summaryrefslogtreecommitdiff
path: root/theories7/Reals/RiemannInt_SF.v
blob: 3e2cc457bdb96dca1f728fea35bd9b7122e49aa2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
 
(*i $Id: RiemannInt_SF.v,v 1.2.2.1 2004/07/16 19:31:35 herbelin Exp $ i*)

Require Rbase.
Require Rfunctions.
Require Ranalysis.
Require Classical_Prop.
V7only [ Import nat_scope. Import Z_scope. Import R_scope. ].
Open Local Scope R_scope.

Implicit Arguments On.

(**************************************************)
(* Each bounded subset of N has a maximal element *)
(**************************************************)

Definition Nbound [I:nat->Prop] : Prop := (EX n:nat | (i:nat)(I i)->(le i n)).

Lemma IZN_var:(z:Z)(`0<=z`)->{ n:nat | z=(INZ n)}.
Intros; Apply inject_nat_complete_inf; Assumption.
Qed.

Lemma Nzorn : (I:nat->Prop) (EX n:nat | (I n)) -> (Nbound I) -> (sigTT ?  [n:nat](I n)/\(i:nat)(I i)->(le i n)).
Intros I H H0; Pose E := [x:R](EX i:nat | (I i)/\(INR i)==x); Assert H1 : (bound E).
Unfold Nbound in H0; Elim H0; Intros N H1; Unfold bound; Exists (INR N); Unfold is_upper_bound; Intros; Unfold E in H2; Elim H2; Intros; Elim H3; Intros; Rewrite <- H5; Apply le_INR; Apply H1; Assumption.
Assert H2 : (EXT x:R | (E x)).
Elim H; Intros; Exists (INR x); Unfold E; Exists x; Split; [Assumption | Reflexivity].
Assert H3 := (complet E H1 H2); Elim H3; Intros; Unfold is_lub in p; Elim p; Clear p; Intros; Unfold is_upper_bound in H4 H5; Assert H6 : ``0<=x``.
Elim H2; Intros; Unfold E in H6; Elim H6; Intros; Elim H7; Intros; Apply Rle_trans with x0; [Rewrite <- H9; Change ``(INR O)<=(INR x1)``; Apply le_INR; Apply le_O_n | Apply H4; Assumption].
Assert H7 := (archimed x); Elim H7; Clear H7; Intros; Assert H9 : ``x<=(IZR (up x))-1``.
Apply H5; Intros; Assert H10 := (H4 ? H9); Unfold E in H9; Elim H9; Intros; Elim H11; Intros; Rewrite <- H13; Apply Rle_anti_compatibility with R1; Replace ``1+((IZR (up x))-1)`` with (IZR (up x)); [Idtac | Ring]; Replace ``1+(INR x1)`` with (INR (S x1)); [Idtac | Rewrite S_INR; Ring].
Assert H14 : `0<=(up x)`.
Apply le_IZR; Apply Rle_trans with x; [Apply H6 | Left; Assumption].
Assert H15 := (IZN ? H14); Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- INR_IZR_INZ; Apply le_INR; Apply lt_le_S; Apply INR_lt; Rewrite H13; Apply Rle_lt_trans with x; [Assumption | Rewrite INR_IZR_INZ; Rewrite <- H15; Assumption].
Assert H10 : ``x==(IZR (up x))-1``.
Apply Rle_antisym; [Assumption | Apply Rle_anti_compatibility with ``-x+1``; Replace `` -x+1+((IZR (up x))-1)`` with ``(IZR (up x))-x``; [Idtac | Ring]; Replace ``-x+1+x`` with R1; [Assumption | Ring]].
Assert H11 : `0<=(up x)`.
Apply le_IZR; Apply Rle_trans with x; [Apply H6 | Left; Assumption].
Assert H12 := (IZN_var H11); Elim H12; Clear H12; Intros; Assert H13 : (E x).
Elim (classic (E x)); Intro; Try Assumption.
Cut ((y:R)(E y)->``y<=x-1``).
Intro; Assert H14 := (H5 ? H13); Cut ``x-1<x``.
Intro; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H14 H15)).
Apply Rminus_lt; Replace ``x-1-x`` with ``-1``; [Idtac | Ring]; Rewrite <- Ropp_O; Apply Rlt_Ropp; Apply Rlt_R0_R1.
Intros; Assert H14 := (H4 ? H13); Elim H14; Intro; Unfold E in H13; Elim H13; Intros; Elim H16; Intros; Apply Rle_anti_compatibility with R1.
Replace ``1+(x-1)`` with x; [Idtac | Ring]; Rewrite <- H18; Replace ``1+(INR x1)`` with (INR (S x1)); [Idtac | Rewrite S_INR; Ring].
Cut x==(INR (pred x0)).
Intro; Rewrite H19; Apply le_INR; Apply lt_le_S; Apply INR_lt; Rewrite H18; Rewrite <- H19; Assumption.
Rewrite H10; Rewrite p; Rewrite <- INR_IZR_INZ; Replace R1 with (INR (S O)); [Idtac | Reflexivity]; Rewrite <- minus_INR.
Replace (minus x0 (S O)) with (pred x0); [Reflexivity | Case x0; [Reflexivity | Intro; Simpl; Apply minus_n_O]].
Induction x0; [Rewrite p in H7; Rewrite <- INR_IZR_INZ in H7; Simpl in H7; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H6 H7)) | Apply le_n_S; Apply le_O_n].
Rewrite H15 in H13; Elim H12; Assumption.
Split with (pred x0); Unfold E in H13; Elim H13; Intros; Elim H12; Intros; Rewrite H10 in H15; Rewrite p in H15; Rewrite <- INR_IZR_INZ in H15; Assert H16 : ``(INR x0)==(INR x1)+1``.
Rewrite H15; Ring.
Rewrite <- S_INR in H16; Assert H17 := (INR_eq ? ? H16); Rewrite H17; Simpl; Split.
Assumption.
Intros; Apply INR_le; Rewrite H15; Rewrite <- H15; Elim H12; Intros; Rewrite H20; Apply H4; Unfold E; Exists i; Split; [Assumption | Reflexivity].
Qed.

(*******************************************)
(*             Step functions              *)
(*******************************************)

Definition open_interval [a,b:R] : R->Prop := [x:R]``a<x<b``.
Definition co_interval [a,b:R] : R->Prop := [x:R]``a<=x<b``. 

Definition adapted_couple [f:R->R;a,b:R;l,lf:Rlist] : Prop := (ordered_Rlist l)/\``(pos_Rl l O)==(Rmin a b)``/\``(pos_Rl l (pred (Rlength l)))==(Rmax a b)``/\(Rlength l)=(S (Rlength lf))/\(i:nat)(lt i (pred (Rlength l)))->(constant_D_eq f (open_interval (pos_Rl l i) (pos_Rl l (S i))) (pos_Rl lf i)).

Definition adapted_couple_opt [f:R->R;a,b:R;l,lf:Rlist] := (adapted_couple f a b l lf)/\((i:nat)(lt i (pred (Rlength lf)))->(``(pos_Rl lf i)<>(pos_Rl lf (S i))``\/``(f (pos_Rl l (S i)))<>(pos_Rl lf i)``))/\((i:nat)(lt i (pred (Rlength l)))->``(pos_Rl l i)<>(pos_Rl l (S i))``).

Definition is_subdivision [f:R->R;a,b:R;l:Rlist] : Type := (sigTT ? [l0:Rlist](adapted_couple f a b l l0)).

Definition IsStepFun [f:R->R;a,b:R] : Type := (SigT ? [l:Rlist](is_subdivision f a b l)).

(* Class of step functions *)
Record StepFun [a,b:R] : Type := mkStepFun {
  fe:> R->R;
  pre:(IsStepFun fe a b)}.

Definition subdivision [a,b:R;f:(StepFun a b)] : Rlist := (projT1 ? ? (pre f)).

Definition subdivision_val [a,b:R;f:(StepFun a b)] : Rlist := Cases (projT2 ? ? (pre f)) of (existTT a b) => a end.

Fixpoint Int_SF [l:Rlist] : Rlist -> R :=
[k:Rlist] Cases l of
| nil => R0
| (cons a l') => Cases k of
   | nil => R0
   | (cons x nil) => R0
   | (cons x (cons y k')) => ``a*(y-x)+(Int_SF l' (cons y k'))``
  end
end.

(* Integral of step functions *)
Definition RiemannInt_SF [a,b:R;f:(StepFun a b)] : R := 
Cases (total_order_Rle a b) of
  (leftT _) => (Int_SF (subdivision_val f) (subdivision f))
| (rightT _) => ``-(Int_SF (subdivision_val f) (subdivision f))``
end.

(********************************)
(* Properties of step functions *)
(********************************)

Lemma StepFun_P1 : (a,b:R;f:(StepFun a b)) (adapted_couple f a b (subdivision f) (subdivision_val f)).
Intros a b f; Unfold subdivision_val; Case (projT2 Rlist ([l:Rlist](is_subdivision f a b l)) (pre f)); Intros; Apply a0.
Qed.

Lemma StepFun_P2 : (a,b:R;f:R->R;l,lf:Rlist) (adapted_couple f a b l lf) -> (adapted_couple f b a l lf).
Unfold adapted_couple; Intros; Decompose [and] H; Clear H; Repeat Split; Try Assumption.
Rewrite H2; Unfold Rmin; Case (total_order_Rle a b); Intro; Case (total_order_Rle b a); Intro; Try Reflexivity.
Apply Rle_antisym; Assumption.
Apply Rle_antisym; Auto with real.
Rewrite H1; Unfold Rmax; Case (total_order_Rle a b); Intro; Case (total_order_Rle b a); Intro; Try Reflexivity.
Apply Rle_antisym; Assumption.
Apply Rle_antisym; Auto with real.
Qed.

Lemma StepFun_P3 : (a,b,c:R) ``a<=b`` -> (adapted_couple (fct_cte c) a b (cons a (cons b nil)) (cons c nil)).
Intros; Unfold adapted_couple; Repeat Split.
Unfold ordered_Rlist; Intros; Simpl in H0; Inversion H0; [Simpl; Assumption | Elim (le_Sn_O ? H2)].
Simpl; Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Simpl; Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Unfold constant_D_eq open_interval; Intros; Simpl in H0; Inversion H0; [Reflexivity | Elim (le_Sn_O ? H3)].
Qed.

Lemma StepFun_P4 : (a,b,c:R) (IsStepFun (fct_cte c) a b).
Intros; Unfold IsStepFun; Case (total_order_Rle a b); Intro.
Apply Specif.existT with (cons a (cons b nil)); Unfold is_subdivision; Apply existTT with (cons c nil); Apply (StepFun_P3 c r).
Apply Specif.existT with (cons b (cons a nil)); Unfold is_subdivision; Apply existTT with (cons c nil); Apply StepFun_P2; Apply StepFun_P3; Auto with real.
Qed.

Lemma StepFun_P5 : (a,b:R;f:R->R;l:Rlist) (is_subdivision f a b l) -> (is_subdivision f b a l).
Unfold is_subdivision; Intros; Elim X; Intros; Exists x; Unfold adapted_couple in p; Decompose [and] p; Clear p; Unfold adapted_couple; Repeat Split; Try Assumption.
Rewrite H1; Unfold Rmin; Case (total_order_Rle a b); Intro; Case (total_order_Rle b a); Intro; Try Reflexivity.
Apply Rle_antisym; Assumption.
Apply Rle_antisym; Auto with real.
Rewrite H0; Unfold Rmax; Case (total_order_Rle a b); Intro; Case (total_order_Rle b a); Intro; Try Reflexivity.
Apply Rle_antisym; Assumption.
Apply Rle_antisym; Auto with real.
Qed.

Lemma StepFun_P6 : (f:R->R;a,b:R) (IsStepFun f a b) -> (IsStepFun f b a).
Unfold IsStepFun; Intros; Elim X; Intros; Apply Specif.existT with x; Apply StepFun_P5; Assumption.
Qed.

Lemma StepFun_P7 : (a,b,r1,r2,r3:R;f:R->R;l,lf:Rlist) ``a<=b`` -> (adapted_couple f a b (cons r1 (cons r2 l)) (cons r3 lf)) -> (adapted_couple f r2 b (cons r2 l) lf).
Unfold adapted_couple; Intros; Decompose [and] H0; Clear H0; Assert H5 : (Rmax a b)==b.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Assert H7 : ``r2<=b``.
Rewrite H5 in H2; Rewrite <- H2; Apply RList_P7; [Assumption | Simpl; Right; Left; Reflexivity].
Repeat Split.
Apply RList_P4 with r1; Assumption.
Rewrite H5 in H2; Unfold Rmin; Case (total_order_Rle r2 b); Intro; [Reflexivity | Elim n; Assumption].
Unfold Rmax; Case (total_order_Rle r2 b); Intro; [Rewrite H5 in H2; Rewrite <- H2; Reflexivity | Elim n; Assumption].
Simpl in H4; Simpl; Apply INR_eq; Apply r_Rplus_plus with R1; Do 2 Rewrite (Rplus_sym R1); Do 2 Rewrite <- S_INR; Rewrite H4; Reflexivity.
Intros; Unfold constant_D_eq open_interval; Intros; Unfold constant_D_eq open_interval in H6; Assert H9 : (lt (S i) (pred (Rlength (cons r1 (cons r2 l))))).
Simpl; Simpl in H0; Apply lt_n_S; Assumption.
Assert H10 := (H6 ? H9); Apply H10; Assumption.
Qed.

Lemma StepFun_P8 : (f:R->R;l1,lf1:Rlist;a,b:R) (adapted_couple f a b l1 lf1) -> a==b -> (Int_SF lf1 l1)==R0.
Induction l1.
Intros; Induction lf1; Reflexivity.
Induction r0.
Intros; Induction lf1.
Reflexivity.
Unfold adapted_couple in H0; Decompose [and] H0; Clear H0; Simpl in H5; Discriminate.
Intros; Induction lf1.
Reflexivity.
Simpl; Cut r==r1.
Intro; Rewrite H3; Rewrite (H0 lf1 r b).
Ring.
Rewrite H3; Apply StepFun_P7 with a r r3; [Right; Assumption | Assumption].
Clear H H0 Hreclf1 r0; Unfold adapted_couple in H1; Decompose [and] H1; Intros; Simpl in H4; Rewrite H4; Unfold Rmin; Case (total_order_Rle a b); Intro; [Assumption | Reflexivity].
Unfold adapted_couple in H1; Decompose [and] H1; Intros; Apply Rle_antisym.
Apply (H3 O); Simpl; Apply lt_O_Sn.
Simpl in H5; Rewrite H2 in H5; Rewrite H5; Replace (Rmin b b) with (Rmax a b); [Rewrite <- H4; Apply RList_P7; [Assumption | Simpl; Right; Left; Reflexivity] | Unfold Rmin Rmax; Case (total_order_Rle b b); Case (total_order_Rle a b); Intros; Try Assumption Orelse Reflexivity].
Qed.

Lemma StepFun_P9 : (a,b:R;f:R->R;l,lf:Rlist) (adapted_couple f a b l lf) -> ``a<>b`` -> (le (2) (Rlength l)).
Intros; Unfold adapted_couple in H; Decompose [and] H; Clear H; Induction l; [Simpl in H4; Discriminate | Induction l; [Simpl in H3; Simpl in H2; Generalize H3; Generalize H2; Unfold Rmin Rmax; Case (total_order_Rle a b); Intros; Elim H0; Rewrite <- H5; Rewrite <- H7; Reflexivity | Simpl; Do 2 Apply le_n_S; Apply le_O_n]].
Qed.

Lemma StepFun_P10 : (f:R->R;l,lf:Rlist;a,b:R) ``a<=b`` -> (adapted_couple f a b l lf) -> (EXT l':Rlist | (EXT lf':Rlist | (adapted_couple_opt f a b l' lf'))).
Induction l.
Intros; Unfold adapted_couple in H0; Decompose [and] H0; Simpl in H4; Discriminate.
Intros; Case (Req_EM a b); Intro.
Exists (cons a nil); Exists nil; Unfold adapted_couple_opt; Unfold adapted_couple; Unfold ordered_Rlist; Repeat Split; Try (Intros; Simpl in H3; Elim (lt_n_O ? H3)).
Simpl; Rewrite <- H2; Unfold Rmin; Case (total_order_Rle a a); Intro; Reflexivity.
Simpl; Rewrite <- H2; Unfold Rmax; Case (total_order_Rle a a); Intro; Reflexivity.
Elim (RList_P20 ? (StepFun_P9 H1 H2)); Intros t1 [t2 [t3 H3]]; Induction lf.
Unfold adapted_couple in H1; Decompose [and] H1; Rewrite H3 in H7; Simpl in H7; Discriminate.
Clear Hreclf; Assert H4 : (adapted_couple f t2 b r0 lf).
Rewrite H3 in H1; Assert H4 := (RList_P21 ? ? H3); Simpl in H4; Rewrite H4; EApply StepFun_P7; [Apply H0 | Apply H1].
Cut ``t2<=b``.
Intro; Assert H6 := (H ? ? ? H5 H4); Case (Req_EM t1 t2); Intro Hyp_eq.
Replace a with t2.
Apply H6.
Rewrite <- Hyp_eq; Rewrite H3 in H1; Unfold adapted_couple in H1; Decompose [and] H1; Clear H1; Simpl in H9; Rewrite H9; Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Elim H6; Clear H6; Intros l' [lf' H6]; Case (Req_EM t2 b); Intro.
Exists (cons a (cons b nil)); Exists (cons r1 nil); Unfold adapted_couple_opt; Unfold adapted_couple; Repeat Split.
Unfold ordered_Rlist; Intros; Simpl in H8; Inversion H8; [Simpl; Assumption | Elim (le_Sn_O ? H10)].
Simpl; Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Simpl; Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Intros; Simpl in H8; Inversion H8.
Unfold constant_D_eq open_interval; Intros; Simpl; Simpl in H9; Rewrite H3 in H1; Unfold adapted_couple in H1; Decompose [and] H1; Apply (H16 O).
Simpl; Apply lt_O_Sn.
Unfold open_interval; Simpl; Rewrite H7; Simpl in H13; Rewrite H13; Unfold Rmin; Case (total_order_Rle a b); Intro; [Assumption | Elim n; Assumption].
Elim (le_Sn_O ? H10).
Intros; Simpl in H8; Elim (lt_n_O ? H8).
Intros; Simpl in H8; Inversion H8; [Simpl; Assumption | Elim (le_Sn_O ? H10)].
Assert Hyp_min : (Rmin t2 b)==t2.
Unfold Rmin; Case (total_order_Rle t2 b); Intro; [Reflexivity | Elim n; Assumption].
Unfold adapted_couple in H6; Elim H6; Clear H6; Intros; Elim (RList_P20 ? (StepFun_P9 H6 H7)); Intros s1 [s2 [s3 H9]]; Induction lf'.
Unfold adapted_couple in H6; Decompose [and] H6; Rewrite H9 in H13; Simpl in H13; Discriminate.
Clear Hreclf'; Case (Req_EM r1 r2); Intro.
Case (Req_EM (f t2) r1); Intro.
Exists (cons t1 (cons s2 s3)); Exists (cons r1 lf'); Rewrite H3 in H1; Rewrite H9 in H6; Unfold adapted_couple in H6 H1; Decompose [and] H1; Decompose [and] H6; Clear H1 H6; Unfold adapted_couple_opt; Unfold adapted_couple; Repeat Split.
Unfold ordered_Rlist; Intros; Simpl in H1; Induction i.
Simpl; Apply Rle_trans with s1.
Replace s1 with t2.
Apply (H12 O).
Simpl; Apply lt_O_Sn.
Simpl in H19; Rewrite H19; Symmetry; Apply Hyp_min.
Apply (H16 O); Simpl; Apply lt_O_Sn.
Change ``(pos_Rl (cons s2 s3) i)<=(pos_Rl (cons s2 s3) (S i))``; Apply (H16 (S i)); Simpl; Assumption.
Simpl; Simpl in H14; Rewrite H14; Reflexivity.
Simpl; Simpl in H18; Rewrite H18; Unfold Rmax; Case (total_order_Rle a b); Case (total_order_Rle t2 b); Intros; Reflexivity Orelse Elim n; Assumption.
Simpl; Simpl in H20; Apply H20.
Intros; Simpl in H1; Unfold constant_D_eq open_interval; Intros; Induction i.
Simpl; Simpl in H6; Case (total_order_T x t2); Intro.
Elim s; Intro.
Apply (H17 O); [Simpl; Apply lt_O_Sn | Unfold open_interval; Simpl; Elim H6; Intros; Split; Assumption].
Rewrite b0; Assumption.
Rewrite H10; Apply (H22 O); [Simpl; Apply lt_O_Sn | Unfold open_interval; Simpl; Replace s1 with t2; [Elim H6; Intros; Split; Assumption | Simpl in H19; Rewrite H19; Rewrite Hyp_min; Reflexivity]].
Simpl; Simpl in H6; Apply (H22 (S i)); [Simpl; Assumption | Unfold open_interval; Simpl; Apply H6].
Intros; Simpl in H1; Rewrite H10; Change ``(pos_Rl (cons r2 lf') i)<>(pos_Rl (cons r2 lf') (S i))``\/``(f (pos_Rl (cons s1 (cons s2 s3)) (S i)))<>(pos_Rl (cons r2 lf') i)``; Rewrite <- H9; Elim H8; Intros; Apply H6; Simpl; Apply H1.
Intros; Induction i.
Simpl; Red; Intro; Elim Hyp_eq; Apply Rle_antisym.
Apply (H12 O); Simpl; Apply lt_O_Sn.
Rewrite <- Hyp_min; Rewrite H6; Simpl in H19; Rewrite <- H19; Apply (H16 O); Simpl; Apply lt_O_Sn.
Elim H8; Intros; Rewrite H9 in H21; Apply (H21 (S i)); Simpl; Simpl in H1; Apply H1.
Exists (cons t1 l'); Exists (cons r1 (cons r2 lf')); Rewrite H9 in H6; Rewrite H3 in H1; Unfold adapted_couple in H1 H6; Decompose [and] H6; Decompose [and] H1; Clear H6 H1; Unfold adapted_couple_opt; Unfold adapted_couple; Repeat Split.
Rewrite H9; Unfold ordered_Rlist; Intros; Simpl in H1; Induction i.
Simpl; Replace s1 with t2.
Apply (H16 O); Simpl; Apply lt_O_Sn.
Simpl in H14; Rewrite H14; Rewrite Hyp_min; Reflexivity.
Change ``(pos_Rl (cons s1 (cons s2 s3)) i)<=(pos_Rl (cons s1 (cons s2 s3)) (S i))``; Apply (H12 i); Simpl; Apply lt_S_n; Assumption.
Simpl; Simpl in H19; Apply H19.
Rewrite H9; Simpl; Simpl in H13; Rewrite H13; Unfold Rmax; Case (total_order_Rle t2 b); Case (total_order_Rle a b); Intros; Reflexivity Orelse Elim n; Assumption.
Rewrite H9; Simpl; Simpl in H15; Rewrite H15; Reflexivity.
Intros; Simpl in H1; Unfold constant_D_eq open_interval; Intros; Induction i.
Simpl; Rewrite H9 in H6; Simpl in H6; Apply (H22 O).
Simpl; Apply lt_O_Sn.
Unfold open_interval; Simpl.
Replace t2 with s1.
Assumption.
Simpl in H14; Rewrite H14; Rewrite Hyp_min; Reflexivity.
Change (f x)==(pos_Rl (cons r2 lf') i); Clear Hreci; Apply (H17 i).
Simpl; Rewrite H9 in H1; Simpl in H1; Apply lt_S_n; Apply H1.
Rewrite H9 in H6; Unfold open_interval; Apply H6.
Intros; Simpl in H1; Induction i.
Simpl; Rewrite H9; Right; Simpl; Replace s1 with t2.
Assumption.
Simpl in H14; Rewrite H14; Rewrite Hyp_min; Reflexivity.
Elim H8; Intros; Apply (H6 i).
Simpl; Apply lt_S_n; Apply H1.
Intros; Rewrite H9; Induction i.
Simpl; Red; Intro; Elim Hyp_eq; Apply Rle_antisym.
Apply (H16 O); Simpl; Apply lt_O_Sn.
Rewrite <- Hyp_min; Rewrite H6; Simpl in H14; Rewrite <- H14; Right; Reflexivity.
Elim H8; Intros; Rewrite <- H9; Apply (H21 i); Rewrite H9; Rewrite H9 in H1; Simpl; Simpl in H1; Apply lt_S_n; Apply H1.
Exists (cons t1 l'); Exists (cons r1 (cons r2 lf')); Rewrite H9 in H6; Rewrite H3 in H1; Unfold adapted_couple in H1 H6; Decompose [and] H6; Decompose [and] H1; Clear H6 H1; Unfold adapted_couple_opt; Unfold adapted_couple; Repeat Split.
Rewrite H9; Unfold ordered_Rlist; Intros; Simpl in H1; Induction i.
Simpl; Replace s1 with t2.
Apply (H15 O); Simpl; Apply lt_O_Sn.
Simpl in H13; Rewrite H13; Rewrite Hyp_min; Reflexivity.
Change ``(pos_Rl (cons s1 (cons s2 s3)) i)<=(pos_Rl (cons s1 (cons s2 s3)) (S i))``; Apply (H11 i); Simpl; Apply lt_S_n; Assumption.
Simpl; Simpl in H18; Apply H18.
Rewrite H9; Simpl; Simpl in H12; Rewrite H12; Unfold Rmax; Case (total_order_Rle t2 b); Case (total_order_Rle a b); Intros; Reflexivity Orelse Elim n; Assumption.
Rewrite H9; Simpl; Simpl in H14; Rewrite H14; Reflexivity.
Intros; Simpl in H1; Unfold constant_D_eq open_interval; Intros; Induction i.
Simpl; Rewrite H9 in H6; Simpl in H6; Apply (H21 O).
Simpl; Apply lt_O_Sn.
Unfold open_interval; Simpl; Replace t2 with s1.
Assumption.
Simpl in H13; Rewrite H13; Rewrite Hyp_min; Reflexivity.
Change (f x)==(pos_Rl (cons r2 lf') i); Clear Hreci; Apply (H16 i).
Simpl; Rewrite H9 in H1; Simpl in H1; Apply lt_S_n; Apply H1.
Rewrite H9 in H6; Unfold open_interval; Apply H6.
Intros; Simpl in H1; Induction i.
Simpl; Left; Assumption.
Elim H8; Intros; Apply (H6 i).
Simpl; Apply lt_S_n; Apply H1.
Intros; Rewrite H9; Induction i.
Simpl; Red; Intro; Elim Hyp_eq; Apply Rle_antisym.
Apply (H15 O); Simpl; Apply lt_O_Sn.
Rewrite <- Hyp_min; Rewrite H6; Simpl in H13; Rewrite <- H13; Right; Reflexivity.
Elim H8; Intros; Rewrite <- H9; Apply (H20 i); Rewrite H9; Rewrite H9 in H1; Simpl; Simpl in H1; Apply lt_S_n; Apply H1.
Rewrite H3 in H1; Clear H4; Unfold adapted_couple in H1; Decompose [and] H1; Clear H1; Clear H H7 H9; Cut (Rmax a b)==b; [Intro; Rewrite H in H5; Rewrite <- H5; Apply RList_P7; [Assumption | Simpl; Right; Left; Reflexivity] | Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption]].
Qed.

Lemma StepFun_P11 : (a,b,r,r1,r3,s1,s2,r4:R;r2,lf1,s3,lf2:Rlist;f:R->R) ``a<b`` -> (adapted_couple f a b (cons r (cons r1 r2)) (cons r3 lf1)) -> (adapted_couple_opt f a b (cons s1 (cons s2 s3)) (cons r4 lf2)) -> ``r1<=s2``.
Intros; Unfold adapted_couple_opt in H1; Elim H1; Clear H1; Intros; Unfold adapted_couple in H0 H1; Decompose [and] H0; Decompose [and] H1; Clear H0 H1; Assert H12 : r==s1.
Simpl in H10; Simpl in H5; Rewrite H10; Rewrite H5; Reflexivity.
Assert H14 := (H3 O (lt_O_Sn ?)); Simpl in H14; Elim H14; Intro.
Assert H15 := (H7 O (lt_O_Sn ?)); Simpl in H15; Elim H15; Intro.
Rewrite <- H12 in H1; Case (total_order_Rle r1 s2); Intro; Try Assumption.
Assert H16 : ``s2<r1``; Auto with real.
Induction s3.
Simpl in H9; Rewrite H9 in H16; Cut ``r1<=(Rmax a b)``.
Intro; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H17 H16)).
Rewrite <- H4; Apply RList_P7; [Assumption | Simpl; Right; Left; Reflexivity].
Clear Hrecs3; Induction lf2.
Simpl in H11; Discriminate.
Clear Hreclf2; Assert H17 : r3==r4.
Pose x := ``(r+s2)/2``; Assert H17 := (H8 O (lt_O_Sn ?)); Assert H18 := (H13 O (lt_O_Sn ?)); Unfold constant_D_eq open_interval in H17 H18; Simpl in H17; Simpl in H18; Rewrite <- (H17 x).
Rewrite <- (H18 x).
Reflexivity.
Rewrite <- H12; Unfold x; Split.
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite (Rplus_sym r); Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
Unfold x; Split.
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
Apply Rlt_trans with s2; [Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite (Rplus_sym r); Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]] | Assumption].
Assert H18 : (f s2)==r3.
Apply (H8 O); [Simpl; Apply lt_O_Sn | Unfold open_interval; Simpl; Split; Assumption].
Assert H19 : r3 == r5.
Assert H19 := (H7 (S O)); Simpl in H19; Assert H20 := (H19 (lt_n_S ? ? (lt_O_Sn ?))); Elim H20; Intro.
Pose x := ``(s2+(Rmin r1 r0))/2``; Assert H22 := (H8 O); Assert H23 := (H13 (S O)); Simpl in H22; Simpl in H23; Rewrite <- (H22 (lt_O_Sn ?) x).
Rewrite <- (H23 (lt_n_S ? ? (lt_O_Sn ?)) x).
Reflexivity.
Unfold open_interval; Simpl; Unfold x; Split.
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Unfold Rmin; Case (total_order_Rle r1 r0); Intro; Assumption | DiscrR]].
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_le_trans with ``r0+(Rmin r1 r0)``; [Do 2 Rewrite <- (Rplus_sym (Rmin r1 r0)); Apply Rlt_compatibility; Assumption | Apply Rle_compatibility; Apply Rmin_r] | DiscrR]].
Unfold open_interval; Simpl; Unfold x; Split.
Apply Rlt_trans with s2; [Assumption | Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Unfold Rmin; Case (total_order_Rle r1 r0); Intro; Assumption | DiscrR]]].
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_le_trans with ``r1+(Rmin r1 r0)``; [Do 2 Rewrite <- (Rplus_sym (Rmin r1 r0)); Apply Rlt_compatibility; Assumption | Apply Rle_compatibility; Apply Rmin_l] | DiscrR]].
Elim H2; Clear H2; Intros; Assert H23 := (H22 (S O)); Simpl in H23; Assert H24 := (H23 (lt_n_S ? ? (lt_O_Sn ?))); Elim H24; Assumption.
Elim H2; Intros; Assert H22 := (H20 O); Simpl in H22; Assert H23 := (H22 (lt_O_Sn ?)); Elim H23; Intro; [Elim H24; Rewrite <- H17; Rewrite <- H19; Reflexivity | Elim H24; Rewrite <- H17; Assumption].
Elim H2; Clear H2; Intros; Assert H17 := (H16 O); Simpl in H17; Elim (H17 (lt_O_Sn ?)); Assumption.
Rewrite <- H0; Rewrite H12; Apply (H7 O); Simpl; Apply lt_O_Sn.
Qed.

Lemma StepFun_P12 : (a,b:R;f:R->R;l,lf:Rlist) (adapted_couple_opt f a b l lf) -> (adapted_couple_opt f b a l lf).
Unfold adapted_couple_opt; Unfold adapted_couple; Intros; Decompose [and] H; Clear H; Repeat Split; Try Assumption.
Rewrite H0; Unfold Rmin; Case (total_order_Rle a b); Intro; Case (total_order_Rle b a); Intro; Try Reflexivity.
Apply Rle_antisym; Assumption.
Apply Rle_antisym; Auto with real.
Rewrite H3; Unfold Rmax; Case (total_order_Rle a b); Intro; Case (total_order_Rle b a); Intro; Try Reflexivity.
Apply Rle_antisym; Assumption.
Apply Rle_antisym; Auto with real.
Qed.

Lemma StepFun_P13 : (a,b,r,r1,r3,s1,s2,r4:R;r2,lf1,s3,lf2:Rlist;f:R->R) ``a<>b`` -> (adapted_couple f a b (cons r (cons r1 r2)) (cons r3 lf1)) -> (adapted_couple_opt f a b (cons s1 (cons s2 s3)) (cons r4 lf2)) -> ``r1<=s2``.
Intros; Case (total_order_T a b); Intro.
Elim s; Intro.
EApply StepFun_P11; [Apply a0 | Apply H0 | Apply H1].
Elim H; Assumption.
EApply StepFun_P11; [Apply r0 | Apply StepFun_P2; Apply H0 | Apply StepFun_P12; Apply H1].
Qed.

Lemma StepFun_P14 : (f:R->R;l1,l2,lf1,lf2:Rlist;a,b:R) ``a<=b`` -> (adapted_couple f a b l1 lf1) -> (adapted_couple_opt f a b l2 lf2) -> (Int_SF lf1 l1)==(Int_SF lf2 l2).
Induction l1.
Intros l2 lf1 lf2 a b Hyp H H0; Unfold adapted_couple in H; Decompose [and] H; Clear H H0 H2 H3 H1 H6; Simpl in H4; Discriminate.
Induction r0.
Intros; Case (Req_EM a b); Intro.
Unfold adapted_couple_opt in H2; Elim H2; Intros; Rewrite (StepFun_P8 H4 H3); Rewrite (StepFun_P8 H1 H3); Reflexivity.
Assert H4 := (StepFun_P9 H1 H3); Simpl in H4; Elim (le_Sn_O ? (le_S_n ? ? H4)).
Intros; Clear H; Unfold adapted_couple_opt in H3; Elim H3; Clear H3; Intros; Case (Req_EM a b); Intro.
Rewrite (StepFun_P8 H2 H4); Rewrite (StepFun_P8 H H4); Reflexivity.
Assert Hyp_min : (Rmin a b)==a.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Assert Hyp_max : (Rmax a b)==b.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Elim (RList_P20 ? (StepFun_P9 H H4)); Intros s1 [s2 [s3 H5]]; Rewrite H5 in H; Rewrite H5; Induction lf1.
Unfold adapted_couple in H2; Decompose [and] H2; Clear H H2 H4 H5 H3 H6 H8 H7 H11; Simpl in H9; Discriminate.
Clear Hreclf1; Induction lf2.
Unfold adapted_couple in H; Decompose [and] H; Clear H H2 H4 H5 H3 H6 H8 H7 H11; Simpl in H9; Discriminate.
Clear Hreclf2; Assert H6 : r==s1.
Unfold adapted_couple in H H2; Decompose [and] H; Decompose [and] H2; Clear H H2; Simpl in H13; Simpl in H8; Rewrite H13; Rewrite H8; Reflexivity.
Assert H7 : r3==r4\/r==r1.
Case (Req_EM r r1); Intro.
Right; Assumption.
Left; Cut ``r1<=s2``.
Intro; Unfold adapted_couple in H2 H; Decompose [and] H; Decompose [and] H2; Clear H H2; Pose x := ``(r+r1)/2``; Assert H18 := (H14 O); Assert H20 := (H19 O); Unfold constant_D_eq open_interval in H18 H20; Simpl in H18; Simpl in H20; Rewrite <- (H18 (lt_O_Sn ?) x).
Rewrite <- (H20 (lt_O_Sn ?) x).
Reflexivity.
Assert H21 := (H13 O (lt_O_Sn ?)); Simpl in H21; Elim H21; Intro; [Idtac | Elim H7; Assumption]; Unfold x; Split.
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Apply H | DiscrR]].
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite <- (Rplus_sym r1); Rewrite double; Apply Rlt_compatibility; Apply H | DiscrR]].
Rewrite <- H6; Assert H21 := (H13 O (lt_O_Sn ?)); Simpl in H21; Elim H21; Intro; [Idtac | Elim H7; Assumption]; Unfold x; Split.
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Apply H | DiscrR]].
Apply Rlt_le_trans with r1; [Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite <- (Rplus_sym r1); Rewrite double; Apply Rlt_compatibility; Apply H | DiscrR]] | Assumption].
EApply StepFun_P13.
Apply H4.
Apply H2.
Unfold adapted_couple_opt; Split.
Apply H.
Rewrite H5 in H3; Apply H3.
Assert H8 : ``r1<=s2``.
EApply StepFun_P13.
Apply H4.
Apply H2.
Unfold adapted_couple_opt; Split.
Apply H.
Rewrite H5 in H3; Apply H3.
Elim H7; Intro.
Simpl; Elim H8; Intro.
Replace ``r4*(s2-s1)`` with ``r3*(r1-r)+r3*(s2-r1)``; [Idtac | Rewrite H9; Rewrite H6; Ring].
Rewrite Rplus_assoc; Apply Rplus_plus_r; Change (Int_SF lf1 (cons r1 r2))==(Int_SF (cons r3 lf2) (cons r1 (cons s2 s3))); Apply H0 with r1 b.
Unfold adapted_couple in H2; Decompose [and] H2; Clear H2; Replace b with (Rmax a b).
Rewrite <- H12; Apply RList_P7; [Assumption | Simpl; Right; Left; Reflexivity].
EApply StepFun_P7.
Apply H1.
Apply H2.
Unfold adapted_couple_opt; Split.
Apply StepFun_P7 with a a r3.
Apply H1.
Unfold adapted_couple in H2 H; Decompose [and] H2; Decompose [and] H; Clear H H2; Assert H20 : r==a.
Simpl in H13; Rewrite H13; Apply Hyp_min.
Unfold adapted_couple; Repeat Split.
Unfold ordered_Rlist; Intros; Simpl in H; Induction i.
Simpl; Rewrite <- H20; Apply (H11 O).
Simpl; Apply lt_O_Sn.
Induction i.
Simpl; Assumption.
Change ``(pos_Rl (cons s2 s3) i)<=(pos_Rl (cons s2 s3) (S i))``; Apply (H15 (S i)); Simpl; Apply lt_S_n; Assumption.
Simpl; Symmetry; Apply Hyp_min.
Rewrite <- H17; Reflexivity.
Simpl in H19; Simpl; Rewrite H19; Reflexivity.
Intros; Simpl in H; Unfold constant_D_eq open_interval; Intros; Induction i.
Simpl; Apply (H16 O).
Simpl; Apply lt_O_Sn.
Simpl in H2; Rewrite <- H20 in H2; Unfold open_interval; Simpl; Apply H2.
Clear Hreci; Induction i.
Simpl; Simpl in H2; Rewrite H9; Apply (H21 O).
Simpl; Apply lt_O_Sn.
Unfold open_interval; Simpl; Elim H2; Intros; Split.
Apply Rle_lt_trans with r1; Try Assumption; Rewrite <- H6; Apply (H11 O); Simpl; Apply lt_O_Sn.
Assumption.
Clear Hreci; Simpl; Apply (H21 (S i)).
Simpl; Apply lt_S_n; Assumption.
Unfold open_interval; Apply H2.
Elim H3; Clear H3; Intros; Split.
Rewrite H9; Change (i:nat) (lt i (pred (Rlength (cons r4 lf2)))) ->``(pos_Rl (cons r4 lf2) i)<>(pos_Rl (cons r4 lf2) (S i))``\/``(f (pos_Rl (cons s1 (cons s2 s3)) (S i)))<>(pos_Rl (cons r4 lf2) i)``; Rewrite <- H5; Apply H3.
Rewrite H5 in H11; Intros; Simpl in H12; Induction i.
Simpl; Red; Intro; Rewrite H13 in H10; Elim (Rlt_antirefl ? H10).
Clear Hreci; Apply (H11 (S i)); Simpl; Apply H12.
Rewrite H9; Rewrite H10; Rewrite H6; Apply Rplus_plus_r; Rewrite <- H10; Apply H0 with r1 b.
Unfold adapted_couple in H2; Decompose [and] H2; Clear H2; Replace b with (Rmax a b).
Rewrite <- H12; Apply RList_P7; [Assumption | Simpl; Right; Left; Reflexivity].
EApply StepFun_P7.
Apply H1.
Apply H2.
Unfold adapted_couple_opt; Split.
Apply StepFun_P7 with a a r3.
Apply H1.
Unfold adapted_couple in H2 H; Decompose [and] H2; Decompose [and] H; Clear H H2; Assert H20 : r==a.
Simpl in H13; Rewrite H13; Apply Hyp_min.
Unfold adapted_couple; Repeat Split.
Unfold ordered_Rlist; Intros; Simpl in H; Induction i.
Simpl; Rewrite <- H20; Apply (H11 O); Simpl; Apply lt_O_Sn.
Rewrite H10; Apply (H15 (S i)); Simpl; Assumption.
Simpl; Symmetry; Apply Hyp_min.
Rewrite <- H17; Rewrite H10; Reflexivity.
Simpl in H19; Simpl; Apply H19.
Intros; Simpl in H; Unfold constant_D_eq open_interval; Intros; Induction i.
Simpl; Apply (H16 O).
Simpl; Apply lt_O_Sn.
Simpl in H2; Rewrite <- H20 in H2; Unfold open_interval; Simpl; Apply H2.
Clear Hreci; Simpl; Apply (H21 (S i)).
Simpl; Assumption.
Rewrite <- H10; Unfold open_interval; Apply H2.
Elim H3; Clear H3; Intros; Split.
Rewrite H5 in H3; Intros; Apply (H3 (S i)).
Simpl; Replace (Rlength lf2) with (S (pred (Rlength lf2))).
Apply lt_n_S; Apply H12.
Symmetry; Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H12; Elim (lt_n_O ? H12).
Intros; Simpl in H12; Rewrite H10; Rewrite H5 in H11; Apply (H11 (S i)); Simpl; Apply lt_n_S; Apply H12.
Simpl; Rewrite H9; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rmult_Or; Rewrite Rplus_Ol; Change (Int_SF lf1 (cons r1 r2))==(Int_SF (cons r4 lf2) (cons s1 (cons s2 s3))); EApply H0.
Apply H1.
2: Rewrite H5 in H3; Unfold adapted_couple_opt; Split; Assumption.
Assert H10 : r==a.
Unfold adapted_couple in H2; Decompose [and] H2; Clear H2; Simpl in H12; Rewrite H12; Apply Hyp_min.
Rewrite <- H9; Rewrite H10; Apply StepFun_P7 with a r r3; [Apply H1 | Pattern 2 a; Rewrite <- H10; Pattern 2 r; Rewrite H9; Apply H2].
Qed.

Lemma StepFun_P15 : (f:R->R;l1,l2,lf1,lf2:Rlist;a,b:R) (adapted_couple f a b l1 lf1) -> (adapted_couple_opt f a b l2 lf2) -> (Int_SF lf1 l1)==(Int_SF lf2 l2).
Intros; Case (total_order_Rle a b); Intro; [Apply (StepFun_P14 r H H0) | Assert H1 : ``b<=a``; [Auto with real | EApply StepFun_P14; [Apply H1 | Apply StepFun_P2; Apply H | Apply StepFun_P12; Apply H0]]].
Qed.

Lemma StepFun_P16 : (f:R->R;l,lf:Rlist;a,b:R) (adapted_couple f a b l lf) -> (EXT l':Rlist | (EXT lf':Rlist | (adapted_couple_opt f a b l' lf'))). 
Intros; Case (total_order_Rle a b); Intro; [Apply (StepFun_P10 r H) | Assert H1 : ``b<=a``; [Auto with real | Assert H2 := (StepFun_P10 H1 (StepFun_P2 H)); Elim H2; Intros l' [lf' H3]; Exists l'; Exists lf'; Apply StepFun_P12; Assumption]].
Qed.

Lemma StepFun_P17 : (f:R->R;l1,l2,lf1,lf2:Rlist;a,b:R) (adapted_couple f a b l1 lf1) -> (adapted_couple f a b l2 lf2) -> (Int_SF lf1 l1)==(Int_SF lf2 l2).
Intros; Elim (StepFun_P16 H); Intros l' [lf' H1]; Rewrite (StepFun_P15 H H1); Rewrite (StepFun_P15 H0 H1); Reflexivity.
Qed.

Lemma StepFun_P18 : (a,b,c:R) (RiemannInt_SF (mkStepFun (StepFun_P4 a b c)))==``c*(b-a)``.
Intros; Unfold RiemannInt_SF; Case (total_order_Rle a b); Intro.
Replace (Int_SF (subdivision_val (mkStepFun (StepFun_P4 a b c))) (subdivision (mkStepFun (StepFun_P4 a b c)))) with (Int_SF (cons c nil) (cons a (cons b nil))); [Simpl; Ring | Apply StepFun_P17 with (fct_cte c) a b; [Apply StepFun_P3; Assumption | Apply (StepFun_P1 (mkStepFun (StepFun_P4 a b c)))]].
Replace (Int_SF (subdivision_val (mkStepFun (StepFun_P4 a b c))) (subdivision (mkStepFun (StepFun_P4 a b c)))) with (Int_SF (cons c nil) (cons b (cons a nil))); [Simpl; Ring | Apply StepFun_P17 with (fct_cte c) a b; [Apply StepFun_P2; Apply StepFun_P3; Auto with real | Apply (StepFun_P1 (mkStepFun (StepFun_P4 a b c)))]].
Qed.

Lemma StepFun_P19 : (l1:Rlist;f,g:R->R;l:R) (Int_SF (FF l1 [x:R]``(f x)+l*(g x)``) l1)==``(Int_SF (FF l1 f) l1)+l*(Int_SF (FF l1 g) l1)``.
Intros; Induction l1; [Simpl; Ring | Induction l1; Simpl; [Ring | Simpl in Hrecl1; Rewrite Hrecl1; Ring]].
Qed.

Lemma StepFun_P20 : (l:Rlist;f:R->R) (lt O (Rlength l)) -> (Rlength l)=(S (Rlength (FF l f))).
Intros l f H; NewInduction l; [Elim (lt_n_n ? H) | Simpl; Rewrite RList_P18; Rewrite RList_P14; Reflexivity].
Qed.

Lemma StepFun_P21 : (a,b:R;f:R->R;l:Rlist) (is_subdivision f a b l) -> (adapted_couple f a b l (FF l f)).
Intros; Unfold adapted_couple; Unfold is_subdivision in X; Unfold adapted_couple in X; Elim X; Clear X; Intros; Decompose [and] p; Clear p; Repeat Split; Try Assumption.
Apply StepFun_P20; Rewrite H2; Apply lt_O_Sn.
Intros; Assert H5 := (H4 ? H3); Unfold constant_D_eq open_interval in H5; Unfold constant_D_eq open_interval; Intros; Induction l.
Discriminate.
Unfold FF; Rewrite RList_P12.
Simpl; Change (f x0)==(f (pos_Rl (mid_Rlist (cons r l) r) (S i))); Rewrite RList_P13; Try Assumption; Rewrite (H5 x0 H6); Rewrite H5.
Reflexivity.
Split.
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Elim H6; Intros; Apply Rlt_trans with x0; Assumption | DiscrR]].
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Rewrite (Rplus_sym (pos_Rl (cons r l) i)); Apply Rlt_compatibility; Elim H6; Intros; Apply Rlt_trans with x0; Assumption | DiscrR]].
Rewrite RList_P14; Simpl in H3; Apply H3.
Qed.

Lemma StepFun_P22 : (a,b:R;f,g:R->R;lf,lg:Rlist) ``a<=b`` -> (is_subdivision f a b lf) -> (is_subdivision g a b lg) -> (is_subdivision f a b (cons_ORlist lf lg)).
Unfold is_subdivision; Intros a b f g lf lg Hyp X X0; Elim X; Elim X0; Clear X X0; Intros lg0 p lf0 p0; Assert Hyp_min : (Rmin a b)==a.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Assert Hyp_max : (Rmax a b)==b.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Apply existTT with (FF (cons_ORlist lf lg) f); Unfold adapted_couple in p p0; Decompose [and] p; Decompose [and] p0; Clear p p0; Rewrite Hyp_min in H6; Rewrite Hyp_min in H1; Rewrite Hyp_max in H0; Rewrite Hyp_max in H5; Unfold adapted_couple; Repeat Split.
Apply RList_P2; Assumption.
Rewrite Hyp_min; Symmetry; Apply Rle_antisym.
Induction lf.
Simpl; Right; Symmetry; Assumption.
Assert H10 : (In (pos_Rl (cons_ORlist (cons r lf) lg) (0)) (cons_ORlist (cons r lf) lg)).
Elim (RList_P3 (cons_ORlist (cons r lf) lg) (pos_Rl (cons_ORlist (cons r lf) lg) (0))); Intros _ H10; Apply H10; Exists O; Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_O_Sn].
Elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) (0))); Intros H12 _; Assert H13 := (H12 H10); Elim H13; Intro.
Elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) (0))); Intros H11 _; Assert H14 := (H11 H8); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- H6; Elim (RList_P6 (cons r lf)); Intros; Apply H17; [Assumption | Apply le_O_n | Assumption].
Elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) (0))); Intros H11 _; Assert H14 := (H11 H8); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- H1; Elim (RList_P6 lg); Intros; Apply H17; [Assumption | Apply le_O_n | Assumption].
Induction lf.
Simpl; Right; Assumption.
Assert H8 : (In a (cons_ORlist (cons r lf) lg)).
Elim (RList_P9 (cons r lf) lg a); Intros; Apply H10; Left; Elim (RList_P3 (cons r lf) a); Intros; Apply H12; Exists O; Split; [Symmetry; Assumption | Simpl; Apply lt_O_Sn].
Apply RList_P5; [Apply RList_P2; Assumption | Assumption].
Rewrite Hyp_max; Apply Rle_antisym.
Induction lf.
Simpl; Right; Assumption.
Assert H8 : (In (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg)))) (cons_ORlist (cons r lf) lg)).
Elim (RList_P3 (cons_ORlist (cons r lf) lg) (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros _ H10; Apply H10; Exists (pred (Rlength (cons_ORlist (cons r lf) lg))); Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_n_Sn].
Elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H10 _.
Assert H11 := (H10 H8); Elim H11; Intro.
Elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H13 _; Assert H14 := (H13 H12); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- H5; Elim (RList_P6 (cons r lf)); Intros; Apply H17; [Assumption | Simpl; Simpl in H14; Apply lt_n_Sm_le; Assumption | Simpl; Apply lt_n_Sn].
Elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H13 _; Assert H14 := (H13 H12); Elim H14; Intros; Elim H15; Clear H15; Intros.
Rewrite H15; Assert H17 : (Rlength lg)=(S (pred (Rlength lg))).
Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H17 in H16; Elim (lt_n_O ? H16).
Rewrite <- H0; Elim (RList_P6 lg); Intros; Apply H18; [Assumption | Rewrite H17 in H16; Apply lt_n_Sm_le; Assumption | Apply lt_pred_n_n; Rewrite H17; Apply lt_O_Sn].
Induction lf.
Simpl; Right; Symmetry; Assumption.
Assert H8 : (In b (cons_ORlist (cons r lf) lg)).
Elim (RList_P9 (cons r lf) lg b); Intros; Apply H10; Left; Elim (RList_P3 (cons r lf) b); Intros; Apply H12; Exists (pred (Rlength (cons r lf))); Split; [Symmetry; Assumption | Simpl; Apply lt_n_Sn].
Apply RList_P7; [Apply RList_P2; Assumption | Assumption].
Apply StepFun_P20; Rewrite RList_P11; Rewrite H2; Rewrite H7; Simpl; Apply lt_O_Sn.
Intros; Unfold constant_D_eq open_interval; Intros; Cut (EXT l:R | (constant_D_eq f (open_interval (pos_Rl (cons_ORlist lf lg) i) (pos_Rl (cons_ORlist lf lg) (S i))) l)).
Intros; Elim H11; Clear H11; Intros; Assert H12 := H11; Assert Hyp_cons : (EXT r:R | (EXT r0:Rlist | (cons_ORlist lf lg)==(cons r r0))).
Apply RList_P19; Red; Intro; Rewrite H13 in H8; Elim (lt_n_O ? H8).
Elim Hyp_cons; Clear Hyp_cons; Intros r [r0 Hyp_cons]; Rewrite Hyp_cons; Unfold FF; Rewrite RList_P12.
Change (f x)==(f (pos_Rl (mid_Rlist (cons r r0) r) (S i))); Rewrite <- Hyp_cons; Rewrite RList_P13.
Assert H13 := (RList_P2 ? ? H ? H8); Elim H13; Intro.
Unfold constant_D_eq open_interval in H11 H12; Rewrite (H11 x H10); Assert H15 : ``(pos_Rl (cons_ORlist lf lg) i)<((pos_Rl (cons_ORlist lf lg) i)+(pos_Rl (cons_ORlist lf lg) (S i)))/2<(pos_Rl (cons_ORlist lf lg) (S i))``.
Split.
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Rewrite (Rplus_sym (pos_Rl (cons_ORlist lf lg) i)); Apply Rlt_compatibility; Assumption | DiscrR]].
Rewrite (H11 ? H15); Reflexivity.
Elim H10; Intros; Rewrite H14 in H15; Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H16 H15)).
Apply H8.
Rewrite RList_P14; Rewrite Hyp_cons in H8; Simpl in H8; Apply H8.
Assert H11 : ``a<b``.
Apply Rle_lt_trans with (pos_Rl (cons_ORlist lf lg) i).
Rewrite <- H6; Rewrite <- (RList_P15 lf lg).
Elim (RList_P6 (cons_ORlist lf lg)); Intros; Apply H11.
Apply RList_P2; Assumption.
Apply le_O_n.
Apply lt_trans with (pred (Rlength (cons_ORlist lf lg))); [Assumption | Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H8; Elim (lt_n_O ? H8)].
Assumption.
Assumption.
Rewrite H1; Assumption.
Apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)).
Elim H10; Intros; Apply Rlt_trans with x; Assumption.
Rewrite <- H5; Rewrite <- (RList_P16 lf lg); Try Assumption.
Elim (RList_P6 (cons_ORlist lf lg)); Intros; Apply H11.
Apply RList_P2; Assumption.
Apply lt_n_Sm_le; Apply lt_n_S; Assumption.
Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H8; Elim (lt_n_O ? H8).
Rewrite H0; Assumption.
Pose I := [j:nat]``(pos_Rl lf j)<=(pos_Rl (cons_ORlist lf lg) i)``/\(lt j (Rlength lf)); Assert H12 : (Nbound I).
Unfold Nbound; Exists (Rlength lf); Intros; Unfold I in H12; Elim H12; Intros; Apply lt_le_weak; Assumption.
Assert H13 : (EX n:nat | (I n)).
Exists O; Unfold I; Split.
Apply Rle_trans with (pos_Rl (cons_ORlist lf lg) O).
Right; Symmetry.
Apply RList_P15; Try Assumption; Rewrite H1; Assumption.
Elim (RList_P6 (cons_ORlist lf lg)); Intros; Apply H13.
Apply RList_P2; Assumption.
Apply le_O_n.
Apply lt_trans with (pred (Rlength (cons_ORlist lf lg))).
Assumption.
Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H15 in H8; Elim (lt_n_O ? H8).
Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H5; Rewrite <- H6 in H11; Rewrite <- H5 in H11; Elim (Rlt_antirefl ? H11).
Assert H14 := (Nzorn H13 H12); Elim H14; Clear H14; Intros x0 H14; Exists (pos_Rl lf0 x0); Unfold constant_D_eq open_interval; Intros; Assert H16 := (H9 x0); Assert H17 : (lt x0 (pred (Rlength lf))).
Elim H14; Clear H14; Intros; Unfold I in H14; Elim H14; Clear H14; Intros; Apply lt_S_n; Replace (S (pred (Rlength lf))) with (Rlength lf).
Inversion H18.
2:Apply lt_n_S; Assumption.
Cut x0=(pred (Rlength lf)).
Intro; Rewrite H19 in H14; Rewrite H5 in H14; Cut ``(pos_Rl (cons_ORlist lf lg) i)<b``.
Intro; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H14 H21)).
Apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)).
Elim H10; Intros; Apply Rlt_trans with x; Assumption.
Rewrite <- H5; Apply Rle_trans with (pos_Rl (cons_ORlist lf lg) (pred (Rlength (cons_ORlist lf lg)))).
Elim (RList_P6 (cons_ORlist lf lg)); Intros; Apply H21.
Apply RList_P2; Assumption.
Apply lt_n_Sm_le; Apply lt_n_S; Assumption.
Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H23 in H8; Elim (lt_n_O ? H8).
Right; Apply RList_P16; Try Assumption; Rewrite H0; Assumption.
Rewrite <- H20; Reflexivity.
Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H19 in H18; Elim (lt_n_O ? H18).
Assert H18 := (H16 H17); Unfold constant_D_eq open_interval in H18; Rewrite (H18 x1).
Reflexivity.
Elim H15; Clear H15; Intros; Elim H14; Clear H14; Intros; Unfold I in H14; Elim H14; Clear H14; Intros; Split.
Apply Rle_lt_trans with (pos_Rl (cons_ORlist lf lg) i); Assumption.
Apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)); Try Assumption.
Assert H22 : (lt (S x0) (Rlength lf)).
Replace (Rlength lf) with (S (pred (Rlength lf))); [Apply lt_n_S; Assumption | Symmetry; Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H22 in H21; Elim (lt_n_O ? H21)].
Elim (total_order_Rle (pos_Rl lf (S x0)) (pos_Rl (cons_ORlist lf lg) i)); Intro.
Assert H23 : (le (S x0) x0).
Apply H20; Unfold I; Split; Assumption.
Elim (le_Sn_n ? H23).
Assert H23 : ``(pos_Rl (cons_ORlist lf lg) i)<(pos_Rl lf (S x0))``.
Auto with real.
Clear b0; Apply RList_P17; Try Assumption.
Apply RList_P2; Assumption.
Elim (RList_P9 lf lg (pos_Rl lf (S x0))); Intros; Apply H25; Left; Elim (RList_P3 lf (pos_Rl lf (S x0))); Intros; Apply H27; Exists (S x0); Split; [Reflexivity | Apply H22].
Qed.

Lemma StepFun_P23 : (a,b:R;f,g:R->R;lf,lg:Rlist) (is_subdivision f a b lf) -> (is_subdivision g a b lg) -> (is_subdivision f a b (cons_ORlist lf lg)).
Intros; Case (total_order_Rle a b); Intro; [Apply StepFun_P22 with g; Assumption | Apply StepFun_P5; Apply StepFun_P22 with g; [Auto with real | Apply StepFun_P5; Assumption | Apply StepFun_P5; Assumption]].
Qed.

Lemma StepFun_P24 : (a,b:R;f,g:R->R;lf,lg:Rlist) ``a<=b`` -> (is_subdivision f a b lf) -> (is_subdivision g a b lg) -> (is_subdivision g a b (cons_ORlist lf lg)).
Unfold is_subdivision; Intros a b f g lf lg Hyp X X0; Elim X; Elim X0; Clear X X0; Intros lg0 p lf0 p0; Assert Hyp_min : (Rmin a b)==a.
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Assert Hyp_max : (Rmax a b)==b.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Apply existTT with (FF (cons_ORlist lf lg) g); Unfold adapted_couple in p p0; Decompose [and] p; Decompose [and] p0; Clear p p0; Rewrite Hyp_min in H1; Rewrite Hyp_min in H6; Rewrite Hyp_max in H0; Rewrite Hyp_max in H5; Unfold adapted_couple; Repeat Split.
Apply RList_P2; Assumption.
Rewrite Hyp_min; Symmetry; Apply Rle_antisym.
Induction lf.
Simpl; Right; Symmetry; Assumption.
Assert H10 : (In (pos_Rl (cons_ORlist (cons r lf) lg) (0)) (cons_ORlist (cons r lf) lg)).
Elim (RList_P3 (cons_ORlist (cons r lf) lg) (pos_Rl (cons_ORlist (cons r lf) lg) (0))); Intros _ H10; Apply H10; Exists O; Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_O_Sn].
Elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) (0))); Intros H12 _; Assert H13 := (H12 H10); Elim H13; Intro.
Elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) (0))); Intros H11 _; Assert H14 := (H11 H8); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- H6; Elim (RList_P6 (cons r lf)); Intros; Apply H17; [Assumption | Apply le_O_n | Assumption].
Elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) (0))); Intros H11 _; Assert H14 := (H11 H8); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- H1; Elim (RList_P6 lg); Intros; Apply H17; [Assumption | Apply le_O_n | Assumption].
Induction lf.
Simpl; Right; Assumption.
Assert H8 : (In a (cons_ORlist (cons r lf) lg)).
Elim (RList_P9 (cons r lf) lg a); Intros; Apply H10; Left; Elim (RList_P3 (cons r lf) a); Intros; Apply H12; Exists O; Split; [Symmetry; Assumption | Simpl; Apply lt_O_Sn].
Apply RList_P5; [Apply RList_P2; Assumption | Assumption].
Rewrite Hyp_max; Apply Rle_antisym.
Induction lf.
Simpl; Right; Assumption.
Assert H8 : (In (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg)))) (cons_ORlist (cons r lf) lg)).
Elim (RList_P3 (cons_ORlist (cons r lf) lg) (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros _ H10; Apply H10; Exists (pred (Rlength (cons_ORlist (cons r lf) lg))); Split; [Reflexivity | Rewrite RList_P11; Simpl; Apply lt_n_Sn].
Elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H10 _; Assert H11 := (H10 H8); Elim H11; Intro.
Elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H13 _; Assert H14 := (H13 H12); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Rewrite <- H5; Elim (RList_P6 (cons r lf)); Intros; Apply H17; [Assumption | Simpl; Simpl in H14; Apply lt_n_Sm_le; Assumption | Simpl; Apply lt_n_Sn].
Elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) (pred (Rlength (cons_ORlist (cons r lf) lg))))); Intros H13 _; Assert H14 := (H13 H12); Elim H14; Intros; Elim H15; Clear H15; Intros; Rewrite H15; Assert H17 : (Rlength lg)=(S (pred (Rlength lg))).
Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H17 in H16; Elim (lt_n_O ? H16).
Rewrite <- H0; Elim (RList_P6 lg); Intros; Apply H18; [Assumption | Rewrite H17 in H16; Apply lt_n_Sm_le; Assumption | Apply lt_pred_n_n; Rewrite H17; Apply lt_O_Sn].
Induction lf.
Simpl; Right; Symmetry; Assumption.
Assert H8 : (In b (cons_ORlist (cons r lf) lg)).
Elim (RList_P9 (cons r lf) lg b); Intros; Apply H10; Left; Elim (RList_P3 (cons r lf) b); Intros; Apply H12; Exists (pred (Rlength (cons r lf))); Split; [Symmetry; Assumption | Simpl; Apply lt_n_Sn].
Apply RList_P7; [Apply RList_P2; Assumption | Assumption].
Apply StepFun_P20; Rewrite RList_P11; Rewrite H7; Rewrite H2; Simpl; Apply lt_O_Sn.
Unfold constant_D_eq open_interval; Intros; Cut (EXT l:R | (constant_D_eq g (open_interval (pos_Rl (cons_ORlist lf lg) i) (pos_Rl (cons_ORlist lf lg) (S i))) l)).
Intros; Elim H11; Clear H11; Intros;  Assert H12 := H11; Assert Hyp_cons : (EXT r:R | (EXT r0:Rlist | (cons_ORlist lf lg)==(cons r r0))).
Apply RList_P19; Red; Intro; Rewrite H13 in H8; Elim (lt_n_O ? H8).
Elim Hyp_cons; Clear Hyp_cons; Intros r [r0 Hyp_cons]; Rewrite Hyp_cons; Unfold FF; Rewrite RList_P12.
Change (g x)==(g (pos_Rl (mid_Rlist (cons r r0) r) (S i))); Rewrite <- Hyp_cons; Rewrite RList_P13.
Assert H13 := (RList_P2 ? ? H ? H8); Elim H13; Intro.
Unfold constant_D_eq open_interval in H11 H12; Rewrite (H11 x H10); Assert H15 : ``(pos_Rl (cons_ORlist lf lg) i)<((pos_Rl (cons_ORlist lf lg) i)+(pos_Rl (cons_ORlist lf lg) (S i)))/2<(pos_Rl (cons_ORlist lf lg) (S i))``.
Split.
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Rewrite (Rplus_sym (pos_Rl (cons_ORlist lf lg) i)); Apply Rlt_compatibility; Assumption | DiscrR]].
Rewrite (H11 ? H15); Reflexivity.
Elim H10; Intros; Rewrite H14 in H15; Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H16 H15)).
Apply H8.
Rewrite RList_P14; Rewrite Hyp_cons in H8; Simpl in H8; Apply H8.
Assert H11 : ``a<b``.
Apply Rle_lt_trans with (pos_Rl (cons_ORlist lf lg) i).
Rewrite <- H6; Rewrite <- (RList_P15 lf lg); Try Assumption.
Elim (RList_P6 (cons_ORlist lf lg)); Intros; Apply H11.
Apply RList_P2; Assumption.
Apply le_O_n.
Apply lt_trans with (pred (Rlength (cons_ORlist lf lg))); [Assumption | Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H8; Elim (lt_n_O ? H8)].
Rewrite H1; Assumption.
Apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)).
Elim H10; Intros; Apply Rlt_trans with x; Assumption.
Rewrite <- H5; Rewrite <- (RList_P16 lf lg); Try Assumption.
Elim (RList_P6 (cons_ORlist lf lg)); Intros; Apply H11.
Apply RList_P2; Assumption.
Apply lt_n_Sm_le; Apply lt_n_S; Assumption.
Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H8; Elim (lt_n_O ? H8).
Rewrite H0; Assumption.
Pose I := [j:nat]``(pos_Rl lg j)<=(pos_Rl (cons_ORlist lf lg) i)``/\(lt j (Rlength lg)); Assert H12 : (Nbound I).
Unfold Nbound; Exists (Rlength lg); Intros; Unfold I in H12; Elim H12; Intros; Apply lt_le_weak; Assumption.
Assert H13 : (EX n:nat | (I n)).
Exists O; Unfold I; Split.
Apply Rle_trans with (pos_Rl (cons_ORlist lf lg) O).
Right; Symmetry; Rewrite H1; Rewrite <- H6; Apply RList_P15; Try Assumption; Rewrite H1; Assumption.
Elim (RList_P6 (cons_ORlist lf lg)); Intros; Apply H13; [Apply RList_P2; Assumption | Apply le_O_n | Apply lt_trans with (pred (Rlength (cons_ORlist lf lg))); [Assumption | Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H15 in H8; Elim (lt_n_O ? H8)]].
Apply neq_O_lt; Red; Intro; Rewrite <- H13 in H0; Rewrite <- H1 in H11; Rewrite <- H0 in H11; Elim (Rlt_antirefl ? H11).
Assert H14 := (Nzorn H13 H12); Elim H14; Clear H14; Intros x0 H14; Exists (pos_Rl lg0 x0); Unfold constant_D_eq open_interval; Intros; Assert H16 := (H4 x0); Assert H17 : (lt x0 (pred (Rlength lg))).
Elim H14; Clear H14; Intros; Unfold I in H14; Elim H14; Clear H14; Intros; Apply lt_S_n; Replace (S (pred (Rlength lg))) with (Rlength lg).
Inversion H18.
2:Apply lt_n_S; Assumption.
Cut x0=(pred (Rlength lg)).
Intro; Rewrite H19 in H14; Rewrite H0 in H14; Cut ``(pos_Rl (cons_ORlist lf lg) i)<b``.
Intro; Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H14 H21)).
Apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)).
Elim H10; Intros; Apply Rlt_trans with x; Assumption.
Rewrite <- H0; Apply Rle_trans with (pos_Rl (cons_ORlist lf lg) (pred (Rlength (cons_ORlist lf lg)))).
Elim (RList_P6 (cons_ORlist lf lg)); Intros; Apply H21.
Apply RList_P2; Assumption.
Apply lt_n_Sm_le; Apply lt_n_S; Assumption.
Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H23 in H8; Elim (lt_n_O ? H8).
Right; Rewrite H0; Rewrite <- H5; Apply RList_P16; Try Assumption.
Rewrite H0; Assumption.
Rewrite <- H20; Reflexivity.
Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H19 in H18; Elim (lt_n_O ? H18).
Assert H18 := (H16 H17); Unfold constant_D_eq open_interval in H18; Rewrite (H18 x1).
Reflexivity.
Elim H15; Clear H15; Intros; Elim H14; Clear H14; Intros; Unfold I in H14; Elim H14; Clear H14; Intros; Split.
Apply Rle_lt_trans with (pos_Rl (cons_ORlist lf lg) i); Assumption.
Apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)); Try Assumption.
Assert H22 : (lt (S x0) (Rlength lg)).
Replace (Rlength lg) with (S (pred (Rlength lg))).
Apply lt_n_S; Assumption.
Symmetry; Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H22 in H21; Elim (lt_n_O ? H21).
Elim (total_order_Rle (pos_Rl lg (S x0)) (pos_Rl (cons_ORlist lf lg) i)); Intro.
Assert H23 : (le (S x0) x0); [Apply H20; Unfold I; Split; Assumption | Elim (le_Sn_n ? H23)].
Assert H23 : ``(pos_Rl (cons_ORlist lf lg) i)<(pos_Rl lg (S x0))``.
Auto with real.
Clear b0; Apply RList_P17; Try Assumption; [Apply RList_P2; Assumption | Elim (RList_P9 lf lg (pos_Rl lg (S x0))); Intros; Apply H25; Right; Elim (RList_P3 lg (pos_Rl lg (S x0))); Intros; Apply H27; Exists (S x0); Split; [Reflexivity | Apply H22]].
Qed.

Lemma StepFun_P25 : (a,b:R;f,g:R->R;lf,lg:Rlist) (is_subdivision f a b lf) -> (is_subdivision g a b lg) -> (is_subdivision g a b (cons_ORlist lf lg)).
Intros a b f g lf lg H H0; Case (total_order_Rle a b); Intro; [Apply StepFun_P24 with f; Assumption | Apply StepFun_P5; Apply StepFun_P24 with f; [Auto with real | Apply StepFun_P5; Assumption | Apply StepFun_P5; Assumption]].
Qed.

Lemma StepFun_P26 : (a,b,l:R;f,g:R->R;l1:Rlist) (is_subdivision f a b l1) -> (is_subdivision g a b l1) -> (is_subdivision [x:R]``(f x)+l*(g x)`` a b l1).
Intros a b l f g l1; Unfold is_subdivision; Intros; Elim X; Elim X0; Intros; Clear X X0; Unfold adapted_couple in p p0; Decompose [and] p; Decompose [and] p0; Clear p p0; Apply existTT with (FF l1 [x:R]``(f x)+l*(g x)``); Unfold adapted_couple; Repeat Split; Try Assumption.
Apply StepFun_P20; Apply neq_O_lt; Red; Intro; Rewrite <- H8 in H7; Discriminate.
Intros; Unfold constant_D_eq open_interval; Unfold constant_D_eq open_interval in H9 H4; Intros; Rewrite (H9 ? H8 ? H10); Rewrite (H4 ? H8 ? H10); Assert H11 : ~l1==nil.
Red; Intro; Rewrite H11 in H8; Elim (lt_n_O ? H8).
Assert H12 := (RList_P19 ? H11); Elim H12; Clear H12; Intros r [r0 H12]; Rewrite H12; Unfold FF; Change ``(pos_Rl x0 i)+l*(pos_Rl x i)`` == (pos_Rl (app_Rlist (mid_Rlist (cons r r0) r) [x2:R]``(f x2)+l*(g x2)``) (S i)); Rewrite RList_P12.
Rewrite RList_P13.
Rewrite <- H12; Rewrite (H9 ? H8); Try Rewrite (H4 ? H8); Reflexivity Orelse (Elim H10; Clear H10; Intros; Split; [Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Apply Rlt_trans with x1; Assumption | DiscrR]] | Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Rewrite (Rplus_sym (pos_Rl l1 i)); Apply Rlt_compatibility; Apply Rlt_trans with x1; Assumption | DiscrR]]]).
Rewrite <- H12; Assumption.
Rewrite RList_P14; Simpl; Rewrite H12 in H8; Simpl in H8; Apply lt_n_S; Apply H8.
Qed.

Lemma StepFun_P27 : (a,b,l:R;f,g:R->R;lf,lg:Rlist) (is_subdivision f a b lf) -> (is_subdivision g a b lg) -> (is_subdivision [x:R]``(f x)+l*(g x)`` a b (cons_ORlist lf lg)).
Intros a b l f g lf lg H H0; Apply StepFun_P26; [Apply StepFun_P23 with g; Assumption | Apply StepFun_P25 with f; Assumption].
Qed.

(* The set of step functions on [a,b] is a vectorial space *)
Lemma StepFun_P28 : (a,b,l:R;f,g:(StepFun a b)) (IsStepFun [x:R]``(f x)+l*(g x)`` a b).
Intros a b l f g; Unfold IsStepFun; Assert H := (pre f); Assert H0 := (pre g); Unfold IsStepFun in H H0; Elim H; Elim H0; Intros; Apply Specif.existT with (cons_ORlist x0 x); Apply StepFun_P27; Assumption.
Qed.

Lemma StepFun_P29 : (a,b:R;f:(StepFun a b)) (is_subdivision f a b (subdivision f)).
Intros a b f; Unfold is_subdivision; Apply existTT with (subdivision_val f); Apply StepFun_P1.
Qed.

Lemma StepFun_P30 : (a,b,l:R;f,g:(StepFun a b)) ``(RiemannInt_SF (mkStepFun (StepFun_P28 l f g)))==(RiemannInt_SF f)+l*(RiemannInt_SF g)``.
Intros a b l f g; Unfold RiemannInt_SF; Case (total_order_Rle a b); (Intro; Replace ``(Int_SF (subdivision_val (mkStepFun (StepFun_P28 l f g))) (subdivision (mkStepFun (StepFun_P28 l f g))))`` with (Int_SF (FF (cons_ORlist (subdivision f) (subdivision g)) [x:R]``(f x)+l*(g x)``) (cons_ORlist (subdivision f) (subdivision g))); [Rewrite StepFun_P19; Replace (Int_SF (FF (cons_ORlist (subdivision f) (subdivision g)) f) (cons_ORlist (subdivision f) (subdivision g))) with (Int_SF (subdivision_val f) (subdivision f)); [Replace (Int_SF (FF (cons_ORlist (subdivision f) (subdivision g)) g) (cons_ORlist (subdivision f) (subdivision g))) with (Int_SF (subdivision_val g) (subdivision g)); [Ring | Apply StepFun_P17 with (fe g) a b; [Apply StepFun_P1 | Apply StepFun_P21; Apply StepFun_P25 with (fe f); Apply StepFun_P29]] | Apply StepFun_P17 with (fe f) a b; [Apply StepFun_P1 | Apply StepFun_P21; Apply StepFun_P23 with (fe g); Apply StepFun_P29]] | Apply StepFun_P17 with [x:R]``(f x)+l*(g x)`` a b; [Apply StepFun_P21; Apply StepFun_P27; Apply StepFun_P29 | Apply (StepFun_P1 (mkStepFun (StepFun_P28 l f g)))]]).
Qed.

Lemma StepFun_P31 : (a,b:R;f:R->R;l,lf:Rlist) (adapted_couple f a b l lf) -> (adapted_couple [x:R](Rabsolu (f x)) a b l (app_Rlist lf Rabsolu)).
Unfold adapted_couple; Intros; Decompose [and] H; Clear H; Repeat Split; Try Assumption.
Symmetry; Rewrite H3; Rewrite RList_P18; Reflexivity.
Intros; Unfold constant_D_eq open_interval; Unfold constant_D_eq open_interval in H5; Intros; Rewrite (H5 ? H ? H4); Rewrite RList_P12; [Reflexivity | Rewrite H3 in H; Simpl in H; Apply H].
Qed.

Lemma StepFun_P32 : (a,b:R;f:(StepFun a b)) (IsStepFun [x:R](Rabsolu (f x)) a b).
Intros a b f; Unfold IsStepFun; Apply Specif.existT with (subdivision f); Unfold is_subdivision; Apply existTT with (app_Rlist (subdivision_val f) Rabsolu); Apply StepFun_P31; Apply StepFun_P1.
Qed.

Lemma StepFun_P33 : (l2,l1:Rlist) (ordered_Rlist l1) -> ``(Rabsolu (Int_SF l2 l1))<=(Int_SF (app_Rlist l2 Rabsolu) l1)``.
Induction l2; Intros.
Simpl; Rewrite Rabsolu_R0; Right; Reflexivity.
Simpl; Induction l1.
Rewrite Rabsolu_R0; Right; Reflexivity.
Induction l1.
Rewrite Rabsolu_R0; Right; Reflexivity.
Apply Rle_trans with ``(Rabsolu (r*(r2-r1)))+(Rabsolu (Int_SF r0 (cons r2 l1)))``.
Apply Rabsolu_triang.
Rewrite Rabsolu_mult; Rewrite (Rabsolu_right ``r2-r1``); [Apply Rle_compatibility; Apply H; Apply RList_P4 with r1; Assumption | Apply Rge_minus; Apply Rle_sym1; Apply (H0 O); Simpl; Apply lt_O_Sn].
Qed.

Lemma StepFun_P34 : (a,b:R;f:(StepFun a b)) ``a<=b`` -> ``(Rabsolu (RiemannInt_SF f))<=(RiemannInt_SF (mkStepFun (StepFun_P32 f)))``.
Intros; Unfold RiemannInt_SF; Case (total_order_Rle a b); Intro.
Replace (Int_SF (subdivision_val (mkStepFun (StepFun_P32 f))) (subdivision (mkStepFun (StepFun_P32 f)))) with (Int_SF (app_Rlist (subdivision_val f) Rabsolu) (subdivision f)).
Apply StepFun_P33; Assert H0 := (StepFun_P29 f); Unfold is_subdivision in H0; Elim H0; Intros; Unfold adapted_couple in p; Decompose [and] p; Assumption.
Apply StepFun_P17 with [x:R](Rabsolu (f x)) a b; [Apply StepFun_P31; Apply StepFun_P1 | Apply (StepFun_P1 (mkStepFun (StepFun_P32 f)))].
Elim n; Assumption.
Qed.

Lemma StepFun_P35 : (l:Rlist;a,b:R;f,g:R->R) (ordered_Rlist l) -> (pos_Rl l O)==a -> (pos_Rl l (pred (Rlength l)))==b -> ((x:R)``a<x<b``->``(f x)<=(g x)``) -> ``(Int_SF (FF l f) l)<=(Int_SF (FF l g) l)``.
Induction l; Intros.
Right; Reflexivity.
Simpl; Induction r0.
Right; Reflexivity.
Simpl; Apply Rplus_le.
Case (Req_EM r r0); Intro.
Rewrite H4; Right; Ring.
Do 2 Rewrite <- (Rmult_sym ``r0-r``); Apply Rle_monotony.
Apply Rle_sym2; Apply Rge_minus; Apply Rle_sym1; Apply (H0 O); Simpl; Apply lt_O_Sn.
Apply H3; Split.
Apply Rlt_monotony_contra with ``2``.
Sup0.
Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
Assert H5 : r==a.
Apply H1.
Rewrite H5; Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility.
Assert H6 := (H0 O (lt_O_Sn ?)).
Simpl in H6.
Elim H6; Intro.
Rewrite H5 in H7; Apply H7.
Elim H4; Assumption.
DiscrR.
Apply Rlt_monotony_contra with ``2``.
Sup0.
Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
Rewrite Rmult_1l; Rewrite double; Assert H5 : ``r0<=b``.
Replace b with (pos_Rl (cons r (cons r0 r1)) (pred (Rlength (cons r (cons r0 r1))))).
Replace r0 with (pos_Rl (cons r (cons r0 r1)) (S O)).
Elim (RList_P6 (cons r (cons r0 r1))); Intros; Apply H5.
Assumption.
Simpl; Apply le_n_S.
Apply le_O_n.
Simpl; Apply lt_n_Sn.
Reflexivity.
Apply Rle_lt_trans with ``r+b``.
Apply Rle_compatibility; Assumption.
Rewrite (Rplus_sym r); Apply Rlt_compatibility.
Apply Rlt_le_trans with r0.
Assert H6 := (H0 O (lt_O_Sn ?)).
Simpl in H6.
Elim H6; Intro.
Apply H7.
Elim H4; Assumption.
Assumption.
DiscrR.
Simpl in H; Apply H with r0 b.
Apply RList_P4 with r; Assumption.
Reflexivity.
Rewrite <- H2; Reflexivity.
Intros; Apply H3; Elim H4; Intros; Split; Try Assumption.
Apply Rle_lt_trans with r0; Try Assumption.
Rewrite <- H1.
Simpl; Apply (H0 O); Simpl; Apply lt_O_Sn.
Qed.

Lemma StepFun_P36 : (a,b:R;f,g:(StepFun a b);l:Rlist) ``a<=b`` -> (is_subdivision f a b l) -> (is_subdivision g a b l) -> ((x:R)``a<x<b``->``(f x)<=(g x)``) -> ``(RiemannInt_SF f) <= (RiemannInt_SF g)``.
Intros; Unfold RiemannInt_SF; Case (total_order_Rle a b); Intro.
Replace (Int_SF (subdivision_val f) (subdivision f)) with (Int_SF (FF l f) l).
Replace (Int_SF (subdivision_val g) (subdivision g)) with (Int_SF (FF l g) l).
Unfold is_subdivision in X; Elim X; Clear X; Intros; Unfold adapted_couple in p; Decompose [and] p; Clear p; Assert H5 : (Rmin a b)==a; [Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption] | Assert H7 : (Rmax a b)==b; [Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption] | Rewrite H5 in H3; Rewrite H7 in H2; EApply StepFun_P35 with a b; Assumption]].
Apply StepFun_P17 with (fe g) a b; [Apply StepFun_P21; Assumption | Apply StepFun_P1].
Apply StepFun_P17 with (fe f) a b; [Apply StepFun_P21; Assumption | Apply StepFun_P1].
Elim n; Assumption.
Qed.

Lemma StepFun_P37 : (a,b:R;f,g:(StepFun a b)) ``a<=b`` -> ((x:R)``a<x<b``->``(f x)<=(g x)``) -> ``(RiemannInt_SF f) <= (RiemannInt_SF g)``.
Intros; EApply StepFun_P36; Try Assumption.
EApply StepFun_P25; Apply StepFun_P29.
EApply StepFun_P23; Apply StepFun_P29.
Qed.

Lemma StepFun_P38 : (l:Rlist;a,b:R;f:R->R) (ordered_Rlist l) -> (pos_Rl l O)==a -> (pos_Rl l (pred (Rlength l)))==b -> (sigTT ? [g:(StepFun a b)](g b)==(f b)/\(i:nat)(lt i (pred (Rlength l)))->(constant_D_eq g (co_interval (pos_Rl l i) (pos_Rl l (S i))) (f (pos_Rl l i)))).
Intros l a b f; Generalize a; Clear a; NewInduction l. 
Intros a H H0 H1; Simpl in H0; Simpl in H1; Exists (mkStepFun (StepFun_P4 a b (f b))); Split.
Reflexivity.
Intros; Elim (lt_n_O ? H2).
Intros; NewDestruct l as [|r1 l].
Simpl in H1; Simpl in H0; Exists (mkStepFun (StepFun_P4 a b (f b))); Split.
Reflexivity.
Intros i H2; Elim (lt_n_O ? H2).
Intros; Assert H2 : (ordered_Rlist (cons r1 l)).
Apply RList_P4 with r; Assumption.
Assert H3 : (pos_Rl (cons r1 l) O)==r1.
Reflexivity.
Assert H4 : (pos_Rl (cons r1 l) (pred (Rlength (cons r1 l))))==b.
Rewrite <- H1; Reflexivity.
Elim (IHl r1 H2 H3 H4); Intros g [H5 H6].
Pose g' := [x:R]Cases (total_order_Rle r1 x) of
                      | (leftT _) => (g x)
                      | (rightT _) => (f a) end.
Assert H7 : ``r1<=b``.
Rewrite <- H4; Apply RList_P7; [Assumption | Left; Reflexivity].
Assert H8 : (IsStepFun g' a b).
Unfold IsStepFun; Assert H8 := (pre g); Unfold IsStepFun in H8; Elim H8; Intros lg H9; Unfold is_subdivision in H9; Elim H9; Clear H9; Intros lg2 H9; Split with (cons a lg); Unfold is_subdivision; Split with (cons (f a) lg2); Unfold adapted_couple in H9; Decompose [and] H9; Clear H9; Unfold adapted_couple; Repeat Split.
Unfold ordered_Rlist; Intros; Simpl in H9; Induction i.
Simpl; Rewrite H12; Replace (Rmin r1 b) with r1.
Simpl in H0; Rewrite <- H0; Apply (H O); Simpl; Apply lt_O_Sn.
Unfold Rmin; Case (total_order_Rle r1 b); Intro; [Reflexivity | Elim n; Assumption].
Apply (H10 i); Apply lt_S_n.
Replace (S (pred (Rlength lg))) with (Rlength lg).
Apply H9.
Apply S_pred with O; Apply neq_O_lt; Intro; Rewrite <- H14 in H9; Elim (lt_n_O ? H9).
Simpl; Assert H14 : ``a<=b``.
Rewrite <- H1; Simpl in H0; Rewrite <- H0; Apply RList_P7; [Assumption | Left; Reflexivity].
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Assert H14 : ``a<=b``.
Rewrite <- H1; Simpl in H0; Rewrite <- H0; Apply RList_P7; [Assumption | Left; Reflexivity].
Replace (Rmax a b) with (Rmax r1 b).
Rewrite <- H11; Induction lg.
Simpl in H13; Discriminate.
Reflexivity.
Unfold Rmax; Case (total_order_Rle a b); Case (total_order_Rle r1 b); Intros; Reflexivity Orelse Elim n; Assumption.
Simpl; Rewrite H13; Reflexivity.
Intros; Simpl in H9; Induction i.
Unfold constant_D_eq open_interval; Simpl; Intros; Assert H16 : (Rmin r1 b)==r1.
Unfold Rmin; Case (total_order_Rle r1 b); Intro; [Reflexivity | Elim n; Assumption].
Rewrite H16 in H12; Rewrite H12 in H14; Elim H14; Clear H14; Intros _ H14; Unfold g'; Case (total_order_Rle r1 x); Intro r3.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r3 H14)).
Reflexivity.
Change (constant_D_eq g' (open_interval (pos_Rl lg i) (pos_Rl lg (S i))) (pos_Rl lg2 i)); Clear Hreci; Assert H16 := (H15 i); Assert H17 : (lt i (pred (Rlength lg))).
Apply lt_S_n.
Replace (S (pred (Rlength lg))) with (Rlength lg).
Assumption.
Apply S_pred with O; Apply neq_O_lt; Red; Intro; Rewrite <- H14 in H9; Elim (lt_n_O ? H9).
Assert H18 := (H16 H17); Unfold constant_D_eq open_interval in H18; Unfold constant_D_eq open_interval; Intros; Assert H19 := (H18 ? H14); Rewrite <- H19; Unfold g'; Case (total_order_Rle r1 x); Intro.
Reflexivity.
Elim n; Replace r1 with (Rmin r1 b).
Rewrite <- H12; Elim H14; Clear H14; Intros H14 _; Left; Apply Rle_lt_trans with (pos_Rl lg i); Try Assumption.
Apply RList_P5.
Assumption.
Elim (RList_P3 lg (pos_Rl lg i)); Intros; Apply H21; Exists i; Split.
Reflexivity.
Apply lt_trans with (pred (Rlength lg)); Try Assumption.
Apply lt_pred_n_n; Apply neq_O_lt; Red; Intro; Rewrite <- H22 in H17; Elim (lt_n_O ? H17).
Unfold Rmin; Case (total_order_Rle r1 b); Intro; [Reflexivity | Elim n0; Assumption].
Exists (mkStepFun H8); Split.
Simpl; Unfold g'; Case (total_order_Rle r1 b); Intro.
Assumption.
Elim n; Assumption.
Intros; Simpl in H9; Induction i.
Unfold constant_D_eq co_interval; Simpl; Intros; Simpl in H0; Rewrite H0; Elim H10; Clear H10; Intros; Unfold g'; Case (total_order_Rle r1 x); Intro r3.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? r3 H11)).
Reflexivity.
Clear Hreci; Change (constant_D_eq (mkStepFun H8) (co_interval (pos_Rl (cons r1 l) i) (pos_Rl (cons r1 l) (S i))) (f (pos_Rl (cons r1 l) i))); Assert H10 := (H6 i); Assert H11 : (lt i (pred (Rlength (cons r1 l)))).
Simpl; Apply lt_S_n; Assumption.
Assert H12 := (H10 H11); Unfold constant_D_eq co_interval in H12; Unfold constant_D_eq co_interval; Intros; Rewrite <- (H12 ? H13); Simpl; Unfold g'; Case (total_order_Rle r1 x); Intro.
Reflexivity.
Elim n; Elim H13; Clear H13; Intros; Apply Rle_trans with (pos_Rl (cons r1 l) i); Try Assumption; Change ``(pos_Rl (cons r1 l) O)<=(pos_Rl (cons r1 l) i)``; Elim (RList_P6 (cons r1 l)); Intros; Apply H15; [Assumption | Apply le_O_n | Simpl; Apply lt_trans with (Rlength l); [Apply lt_S_n; Assumption | Apply lt_n_Sn]].
Qed.

Lemma StepFun_P39 : (a,b:R;f:(StepFun a b)) (RiemannInt_SF f)==(Ropp (RiemannInt_SF (mkStepFun (StepFun_P6 (pre f))))).
Intros; Unfold RiemannInt_SF; Case (total_order_Rle a b); Case (total_order_Rle b a); Intros.
Assert H : (adapted_couple f a b (subdivision f) (subdivision_val f)); [Apply StepFun_P1 | Assert H0 : (adapted_couple (mkStepFun (StepFun_P6 (pre f))) b a (subdivision (mkStepFun (StepFun_P6 (pre f)))) (subdivision_val (mkStepFun (StepFun_P6 (pre f))))); [Apply StepFun_P1 | Assert H1 : a==b; [Apply Rle_antisym; Assumption | Rewrite (StepFun_P8 H H1); Assert H2 : b==a; [Symmetry; Apply H1 | Rewrite (StepFun_P8 H0 H2); Ring]]]].
Rewrite Ropp_Ropp; EApply StepFun_P17; [Apply StepFun_P1 | Apply StepFun_P2; Pose H := (StepFun_P6 (pre f)); Unfold IsStepFun in H; Elim H; Intros; Unfold is_subdivision; Elim p; Intros; Apply p0].
Apply eq_Ropp; EApply StepFun_P17; [Apply StepFun_P1 | Apply StepFun_P2; Pose H := (StepFun_P6 (pre f)); Unfold IsStepFun in H; Elim H; Intros; Unfold is_subdivision; Elim p; Intros; Apply p0].
Assert H : ``a<b``; [Auto with real | Assert H0 : ``b<a``; [Auto with real | Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H H0))]].
Qed.

Lemma StepFun_P40 : (f:R->R;a,b,c:R;l1,l2,lf1,lf2:Rlist) ``a<b`` -> ``b<c`` -> (adapted_couple f a b l1 lf1) -> (adapted_couple f b c l2 lf2) -> (adapted_couple f a c (cons_Rlist l1 l2) (FF (cons_Rlist l1 l2) f)).
Intros f a b c l1 l2 lf1 lf2 H H0 H1 H2; Unfold adapted_couple in H1 H2; Unfold adapted_couple; Decompose [and] H1; Decompose [and] H2; Clear H1 H2; Repeat Split.
Apply RList_P25; Try Assumption.
Rewrite H10; Rewrite H4; Unfold Rmin Rmax; Case (total_order_Rle a b); Case (total_order_Rle b c); Intros; (Right; Reflexivity) Orelse (Elim n; Left; Assumption).
Rewrite RList_P22.
Rewrite H5; Unfold Rmin Rmax; Case (total_order_Rle a b); Case (total_order_Rle a c); Intros; [Reflexivity | Elim n; Apply Rle_trans with b; Left; Assumption | Elim n; Left; Assumption | Elim n0; Left; Assumption].
Red; Intro; Rewrite H1 in H6; Discriminate.
Rewrite RList_P24.
Rewrite H9; Unfold Rmin Rmax; Case (total_order_Rle b c); Case (total_order_Rle a c); Intros; [Reflexivity | Elim n; Apply Rle_trans with b; Left; Assumption | Elim n; Left; Assumption | Elim n0; Left; Assumption].
Red; Intro; Rewrite H1 in H11; Discriminate.
Apply StepFun_P20.
Rewrite RList_P23; Apply neq_O_lt; Red; Intro.
Assert H2 : (plus (Rlength l1) (Rlength l2))=O.
Symmetry; Apply H1.
Elim (plus_is_O ? ? H2); Intros; Rewrite H12 in H6; Discriminate.
Unfold constant_D_eq open_interval; Intros; Elim (le_or_lt (S (S i)) (Rlength l1)); Intro.
Assert H14 : (pos_Rl (cons_Rlist l1 l2) i) == (pos_Rl l1 i).
Apply RList_P26; Apply lt_S_n; Apply le_lt_n_Sm; Apply le_S_n; Apply le_trans with (Rlength l1); [Assumption | Apply le_n_Sn].
Assert H15 : (pos_Rl (cons_Rlist l1 l2) (S i))==(pos_Rl l1 (S i)).
Apply RList_P26; Apply lt_S_n; Apply le_lt_n_Sm; Assumption.
Rewrite H14 in H2; Rewrite H15 in H2; Assert H16 : (le (2) (Rlength l1)).
Apply le_trans with (S (S i)); [Repeat Apply le_n_S; Apply le_O_n | Assumption].
Elim (RList_P20 ? H16); Intros r1 [r2 [r3 H17]]; Rewrite H17; Change (f x)==(pos_Rl (app_Rlist (mid_Rlist (cons_Rlist (cons r2 r3) l2) r1) f) i); Rewrite RList_P12.
Induction i.
Simpl; Assert H18 := (H8 O); Unfold constant_D_eq open_interval in H18; Assert H19 : (lt O (pred (Rlength l1))).
Rewrite H17; Simpl; Apply lt_O_Sn.
Assert H20 := (H18 H19); Repeat Rewrite H20.
Reflexivity.
Assert H21 : ``r1<=r2``.
Rewrite H17 in H3; Apply (H3 O).
Simpl; Apply lt_O_Sn.
Elim H21; Intro.
Split.
Rewrite H17; Simpl; Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
Rewrite H17; Simpl; Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite (Rplus_sym r1); Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
Elim H2; Intros; Rewrite H17 in H23; Rewrite H17 in H24; Simpl in H24; Simpl in H23; Rewrite H22 in H23; Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H23 H24)).
Assumption.
Clear Hreci; Rewrite RList_P13.
Rewrite H17 in H14; Rewrite H17 in H15; Change (pos_Rl (cons_Rlist (cons r2 r3) l2) i)== (pos_Rl (cons r1 (cons r2 r3)) (S i)) in H14; Rewrite H14; Change (pos_Rl (cons_Rlist (cons r2 r3) l2) (S i))==(pos_Rl (cons r1 (cons r2 r3)) (S (S i))) in H15; Rewrite H15; Assert H18 := (H8 (S i)); Unfold constant_D_eq open_interval in H18; Assert H19 : (lt (S i) (pred (Rlength l1))).
Apply lt_pred; Apply lt_S_n; Apply le_lt_n_Sm; Assumption.
Assert H20 := (H18 H19); Repeat Rewrite H20.
Reflexivity.
Rewrite <- H17; Assert H21 : ``(pos_Rl l1 (S i))<=(pos_Rl l1 (S (S i)))``.
Apply (H3 (S i)); Apply lt_pred; Apply lt_S_n; Apply le_lt_n_Sm; Assumption.
Elim H21; Intro.
Split.
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite (Rplus_sym (pos_Rl l1 (S i))); Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
Elim H2; Intros; Rewrite H22 in H23; Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H23 H24)).
Assumption.
Simpl; Rewrite H17 in H1; Simpl in H1; Apply lt_S_n; Assumption.
Rewrite RList_P14; Rewrite H17 in H1; Simpl in H1; Apply H1.
Inversion H12.
Assert H16 : (pos_Rl (cons_Rlist l1 l2) (S i))==b.
Rewrite RList_P29.
Rewrite H15; Rewrite <- minus_n_n; Rewrite H10; Unfold Rmin; Case (total_order_Rle b c); Intro; [Reflexivity | Elim n; Left; Assumption].
Rewrite H15; Apply le_n.
Induction l1.
Simpl in H15; Discriminate.
Clear Hrecl1; Simpl in H1; Simpl; Apply lt_n_S; Assumption.
Assert H17 : (pos_Rl (cons_Rlist l1 l2) i)==b.
Rewrite RList_P26.
Replace i with (pred (Rlength l1)); [Rewrite H4; Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Left; Assumption] | Rewrite H15; Reflexivity].
Rewrite H15; Apply lt_n_Sn.
Rewrite H16 in H2; Rewrite H17 in H2; Elim H2; Intros; Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H14 H18)).
Assert H16 : (pos_Rl (cons_Rlist l1 l2) i) == (pos_Rl l2 (minus i (Rlength l1))).
Apply RList_P29.
Apply le_S_n; Assumption.
Apply lt_le_trans with (pred (Rlength (cons_Rlist l1 l2))); [Assumption | Apply le_pred_n].
Assert H17 : (pos_Rl (cons_Rlist l1 l2) (S i))==(pos_Rl l2 (S (minus i (Rlength l1)))).
Replace (S (minus i (Rlength l1))) with (minus (S i) (Rlength l1)).
Apply RList_P29.
Apply le_S_n; Apply le_trans with (S i); [Assumption | Apply le_n_Sn].
Induction l1.
Simpl in H6; Discriminate.
Clear Hrecl1; Simpl in H1; Simpl; Apply lt_n_S; Assumption.
Symmetry; Apply minus_Sn_m; Apply le_S_n; Assumption.
Assert H18 : (le (2) (Rlength l1)).
Clear f c l2 lf2 H0 H3 H8 H7 H10 H9 H11 H13 i H1 x H2 H12 m H14 H15 H16 H17; Induction l1.
Discriminate.
Clear Hrecl1; Induction l1.
Simpl in H5; Simpl in H4; Assert H0 : ``(Rmin a b)<(Rmax a b)``.
Unfold Rmin Rmax; Case (total_order_Rle a b); Intro; [Assumption | Elim n; Left; Assumption].
Rewrite <- H5 in H0; Rewrite <- H4 in H0; Elim (Rlt_antirefl ? H0).
Clear Hrecl1; Simpl; Repeat Apply le_n_S; Apply le_O_n.
Elim (RList_P20 ? H18); Intros r1 [r2 [r3 H19]]; Rewrite H19; Change (f x)==(pos_Rl (app_Rlist (mid_Rlist (cons_Rlist (cons r2 r3) l2) r1) f) i); Rewrite RList_P12.
Induction i.
Assert H20 := (le_S_n ? ? H15); Assert H21 := (le_trans ? ? ? H18 H20); Elim (le_Sn_O ? H21).
Clear Hreci; Rewrite RList_P13.
Rewrite H19 in H16; Rewrite H19 in H17; Change (pos_Rl (cons_Rlist (cons r2 r3) l2) i)==  (pos_Rl l2 (minus (S i) (Rlength (cons r1 (cons r2 r3))))) in H16; Rewrite H16; Change (pos_Rl (cons_Rlist (cons r2 r3) l2) (S i))== (pos_Rl l2 (S (minus (S i) (Rlength (cons r1 (cons r2 r3)))))) in H17; Rewrite H17; Assert H20 := (H13 (minus (S i) (Rlength l1))); Unfold constant_D_eq open_interval in H20; Assert H21 : (lt (minus (S i) (Rlength l1)) (pred (Rlength l2))).
Apply lt_pred; Rewrite minus_Sn_m.
Apply simpl_lt_plus_l with (Rlength l1); Rewrite <- le_plus_minus.
Rewrite H19 in H1; Simpl in H1; Rewrite H19; Simpl; Rewrite RList_P23 in H1; Apply lt_n_S; Assumption.
Apply le_trans with (S i); [Apply le_S_n; Assumption | Apply le_n_Sn].
Apply le_S_n; Assumption.
Assert H22 := (H20 H21); Repeat Rewrite H22.
Reflexivity.
Rewrite <- H19; Assert H23 : ``(pos_Rl l2 (minus (S i) (Rlength l1)))<=(pos_Rl l2 (S (minus (S i) (Rlength l1))))``.
Apply H7; Apply lt_pred.
Rewrite minus_Sn_m.
Apply simpl_lt_plus_l with (Rlength l1); Rewrite <- le_plus_minus.
Rewrite H19 in H1; Simpl in H1; Rewrite H19; Simpl; Rewrite RList_P23 in H1; Apply lt_n_S; Assumption.
Apply le_trans with (S i); [Apply le_S_n; Assumption | Apply le_n_Sn].
Apply le_S_n; Assumption.
Elim H23; Intro.
Split.
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
Apply Rlt_monotony_contra with ``2``; [Sup0 | Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [Rewrite Rmult_1l; Rewrite (Rplus_sym (pos_Rl l2 (minus (S i) (Rlength l1)))); Rewrite double; Apply Rlt_compatibility; Assumption | DiscrR]].
Rewrite <- H19 in H16; Rewrite <- H19 in H17; Elim H2; Intros; Rewrite H19 in H25; Rewrite H19 in H26; Simpl in H25; Simpl in H16; Rewrite H16 in H25; Simpl in H26; Simpl in H17; Rewrite H17 in H26; Simpl in H24; Rewrite H24 in H25; Elim (Rlt_antirefl ? (Rlt_trans ? ? ? H25 H26)).
Assert H23 : (pos_Rl (cons_Rlist l1 l2) (S i))==(pos_Rl l2 (minus (S i) (Rlength l1))).
Rewrite H19; Simpl; Simpl in H16; Apply H16.
Assert H24 : (pos_Rl (cons_Rlist l1 l2) (S (S i)))==(pos_Rl l2 (S (minus (S i) (Rlength l1)))).
Rewrite H19; Simpl; Simpl in H17; Apply H17.
Rewrite <- H23; Rewrite <- H24; Assumption.
Simpl; Rewrite H19 in H1; Simpl in H1; Apply lt_S_n; Assumption.
Rewrite RList_P14; Rewrite H19 in H1; Simpl in H1; Simpl; Apply H1.
Qed.

Lemma StepFun_P41 : (f:R->R;a,b,c:R) ``a<=b``->``b<=c``->(IsStepFun f a b) -> (IsStepFun f b c) -> (IsStepFun f a c).
Unfold IsStepFun; Unfold is_subdivision; Intros; Elim X; Clear X; Intros l1 [lf1 H1]; Elim X0; Clear X0; Intros l2 [lf2 H2]; Case (total_order_T a b); Intro.
Elim s; Intro.
Case (total_order_T b c); Intro.
Elim s0; Intro.
Split with (cons_Rlist l1 l2); Split with (FF (cons_Rlist l1 l2) f); Apply StepFun_P40 with b lf1 lf2; Assumption.
Split with l1; Split with lf1; Rewrite b0 in H1; Assumption.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H0 r)).
Split with l2; Split with lf2; Rewrite <- b0 in H2; Assumption.
Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H r)).
Qed.

Lemma StepFun_P42 : (l1,l2:Rlist;f:R->R) (pos_Rl l1 (pred (Rlength l1)))==(pos_Rl l2 O) -> ``(Int_SF (FF (cons_Rlist l1 l2) f) (cons_Rlist l1 l2)) == (Int_SF (FF l1 f) l1) + (Int_SF (FF l2 f) l2)``.
Intros l1 l2 f; NewInduction l1 as [|r l1 IHl1]; Intros H; [ Simpl; Ring | NewDestruct l1; [Simpl in H; Simpl; NewDestruct l2; [Simpl; Ring | Simpl; Simpl in H; Rewrite H; Ring] | Simpl; Rewrite Rplus_assoc; Apply Rplus_plus_r; Apply IHl1; Rewrite <- H; Reflexivity]].
Qed.

Lemma StepFun_P43 : (f:R->R;a,b,c:R;pr1:(IsStepFun f a b);pr2:(IsStepFun f b c);pr3:(IsStepFun f a c)) ``(RiemannInt_SF (mkStepFun pr1))+(RiemannInt_SF (mkStepFun pr2))==(RiemannInt_SF (mkStepFun pr3))``.
Intros f; Intros; Assert H1 : (SigT ? [l:Rlist](sigTT ? [l0:Rlist](adapted_couple f a b l l0))).
Apply pr1.
Assert H2 : (SigT ? [l:Rlist](sigTT ? [l0:Rlist](adapted_couple f b c l l0))).
Apply pr2.
Assert H3 : (SigT ? [l:Rlist](sigTT ? [l0:Rlist](adapted_couple f a c l l0))).
Apply pr3.
Elim H1; Clear H1; Intros l1 [lf1 H1]; Elim H2; Clear H2; Intros l2 [lf2 H2]; Elim H3; Clear H3; Intros l3 [lf3 H3].
Replace (RiemannInt_SF (mkStepFun pr1)) with (Cases (total_order_Rle a b) of (leftT _) => (Int_SF lf1 l1) | (rightT _) => ``-(Int_SF lf1 l1)`` end).
Replace (RiemannInt_SF (mkStepFun pr2)) with (Cases (total_order_Rle b c) of (leftT _) => (Int_SF lf2 l2) | (rightT _) => ``-(Int_SF lf2 l2)`` end).
Replace (RiemannInt_SF (mkStepFun pr3)) with (Cases (total_order_Rle a c) of (leftT _) => (Int_SF lf3 l3) | (rightT _) => ``-(Int_SF lf3 l3)`` end).
Case (total_order_Rle a b); Case (total_order_Rle b c); Case (total_order_Rle a c); Intros.
Elim r1; Intro.
Elim r0; Intro.
Replace (Int_SF lf3 l3) with (Int_SF (FF (cons_Rlist l1 l2) f) (cons_Rlist l1 l2)).
Replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
Replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
Symmetry; Apply StepFun_P42.
Unfold adapted_couple in H1 H2; Decompose [and] H1; Decompose [and] H2; Clear H1 H2; Rewrite H11; Rewrite H5; Unfold Rmax Rmin; Case (total_order_Rle a b); Case (total_order_Rle b c); Intros; Reflexivity Orelse Elim n; Assumption.
EApply StepFun_P17; [Apply StepFun_P21; Unfold is_subdivision; Split with lf2; Apply H2; Assumption | Assumption].
EApply StepFun_P17; [Apply StepFun_P21; Unfold is_subdivision; Split with lf1; Apply H1 | Assumption].
EApply StepFun_P17; [Apply (StepFun_P40 H H0 H1 H2) | Apply H3].
Replace (Int_SF lf2 l2) with R0.
Rewrite Rplus_Or; EApply StepFun_P17; [Apply H1 | Rewrite <- H0 in H3; Apply H3].
Symmetry; EApply StepFun_P8; [Apply H2 | Assumption].
Replace (Int_SF lf1 l1) with R0.
Rewrite Rplus_Ol; EApply StepFun_P17; [Apply H2 | Rewrite H in H3; Apply H3].
Symmetry; EApply StepFun_P8; [Apply H1 | Assumption].
Elim n; Apply Rle_trans with b; Assumption.
Apply r_Rplus_plus with (Int_SF lf2 l2); Replace ``(Int_SF lf2 l2)+((Int_SF lf1 l1)+ -(Int_SF lf2 l2))`` with (Int_SF lf1 l1); [Idtac | Ring].
Assert H : ``c<b``.
Auto with real.
Elim r; Intro.
Rewrite Rplus_sym; Replace (Int_SF lf1 l1) with (Int_SF (FF (cons_Rlist l3 l2) f) (cons_Rlist l3 l2)).
Replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
Replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
Apply StepFun_P42.
Unfold adapted_couple in H2 H3; Decompose [and] H2; Decompose [and] H3; Clear H3 H2; Rewrite H10; Rewrite H6; Unfold Rmax Rmin; Case (total_order_Rle a c); Case (total_order_Rle b c); Intros; [Elim n; Assumption | Reflexivity | Elim n0; Assumption | Elim n1; Assumption].
EApply StepFun_P17; [Apply StepFun_P21; Unfold is_subdivision; Split with lf2; Apply H2 | Assumption].
EApply StepFun_P17; [Apply StepFun_P21; Unfold is_subdivision; Split with lf3; Apply H3 | Assumption].
EApply StepFun_P17; [Apply (StepFun_P40 H0 H H3 (StepFun_P2 H2)) | Apply H1].
Replace (Int_SF lf3 l3) with R0.
Rewrite Rplus_Or; EApply StepFun_P17; [Apply H1 | Apply StepFun_P2; Rewrite <- H0 in H2; Apply H2].
Symmetry; EApply StepFun_P8; [Apply H3 | Assumption].
Replace (Int_SF lf2 l2) with ``(Int_SF lf3 l3)+(Int_SF lf1 l1)``.
Ring.
Elim r; Intro.
Replace (Int_SF lf2 l2) with (Int_SF (FF (cons_Rlist l3 l1) f) (cons_Rlist l3 l1)).
Replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
Replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
Symmetry; Apply StepFun_P42.
Unfold adapted_couple in H1 H3; Decompose [and] H1; Decompose [and] H3; Clear H3 H1; Rewrite H9; Rewrite H5; Unfold Rmax Rmin; Case (total_order_Rle a c); Case (total_order_Rle a b); Intros; [Elim n; Assumption | Elim n1; Assumption | Reflexivity | Elim n1; Assumption].
EApply StepFun_P17; [Apply StepFun_P21; Unfold is_subdivision; Split with lf1; Apply H1 | Assumption].
EApply StepFun_P17; [Apply StepFun_P21; Unfold is_subdivision; Split with lf3; Apply H3 | Assumption].
EApply StepFun_P17.
Assert H0 : ``c<a``.
Auto with real.
Apply (StepFun_P40 H0 H (StepFun_P2 H3) H1).
Apply StepFun_P2; Apply H2.
Replace (Int_SF lf1 l1) with R0.
Rewrite Rplus_Or; EApply StepFun_P17; [Apply H3 | Rewrite <- H in H2; Apply H2].
Symmetry; EApply StepFun_P8; [Apply H1 | Assumption].
Assert H : ``b<a``.
Auto with real.
Replace (Int_SF lf2 l2) with ``(Int_SF lf3 l3)+(Int_SF lf1 l1)``.
Ring.
Rewrite Rplus_sym; Elim r; Intro.
Replace (Int_SF lf2 l2) with (Int_SF (FF (cons_Rlist l1 l3) f) (cons_Rlist l1 l3)).
Replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
Replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
Symmetry; Apply StepFun_P42.
Unfold adapted_couple in H1 H3; Decompose [and] H1; Decompose [and] H3; Clear H3 H1; Rewrite H11; Rewrite H5; Unfold Rmax Rmin; Case (total_order_Rle a c); Case (total_order_Rle a b); Intros; [Elim n; Assumption | Reflexivity | Elim n0; Assumption | Elim n1; Assumption].
EApply StepFun_P17; [Apply StepFun_P21; Unfold is_subdivision; Split with lf1; Apply H1 | Assumption].
EApply StepFun_P17; [Apply StepFun_P21; Unfold is_subdivision; Split with lf3; Apply H3 | Assumption].
EApply StepFun_P17.
Apply (StepFun_P40 H H0 (StepFun_P2 H1) H3).
Apply H2.
Replace (Int_SF lf3 l3) with R0.
Rewrite Rplus_Or; EApply StepFun_P17; [Apply H1 | Rewrite <- H0 in H2; Apply StepFun_P2; Apply H2].
Symmetry; EApply StepFun_P8; [Apply H3 | Assumption].
Assert H : ``c<a``.
Auto with real.
Replace (Int_SF lf1 l1) with ``(Int_SF lf2 l2)+(Int_SF lf3 l3)``.
Ring.
Elim r; Intro.
Replace (Int_SF lf1 l1) with (Int_SF (FF (cons_Rlist l2 l3) f) (cons_Rlist l2 l3)).
Replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
Replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
Symmetry; Apply StepFun_P42.
Unfold adapted_couple in H2 H3; Decompose [and] H2; Decompose [and] H3; Clear H3 H2; Rewrite H11; Rewrite H5; Unfold Rmax Rmin; Case (total_order_Rle a c); Case (total_order_Rle b c); Intros; [Elim n; Assumption | Elim n1; Assumption | Reflexivity | Elim n1; Assumption].
EApply StepFun_P17; [Apply StepFun_P21; Unfold is_subdivision; Split with lf2; Apply H2 | Assumption].
EApply StepFun_P17; [Apply StepFun_P21; Unfold is_subdivision; Split with lf3; Apply H3 | Assumption].
EApply StepFun_P17.
Apply (StepFun_P40 H0 H H2 (StepFun_P2 H3)).
Apply StepFun_P2; Apply H1.
Replace (Int_SF lf2 l2) with R0.
Rewrite Rplus_Ol; EApply StepFun_P17; [Apply H3 | Rewrite H0 in H1; Apply H1].
Symmetry; EApply StepFun_P8; [Apply H2 | Assumption].
Elim n; Apply Rle_trans with a; Try Assumption.
Auto with real.
Assert H : ``c<b``.
Auto with real.
Assert H0 : ``b<a``.
Auto with real.
Replace (Int_SF lf3 l3) with ``(Int_SF lf2 l2)+(Int_SF lf1 l1)``.
Ring.
Replace (Int_SF lf3 l3) with (Int_SF (FF (cons_Rlist l2 l1) f) (cons_Rlist l2 l1)).
Replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
Replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
Symmetry; Apply StepFun_P42.
Unfold adapted_couple in H2 H1; Decompose [and] H2; Decompose [and] H1; Clear H1 H2; Rewrite H11; Rewrite H5; Unfold Rmax Rmin; Case (total_order_Rle a b); Case (total_order_Rle b c); Intros; [Elim n1; Assumption | Elim n1; Assumption | Elim n0; Assumption | Reflexivity].
EApply StepFun_P17; [Apply StepFun_P21; Unfold is_subdivision; Split with lf2; Apply H2 | Assumption].
EApply StepFun_P17; [Apply StepFun_P21; Unfold is_subdivision; Split with lf1; Apply H1 | Assumption].
EApply StepFun_P17.
Apply (StepFun_P40 H H0 (StepFun_P2 H2) (StepFun_P2 H1)).
Apply StepFun_P2; Apply H3.
Unfold RiemannInt_SF; Case (total_order_Rle a c); Intro.
EApply StepFun_P17.
Apply H3.
Change (adapted_couple (mkStepFun pr3) a c (subdivision (mkStepFun 1!a 2!c 3!f pr3)) (subdivision_val (mkStepFun 1!a 2!c 3!f pr3))); Apply StepFun_P1.
Apply eq_Ropp; EApply StepFun_P17.
Apply H3.
Change (adapted_couple (mkStepFun pr3) a c (subdivision (mkStepFun 1!a 2!c 3!f pr3)) (subdivision_val (mkStepFun 1!a 2!c 3!f pr3))); Apply StepFun_P1.
Unfold RiemannInt_SF; Case (total_order_Rle b c); Intro.
EApply StepFun_P17.
Apply H2.
Change (adapted_couple (mkStepFun pr2) b c (subdivision (mkStepFun 1!b 2!c 3!f pr2)) (subdivision_val (mkStepFun 1!b 2!c 3!f pr2))); Apply StepFun_P1.
Apply eq_Ropp; EApply StepFun_P17.
Apply H2.
Change (adapted_couple (mkStepFun pr2) b c (subdivision (mkStepFun 1!b 2!c 3!f pr2)) (subdivision_val (mkStepFun 1!b 2!c 3!f pr2))); Apply StepFun_P1.
Unfold RiemannInt_SF; Case (total_order_Rle a b); Intro.
EApply StepFun_P17.
Apply H1.
Change (adapted_couple (mkStepFun pr1) a b (subdivision (mkStepFun 1!a 2!b 3!f pr1)) (subdivision_val (mkStepFun 1!a 2!b 3!f pr1))); Apply StepFun_P1.
Apply eq_Ropp; EApply StepFun_P17.
Apply H1.
Change (adapted_couple (mkStepFun pr1) a b (subdivision (mkStepFun 1!a 2!b 3!f pr1)) (subdivision_val (mkStepFun 1!a 2!b 3!f pr1))); Apply StepFun_P1.
Qed.

Lemma StepFun_P44 : (f:R->R;a,b,c:R) (IsStepFun f a b) -> ``a<=c<=b`` -> (IsStepFun f a c).
Intros f; Intros; Assert H0 : ``a<=b``.
Elim H; Intros; Apply Rle_trans with c; Assumption.
Elim H; Clear H; Intros; Unfold IsStepFun in X; Unfold is_subdivision in X; Elim X; Clear X; Intros l1 [lf1 H2]; Cut (l1,lf1:Rlist;a,b,c:R;f:R->R) (adapted_couple f a b l1 lf1) -> ``a<=c<=b`` -> (SigT ? [l:Rlist](sigTT ? [l0:Rlist](adapted_couple f a c l l0))).
Intros; Unfold IsStepFun; Unfold is_subdivision; EApply X.
Apply H2.
Split; Assumption.
Clear f a b c H0 H H1 H2 l1 lf1; Induction l1.
Intros; Unfold adapted_couple in H; Decompose [and] H; Clear H; Simpl in H4; Discriminate.
Induction r0.
Intros; Assert H1 : ``a==b``.
Unfold adapted_couple in H; Decompose [and] H; Clear H; Simpl in H3; Simpl in H2; Assert H7 : ``a<=b``.
Elim H0; Intros; Apply Rle_trans with c; Assumption.
Replace a with (Rmin a b).
Pattern 2 b; Replace b with (Rmax a b).
Rewrite <- H2; Rewrite H3; Reflexivity.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Split with (cons r nil); Split with lf1; Assert H2 : ``c==b``.
Rewrite H1 in H0; Elim H0; Intros; Apply Rle_antisym; Assumption.
Rewrite H2; Assumption.
Intros; Clear X; Induction lf1.
Unfold adapted_couple in H; Decompose [and] H; Clear H; Simpl in H4; Discriminate.
Clear Hreclf1; Assert H1 : (sumboolT ``c<=r1`` ``r1<c``).
Case (total_order_Rle c r1); Intro; [Left; Assumption | Right; Auto with real].
Elim H1; Intro.
Split with (cons r (cons c nil)); Split with (cons r3 nil); Unfold adapted_couple in H; Decompose [and] H; Clear H; Assert H6 : ``r==a``.
Simpl in H4; Rewrite H4; Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Elim H0; Intros; Apply Rle_trans with c; Assumption].
Elim H0; Clear H0; Intros; Unfold adapted_couple; Repeat Split.
Rewrite H6; Unfold ordered_Rlist; Intros; Simpl in H8; Inversion H8; [Simpl; Assumption | Elim (le_Sn_O ? H10)].
Simpl; Unfold Rmin; Case (total_order_Rle a c); Intro; [Assumption | Elim n; Assumption].
Simpl; Unfold Rmax; Case (total_order_Rle a c); Intro; [Reflexivity | Elim n; Assumption].
Unfold constant_D_eq open_interval; Intros; Simpl in H8; Inversion H8.
Simpl; Assert H10 := (H7 O); Assert H12 : (lt (0) (pred (Rlength (cons r (cons r1 r2))))).
Simpl; Apply lt_O_Sn.
Apply (H10 H12); Unfold open_interval; Simpl; Rewrite H11 in H9; Simpl in H9; Elim H9; Clear H9; Intros; Split; Try Assumption.
Apply Rlt_le_trans with c; Assumption.
Elim (le_Sn_O ? H11).
Cut (adapted_couple f r1 b (cons r1 r2) lf1).
Cut ``r1<=c<=b``.
Intros.
Elim (X0 ? ? ? ? ? H3 H2); Intros l1' [lf1' H4]; Split with (cons r l1'); Split with (cons r3 lf1'); Unfold adapted_couple in H H4; Decompose [and] H; Decompose [and] H4; Clear H H4 X0; Assert H14 : ``a<=b``.
Elim H0; Intros; Apply Rle_trans with c; Assumption.
Assert H16 : ``r==a``.
Simpl in H7; Rewrite H7; Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Induction l1'.
Simpl in H13; Discriminate.
Clear Hrecl1'; Unfold adapted_couple; Repeat Split.
Unfold ordered_Rlist; Intros; Simpl in H; Induction i.
Simpl; Replace r4 with r1.
Apply (H5 O).
Simpl; Apply lt_O_Sn.
Simpl in H12; Rewrite H12; Unfold Rmin; Case (total_order_Rle r1 c); Intro; [Reflexivity | Elim n; Left; Assumption].
Apply (H9 i); Simpl; Apply lt_S_n; Assumption.
Simpl; Unfold Rmin; Case (total_order_Rle a c); Intro; [Assumption | Elim n; Elim H0; Intros; Assumption].
Replace (Rmax a c) with (Rmax r1 c).
Rewrite <- H11; Reflexivity.
Unfold Rmax; Case (total_order_Rle r1 c); Case (total_order_Rle a c); Intros; [Reflexivity | Elim n; Elim H0; Intros; Assumption | Elim n; Left; Assumption | Elim n0; Left; Assumption].
Simpl; Simpl in H13; Rewrite H13; Reflexivity.
Intros; Simpl in H; Unfold constant_D_eq open_interval; Intros; Induction i.
Simpl; Assert H17 := (H10 O); Assert H18 : (lt (0) (pred (Rlength (cons r (cons r1 r2))))).
Simpl; Apply lt_O_Sn.
Apply (H17 H18); Unfold open_interval; Simpl; Simpl in H4; Elim H4; Clear H4; Intros; Split; Try Assumption; Replace r1 with r4.
Assumption.
Simpl in H12; Rewrite H12; Unfold Rmin; Case (total_order_Rle r1 c); Intro; [Reflexivity | Elim n; Left; Assumption].
Clear Hreci; Simpl; Apply H15.
Simpl; Apply lt_S_n; Assumption.
Unfold open_interval; Apply H4.
Split.
Left; Assumption.
Elim H0; Intros; Assumption.
EApply StepFun_P7; [Elim H0; Intros; Apply Rle_trans with c; [Apply H2 | Apply H3] | Apply H].
Qed.

Lemma StepFun_P45 : (f:R->R;a,b,c:R) (IsStepFun f a b) -> ``a<=c<=b`` -> (IsStepFun f c b).
Intros f; Intros; Assert H0 : ``a<=b``.
Elim H; Intros; Apply Rle_trans with c; Assumption.
Elim H; Clear H; Intros; Unfold IsStepFun in X; Unfold is_subdivision in X; Elim X; Clear X; Intros l1 [lf1 H2]; Cut (l1,lf1:Rlist;a,b,c:R;f:R->R) (adapted_couple f a b l1 lf1) -> ``a<=c<=b`` -> (SigT ? [l:Rlist](sigTT ? [l0:Rlist](adapted_couple f c b l l0))).
Intros; Unfold IsStepFun; Unfold is_subdivision; EApply X; [Apply H2 | Split; Assumption].
Clear f a b c H0 H H1 H2 l1 lf1; Induction l1.
Intros; Unfold adapted_couple in H; Decompose [and] H; Clear H; Simpl in H4; Discriminate.
Induction r0.
Intros; Assert H1 : ``a==b``.
Unfold adapted_couple in H; Decompose [and] H; Clear H; Simpl in H3; Simpl in H2; Assert H7 : ``a<=b``.
Elim H0; Intros; Apply Rle_trans with c; Assumption.
Replace a with (Rmin a b).
Pattern 2 b; Replace b with (Rmax a b).
Rewrite <- H2; Rewrite H3; Reflexivity.
Unfold Rmax; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Unfold Rmin; Case (total_order_Rle a b); Intro; [Reflexivity | Elim n; Assumption].
Split with (cons r nil); Split with lf1; Assert H2 : ``c==b``.
Rewrite H1 in H0; Elim H0; Intros; Apply Rle_antisym; Assumption.
Rewrite <- H2 in H1; Rewrite <- H1; Assumption.
Intros; Clear X; Induction lf1.
Unfold adapted_couple in H; Decompose [and] H; Clear H; Simpl in H4; Discriminate.
Clear Hreclf1; Assert H1 : (sumboolT ``c<=r1`` ``r1<c``).
Case (total_order_Rle c r1); Intro; [Left; Assumption | Right; Auto with real].
Elim H1; Intro.
Split with (cons c (cons r1 r2)); Split with (cons r3 lf1); Unfold adapted_couple in H; Decompose [and] H; Clear H; Unfold adapted_couple; Repeat Split.
Unfold ordered_Rlist; Intros; Simpl in H; Induction i.
Simpl; Assumption.
Clear Hreci; Apply (H2 (S i)); Simpl; Assumption.
Simpl; Unfold Rmin; Case (total_order_Rle c b); Intro; [Reflexivity | Elim n; Elim H0; Intros; Assumption].
Replace (Rmax c b) with (Rmax a b).
Rewrite <- H3; Reflexivity.
Unfold Rmax; Case (total_order_Rle a b); Case (total_order_Rle c b); Intros; [Reflexivity | Elim n; Elim H0; Intros; Assumption | Elim n; Elim H0; Intros; Apply Rle_trans with c; Assumption | Elim n0; Elim H0; Intros; Apply Rle_trans with c; Assumption].
Simpl; Simpl in H5; Apply H5.
Intros; Simpl in H; Induction i.
Unfold constant_D_eq open_interval; Intros; Simpl; Apply (H7 O).
Simpl; Apply lt_O_Sn.
Unfold open_interval; Simpl; Simpl in H6; Elim H6; Clear H6; Intros; Split; Try Assumption; Apply Rle_lt_trans with c; Try Assumption; Replace r with a.
Elim H0; Intros; Assumption.
Simpl in H4; Rewrite H4; Unfold Rmin; Case (total_order_Rle a b); Intros; [Reflexivity | Elim n; Elim H0; Intros; Apply Rle_trans with c; Assumption].
Clear Hreci; Apply (H7 (S i)); Simpl; Assumption.
Cut (adapted_couple f r1 b (cons r1 r2) lf1).
Cut ``r1<=c<=b``.
Intros; Elim (X0 ? ? ? ? ? H3 H2); Intros l1' [lf1' H4]; Split with l1'; Split with lf1'; Assumption.
Split; [Left; Assumption | Elim H0; Intros; Assumption].
EApply StepFun_P7; [Elim H0; Intros; Apply Rle_trans with c; [Apply H2 | Apply H3] | Apply H].
Qed.

Lemma StepFun_P46 : (f:R->R;a,b,c:R) (IsStepFun f a b) -> (IsStepFun f b c) -> (IsStepFun f a c).
Intros f; Intros; Case (total_order_Rle a b); Case (total_order_Rle b c); Intros.
Apply StepFun_P41 with b; Assumption.
Case (total_order_Rle a c); Intro.
Apply StepFun_P44 with b; Try Assumption.
Split; [Assumption | Auto with real].
Apply StepFun_P6; Apply StepFun_P44 with b.
Apply StepFun_P6; Assumption.
Split; Auto with real.
Case (total_order_Rle a c); Intro.
Apply StepFun_P45 with b; Try Assumption.
Split; Auto with real.
Apply StepFun_P6; Apply StepFun_P45 with b.
Apply StepFun_P6; Assumption.
Split; [Assumption | Auto with real].
Apply StepFun_P6; Apply StepFun_P41 with b; Auto with real Orelse Apply StepFun_P6; Assumption.
Qed.