del/2``.
Unfold Rdiv; Rewrite Rabsolu_mult.
Rewrite (Rabsolu_right ``/2``).
Do 2 Rewrite <- (Rmult_sym ``/2``); Apply Rlt_monotony.
Apply Rlt_Rinv; Sup0.
Apply Rlt_le_trans with (pos delta).
Apply H8.
Unfold delta; Simpl; Apply Rmin_l.
Apply Rle_sym1; Left; Apply Rlt_Rinv; Sup0.
Rewrite <- (Rplus_Or ``del/2``); Pattern 1 del; Rewrite (double_var del); Apply Rlt_compatibility; Unfold Rdiv; Apply Rmult_lt_pos.
Apply (cond_pos del).
Apply Rlt_Rinv; Sup0.
Elim H5; Intros; Assert H11 := (H10 ``h/2``).
Rewrite sin_0 in H11; Do 2 Rewrite minus_R0 in H11.
Apply H11.
Split.
Unfold D_x no_cond; Split.
Trivial.
Apply not_sym; Unfold Rdiv; Apply prod_neq_R0.
Apply H7.
Apply Rinv_neq_R0; DiscrR.
Apply Rlt_trans with ``del_c/2``.
Unfold Rdiv; Rewrite Rabsolu_mult.
Rewrite (Rabsolu_right ``/2``).
Do 2 Rewrite <- (Rmult_sym ``/2``).
Apply Rlt_monotony.
Apply Rlt_Rinv; Sup0.
Apply Rlt_le_trans with (pos delta).
Apply H8.
Unfold delta; Simpl; Apply Rmin_r.
Apply Rle_sym1; Left; Apply Rlt_Rinv; Sup0.
Rewrite <- (Rplus_Or ``del_c/2``); Pattern 2 del_c; Rewrite (double_var del_c); Apply Rlt_compatibility.
Unfold Rdiv; Apply Rmult_lt_pos.
Apply H9.
Apply Rlt_Rinv; Sup0.
Rewrite Rminus_distr; Rewrite Rmult_1r; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Rewrite (Rmult_sym ``2``); Unfold Rdiv Rsqr.
Repeat Rewrite Rmult_assoc.
Repeat Apply Rmult_mult_r.
Rewrite Rinv_Rmult.
Rewrite Rinv_Rinv.
Apply Rmult_sym.
DiscrR.
Apply H7.
Apply Rinv_neq_R0; DiscrR.
Pattern 2 h; Replace h with ``2*(h/2)``.
Rewrite (cos_2a_sin ``h/2``).
Rewrite cos_0; Unfold Rsqr; Ring.
Unfold Rdiv; Rewrite <- Rmult_assoc; Apply Rinv_r_simpl_m.
DiscrR.
Unfold Rmin; Case (total_order_Rle del del_c); Intro.
Apply (cond_pos del).
Elim H5; Intros; Assumption.
Apply continuity_sin.
Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
Qed.

(**********)
Theorem derivable_pt_lim_sin : (x:R)(derivable_pt_lim sin x (cos x)).
Intro; Assert H0 := derivable_pt_lim_sin_0.
Assert H := derivable_pt_lim_cos_0.
Unfold derivable_pt_lim in H0 H.
Unfold derivable_pt_lim; Intros.
Cut ``0<eps/2``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Apply H1 | Apply Rlt_Rinv; Sup0]].
Elim (H0 ? H2); Intros alp1 H3.
Elim (H ? H2); Intros alp2 H4.
Pose alp := (Rmin alp1 alp2).
Cut ``0<alp``.
Intro; Exists (mkposreal ? H5); Intros.
Replace ``((sin (x+h))-(sin x))/h-(cos x)`` with ``(sin x)*((cos h)-1)/h+(cos x)*((sin h)/h-1)``.
Apply Rle_lt_trans with ``(Rabsolu ((sin x)*((cos h)-1)/h))+(Rabsolu ((cos x)*((sin h)/h-1)))``.
Apply Rabsolu_triang.
Rewrite (double_var eps); Apply Rplus_lt.
Apply Rle_lt_trans with ``(Rabsolu ((cos h)-1)/h)``.
Rewrite Rabsolu_mult; Rewrite Rmult_sym; Pattern 2 ``(Rabsolu (((cos h)-1)/h))``; Rewrite <- Rmult_1r; Apply Rle_monotony.
Apply Rabsolu_pos.
Assert H8 := (SIN_bound x); Elim H8; Intros.
Unfold Rabsolu; Case (case_Rabsolu (sin x)); Intro.
Rewrite <- (Ropp_Ropp R1).
Apply Rle_Ropp1; Assumption.
Assumption.
Cut ``(Rabsolu h)<alp2``.
Intro; Assert H9 := (H4 ? H6 H8).
Rewrite cos_0 in H9; Rewrite Rplus_Ol in H9; Rewrite minus_R0 in H9; Apply H9.
Apply Rlt_le_trans with alp.
Apply H7.
Unfold alp; Apply Rmin_r.
Apply Rle_lt_trans with ``(Rabsolu ((sin h)/h-1))``.
Rewrite Rabsolu_mult; Rewrite Rmult_sym; Pattern 2 ``(Rabsolu ((sin h)/h-1))``; Rewrite <- Rmult_1r; Apply Rle_monotony.
Apply Rabsolu_pos.
Assert H8 := (COS_bound x); Elim H8; Intros.
Unfold Rabsolu; Case (case_Rabsolu (cos x)); Intro.
Rewrite <- (Ropp_Ropp R1); Apply Rle_Ropp1; Assumption.
Assumption.
Cut ``(Rabsolu h)<alp1``.
Intro; Assert H9 := (H3 ? H6 H8).
Rewrite sin_0 in H9; Rewrite Rplus_Ol in H9; Rewrite minus_R0 in H9; Apply H9.
Apply Rlt_le_trans with alp.
Apply H7.
Unfold alp; Apply Rmin_l.
Rewrite sin_plus; Unfold Rminus Rdiv; Repeat Rewrite Rmult_Rplus_distrl; Repeat Rewrite Rmult_Rplus_distr; Repeat Rewrite Rmult_assoc; Repeat Rewrite Rplus_assoc; Apply Rplus_plus_r.
Rewrite (Rplus_sym ``(sin x)*( -1*/h)``); Repeat Rewrite Rplus_assoc; Apply Rplus_plus_r.
Rewrite Ropp_mul3; Rewrite Ropp_mul1; Rewrite Rmult_1r; Rewrite Rmult_1l; Rewrite Ropp_mul3; Rewrite <- Ropp_mul1; Apply Rplus_sym.
Unfold alp; Unfold Rmin; Case (total_order_Rle alp1 alp2); Intro.
Apply (cond_pos alp1).
Apply (cond_pos alp2).
Qed.

Lemma derivable_pt_lim_cos : (x:R) (derivable_pt_lim cos x ``-(sin x)``).
Intro; Cut (h:R)``(sin (h+PI/2))``==(cos h).
Intro; Replace ``-(sin x)`` with (Rmult (cos ``x+PI/2``) (Rplus R1 R0)).
Generalize (derivable_pt_lim_comp (plus_fct id (fct_cte ``PI/2``)) sin); Intros.
Cut (derivable_pt_lim (plus_fct id (fct_cte ``PI/2``)) x ``1+0``).
Cut (derivable_pt_lim sin (plus_fct id (fct_cte ``PI/2``) x) ``(cos (x+PI/2))``).
Intros; Generalize (H0 ? ? ? H2 H1); Replace (comp sin (plus_fct id (fct_cte ``PI/2``))) with [x:R]``(sin (x+PI/2))``; [Idtac | Reflexivity].
Unfold derivable_pt_lim; Intros.
Elim (H3 eps H4); Intros.
Exists x0.
Intros; Rewrite <- (H ``x+h``); Rewrite <- (H x); Apply H5; Assumption.
Apply derivable_pt_lim_sin.
Apply derivable_pt_lim_plus.
Apply derivable_pt_lim_id.
Apply derivable_pt_lim_const.
Rewrite sin_cos; Rewrite <- (Rplus_sym x); Ring.
Intro; Rewrite cos_sin; Rewrite Rplus_sym; Reflexivity.
Qed.

Lemma derivable_pt_sin : (x:R) (derivable_pt sin x).
Unfold derivable_pt; Intro.
Apply Specif.existT with (cos x).
Apply derivable_pt_lim_sin.
Qed.

Lemma derivable_pt_cos : (x:R) (derivable_pt cos x).
Unfold derivable_pt; Intro.
Apply Specif.existT with ``-(sin x)``.
Apply derivable_pt_lim_cos.
Qed.

Lemma derivable_sin : (derivable sin).
Unfold derivable; Intro; Apply derivable_pt_sin.
Qed.

Lemma derivable_cos : (derivable cos).
Unfold derivable; Intro; Apply derivable_pt_cos.
Qed.

Lemma derive_pt_sin : (x:R) ``(derive_pt sin x (derivable_pt_sin ?))==(cos x)``.
Intros; Apply derive_pt_eq_0.
Apply derivable_pt_lim_sin.
Qed.

Lemma derive_pt_cos : (x:R) ``(derive_pt cos x (derivable_pt_cos ?))==-(sin x)``.
Intros; Apply derive_pt_eq_0.
Apply derivable_pt_lim_cos.
Qed.