summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zsqrt.v
blob: 583c5828a7204e68470d1dfd504163a19c8c8b60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* $Id: Zsqrt.v,v 1.11.2.1 2004/07/16 19:31:22 herbelin Exp $ *)

Require Import Omega.
Require Export ZArith_base.
Require Export ZArithRing.
Open Local Scope Z_scope.

(**********************************************************************)
(** Definition and properties of square root on Z *)

(** The following tactic replaces all instances of (POS (xI ...)) by
    `2*(POS ...)+1`, but only when ... is not made only with xO, XI, or xH. *)
Ltac compute_POS :=
  match goal with
  |  |- context [(Zpos (xI ?X1))] =>
      match constr:X1 with
      | context [1%positive] => fail
      | _ => rewrite (BinInt.Zpos_xI X1)
      end
  |  |- context [(Zpos (xO ?X1))] =>
      match constr:X1 with
      | context [1%positive] => fail
      | _ => rewrite (BinInt.Zpos_xO X1)
      end
  end.

Inductive sqrt_data (n:Z) : Set :=
    c_sqrt : forall s r:Z, n = s * s + r -> 0 <= r <= 2 * s -> sqrt_data n.

Definition sqrtrempos : forall p:positive, sqrt_data (Zpos p).
refine
 (fix sqrtrempos (p:positive) : sqrt_data (Zpos p) :=
    match p return sqrt_data (Zpos p) with
    | xH => c_sqrt 1 1 0 _ _
    | xO xH => c_sqrt 2 1 1 _ _
    | xI xH => c_sqrt 3 1 2 _ _
    | xO (xO p') =>
        match sqrtrempos p' with
        | c_sqrt s' r' Heq Hint =>
            match Z_le_gt_dec (4 * s' + 1) (4 * r') with
            | left Hle =>
                c_sqrt (Zpos (xO (xO p'))) (2 * s' + 1)
                  (4 * r' - (4 * s' + 1)) _ _
            | right Hgt => c_sqrt (Zpos (xO (xO p'))) (2 * s') (4 * r') _ _
            end
        end
    | xO (xI p') =>
        match sqrtrempos p' with
        | c_sqrt s' r' Heq Hint =>
            match Z_le_gt_dec (4 * s' + 1) (4 * r' + 2) with
            | left Hle =>
                c_sqrt (Zpos (xO (xI p'))) (2 * s' + 1)
                  (4 * r' + 2 - (4 * s' + 1)) _ _
            | right Hgt =>
                c_sqrt (Zpos (xO (xI p'))) (2 * s') (4 * r' + 2) _ _
            end
        end
    | xI (xO p') =>
        match sqrtrempos p' with
        | c_sqrt s' r' Heq Hint =>
            match Z_le_gt_dec (4 * s' + 1) (4 * r' + 1) with
            | left Hle =>
                c_sqrt (Zpos (xI (xO p'))) (2 * s' + 1)
                  (4 * r' + 1 - (4 * s' + 1)) _ _
            | right Hgt =>
                c_sqrt (Zpos (xI (xO p'))) (2 * s') (4 * r' + 1) _ _
            end
        end
    | xI (xI p') =>
        match sqrtrempos p' with
        | c_sqrt s' r' Heq Hint =>
            match Z_le_gt_dec (4 * s' + 1) (4 * r' + 3) with
            | left Hle =>
                c_sqrt (Zpos (xI (xI p'))) (2 * s' + 1)
                  (4 * r' + 3 - (4 * s' + 1)) _ _
            | right Hgt =>
                c_sqrt (Zpos (xI (xI p'))) (2 * s') (4 * r' + 3) _ _
            end
        end
    end); clear sqrtrempos; repeat compute_POS;
 try (try rewrite Heq; ring; fail); try omega.
Defined.

(** Define with integer input, but with a strong (readable) specification. *)
Definition Zsqrt :
  forall x:Z,
    0 <= x ->
    {s : Z &  {r : Z | x = s * s + r /\ s * s <= x < (s + 1) * (s + 1)}}.
refine
 (fun x =>
    match
      x
      return
        0 <= x ->
        {s : Z &  {r : Z | x = s * s + r /\ s * s <= x < (s + 1) * (s + 1)}}
    with
    | Zpos p =>
        fun h =>
          match sqrtrempos p with
          | c_sqrt s r Heq Hint =>
              existS
                (fun s:Z =>
                   {r : Z |
                   Zpos p = s * s + r /\ s * s <= Zpos p < (s + 1) * (s + 1)})
                s
                (exist
                   (fun r:Z =>
                      Zpos p = s * s + r /\
                      s * s <= Zpos p < (s + 1) * (s + 1)) r _)
          end
    | Zneg p =>
        fun h =>
          False_rec
            {s : Z & 
            {r : Z |
            Zneg p = s * s + r /\ s * s <= Zneg p < (s + 1) * (s + 1)}}
            (h (refl_equal Datatypes.Gt))
    | Z0 =>
        fun h =>
          existS
            (fun s:Z =>
               {r : Z | 0 = s * s + r /\ s * s <= 0 < (s + 1) * (s + 1)}) 0
            (exist
               (fun r:Z => 0 = 0 * 0 + r /\ 0 * 0 <= 0 < (0 + 1) * (0 + 1)) 0
               _)
    end); try omega.
split; [ omega | rewrite Heq; ring ((s + 1) * (s + 1)); omega ].
Defined.

(** Define a function of type Z->Z that computes the integer square root,
    but only for positive numbers, and 0 for others. *)
Definition Zsqrt_plain (x:Z) : Z :=
  match x with
  | Zpos p =>
      match Zsqrt (Zpos p) (Zorder.Zle_0_pos p) with
      | existS s _ => s
      end
  | Zneg p => 0
  | Z0 => 0
  end.

(** A basic theorem about Zsqrt_plain *)
Theorem Zsqrt_interval :
 forall n:Z,
   0 <= n ->
   Zsqrt_plain n * Zsqrt_plain n <= n <
   (Zsqrt_plain n + 1) * (Zsqrt_plain n + 1).
intros x; case x.
unfold Zsqrt_plain in |- *; omega.
intros p; unfold Zsqrt_plain in |- *;
 case (Zsqrt (Zpos p) (Zorder.Zle_0_pos p)).
intros s [r [Heq Hint]] Hle; assumption.
intros p Hle; elim Hle; auto.
Qed.