summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zdiv.v
blob: 31f682079e70db465ee514a51d5658d595fb2fd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Zdiv.v 9245 2006-10-17 12:53:34Z notin $ i*)

(* Contribution by Claude Marché and Xavier Urbain *)

(** Euclidean Division

    Defines first of function that allows Coq to normalize. 
    Then only after proves the main required property.
*)

Require Export ZArith_base.
Require Import Zbool.
Require Import Omega.
Require Import ZArithRing.
Require Import Zcomplements.
Open Local Scope Z_scope.

(** * Definitions of Euclidian operations *)

(** Euclidean division of a positive by a integer 
    (that is supposed to be positive).

    Total function than returns an arbitrary value when
    divisor is not positive
  
*)

Unboxed Fixpoint Zdiv_eucl_POS (a:positive) (b:Z) {struct a} : 
  Z * Z :=
  match a with
    | xH => if Zge_bool b 2 then (0, 1) else (1, 0)
    | xO a' =>
      let (q, r) := Zdiv_eucl_POS a' b in
	let r' := 2 * r in
	  if Zgt_bool b r' then (2 * q, r') else (2 * q + 1, r' - b)
    | xI a' =>
      let (q, r) := Zdiv_eucl_POS a' b in
	let r' := 2 * r + 1 in
	  if Zgt_bool b r' then (2 * q, r') else (2 * q + 1, r' - b)
  end.


(** Euclidean division of integers.
 
    Total function than returns (0,0) when dividing by 0. 
*) 
    
(** 

  The pseudo-code is:
  
  if b = 0 : (0,0)
 
  if b <> 0 and a = 0 : (0,0)

  if b > 0 and a < 0 : let (q,r) = div_eucl_pos (-a) b in 
                       if r = 0 then (-q,0) else (-(q+1),b-r)

  if b < 0 and a < 0 : let (q,r) = div_eucl (-a) (-b) in (q,-r)

  if b < 0 and a > 0 : let (q,r) = div_eucl a (-b) in 
                       if r = 0 then (-q,0) else (-(q+1),b+r)

  In other word, when b is non-zero, q is chosen to be the greatest integer 
  smaller or equal to a/b. And sgn(r)=sgn(b) and |r| < |b|.

*)

Definition Zdiv_eucl (a b:Z) : Z * Z :=
  match a, b with
    | Z0, _ => (0, 0)
    | _, Z0 => (0, 0)
    | Zpos a', Zpos _ => Zdiv_eucl_POS a' b
    | Zneg a', Zpos _ =>
      let (q, r) := Zdiv_eucl_POS a' b in
	match r with
	  | Z0 => (- q, 0)
	  | _ => (- (q + 1), b - r)
	end
    | Zneg a', Zneg b' => let (q, r) := Zdiv_eucl_POS a' (Zpos b') in (q, - r)
    | Zpos a', Zneg b' =>
      let (q, r) := Zdiv_eucl_POS a' (Zpos b') in
	match r with
	  | Z0 => (- q, 0)
	  | _ => (- (q + 1), b + r)
	end
  end.


(** Division and modulo are projections of [Zdiv_eucl] *)
     
Definition Zdiv (a b:Z) : Z := let (q, _) := Zdiv_eucl a b in q.

Definition Zmod (a b:Z) : Z := let (_, r) := Zdiv_eucl a b in r. 

(** Syntax *)

Infix "/" := Zdiv : Z_scope.
Infix "mod" := Zmod (at level 40, no associativity) : Z_scope.

(* Tests:

Eval Compute in `(Zdiv_eucl 7 3)`. 

Eval Compute in `(Zdiv_eucl (-7) 3)`.

Eval Compute in `(Zdiv_eucl 7 (-3))`.

Eval Compute in `(Zdiv_eucl (-7) (-3))`.

*)


(** * Main division theorem *) 

(** First a lemma for positive *)

Lemma Z_div_mod_POS :
  forall b:Z,
    b > 0 ->
    forall a:positive,
      let (q, r) := Zdiv_eucl_POS a b in Zpos a = b * q + r /\ 0 <= r < b.
Proof.
simple induction a; unfold Zdiv_eucl_POS in |- *; fold Zdiv_eucl_POS in |- *.

intro p; case (Zdiv_eucl_POS p b); intros q r [H0 H1].
generalize (Zgt_cases b (2 * r + 1)).
case (Zgt_bool b (2 * r + 1));
 (rewrite BinInt.Zpos_xI; rewrite H0; split; [ ring | omega ]).

intros p; case (Zdiv_eucl_POS p b); intros q r [H0 H1].
generalize (Zgt_cases b (2 * r)).
case (Zgt_bool b (2 * r)); rewrite BinInt.Zpos_xO;
 change (Zpos (xO p)) with (2 * Zpos p) in |- *; rewrite H0;
 (split; [ ring | omega ]).

generalize (Zge_cases b 2).
case (Zge_bool b 2); (intros; split; [ try ring | omega ]).
omega.
Qed.


Theorem Z_div_mod :
  forall a b:Z,
    b > 0 -> let (q, r) := Zdiv_eucl a b in a = b * q + r /\ 0 <= r < b.
Proof.
  intros a b; case a; case b; try (simpl in |- *; intros; omega).
  unfold Zdiv_eucl in |- *; intros; apply Z_div_mod_POS; trivial.
  
  intros; discriminate.

  intros.
  generalize (Z_div_mod_POS (Zpos p) H p0).
  unfold Zdiv_eucl in |- *.
  case (Zdiv_eucl_POS p0 (Zpos p)).
  intros z z0.
  case z0.
  
  intros [H1 H2].
  split; trivial.
  replace (Zneg p0) with (- Zpos p0); [ rewrite H1; ring | trivial ].
  
  intros p1 [H1 H2].
  split; trivial.
  replace (Zneg p0) with (- Zpos p0); [ rewrite H1; ring | trivial ].
  generalize (Zorder.Zgt_pos_0 p1); omega.
  
  intros p1 [H1 H2].
  split; trivial.
  replace (Zneg p0) with (- Zpos p0); [ rewrite H1; ring | trivial ].
  generalize (Zorder.Zlt_neg_0 p1); omega.
  
  intros; discriminate.
Qed.

(** Existence theorems *)

Theorem Zdiv_eucl_exist :
  forall b:Z,
    b > 0 ->
    forall a:Z, {qr : Z * Z | let (q, r) := qr in a = b * q + r /\ 0 <= r < b}.
Proof.
  intros b Hb a.
  exists (Zdiv_eucl a b).
  exact (Z_div_mod a b Hb).
Qed.

Implicit Arguments Zdiv_eucl_exist.

Theorem Zdiv_eucl_extended :
  forall b:Z,
    b <> 0 ->
    forall a:Z,
      {qr : Z * Z | let (q, r) := qr in a = b * q + r /\ 0 <= r < Zabs b}.
Proof.
  intros b Hb a.
  elim (Z_le_gt_dec 0 b); intro Hb'.
  cut (b > 0); [ intro Hb'' | omega ].
  rewrite Zabs_eq; [ apply Zdiv_eucl_exist; assumption | assumption ].
  cut (- b > 0); [ intro Hb'' | omega ].
  elim (Zdiv_eucl_exist Hb'' a); intros qr.
  elim qr; intros q r Hqr.
  exists (- q, r).
  elim Hqr; intros.
  split.
  rewrite <- Zmult_opp_comm; assumption.
  rewrite Zabs_non_eq; [ assumption | omega ].
Qed.

Implicit Arguments Zdiv_eucl_extended.

(** * Auxiliary lemmas about [Zdiv] and [Zmod] *)

Lemma Z_div_mod_eq : forall a b:Z, b > 0 -> a = b * Zdiv a b + Zmod a b.
Proof.
  unfold Zdiv, Zmod in |- *.
  intros a b Hb.
  generalize (Z_div_mod a b Hb).
  case Zdiv_eucl; tauto.
Qed.

Lemma Z_mod_lt : forall a b:Z, b > 0 -> 0 <= Zmod a b < b.
Proof.
  unfold Zmod in |- *.
  intros a b Hb.
  generalize (Z_div_mod a b Hb).
  case (Zdiv_eucl a b); tauto.
Qed.

Lemma Z_div_POS_ge0 :
  forall (b:Z) (a:positive), let (q, _) := Zdiv_eucl_POS a b in q >= 0.
Proof.
  simple induction a; unfold Zdiv_eucl_POS in |- *; fold Zdiv_eucl_POS in |- *.
  intro p; case (Zdiv_eucl_POS p b).
  intros; case (Zgt_bool b (2 * z0 + 1)); intros; omega.
  intro p; case (Zdiv_eucl_POS p b).
  intros; case (Zgt_bool b (2 * z0)); intros; omega.
  case (Zge_bool b 2); simpl in |- *; omega.
Qed.

Lemma Z_div_ge0 : forall a b:Z, b > 0 -> a >= 0 -> Zdiv a b >= 0.
Proof.
  intros a b Hb; unfold Zdiv, Zdiv_eucl in |- *; case a; simpl in |- *; intros.
  case b; simpl in |- *; trivial.
  generalize Hb; case b; try trivial.
  auto with zarith.
  intros p0 Hp0; generalize (Z_div_POS_ge0 (Zpos p0) p).
  case (Zdiv_eucl_POS p (Zpos p0)); simpl in |- *; tauto.
  intros; discriminate.
  elim H; trivial.
Qed.

Lemma Z_div_lt : forall a b:Z, b >= 2 -> a > 0 -> Zdiv a b < a.
Proof.
  intros. cut (b > 0); [ intro Hb | omega ].
  generalize (Z_div_mod a b Hb).
  cut (a >= 0); [ intro Ha | omega ].
  generalize (Z_div_ge0 a b Hb Ha).
  unfold Zdiv in |- *; case (Zdiv_eucl a b); intros q r H1 [H2 H3].
  cut (a >= 2 * q -> q < a); [ intro h; apply h; clear h | intros; omega ].
  apply Zge_trans with (b * q).
  omega.
  auto with zarith.
Qed.

(** * Other lemmas (now using the syntax for [Zdiv] and [Zmod]). *)

Lemma Z_div_ge : forall a b c:Z, c > 0 -> a >= b -> a / c >= b / c.
Proof.
  intros a b c cPos aGeb.
  generalize (Z_div_mod_eq a c cPos).
  generalize (Z_mod_lt a c cPos).
  generalize (Z_div_mod_eq b c cPos).
  generalize (Z_mod_lt b c cPos).
  intros.
  elim (Z_ge_lt_dec (a / c) (b / c)); trivial.
  intro.
  absurd (b - a >= 1).
  omega.
  rewrite H0.
  rewrite H2.
  assert
    (c * (b / c) + b mod c - (c * (a / c) + a mod c) =
      c * (b / c - a / c) + b mod c - a mod c).
  ring.
  rewrite H3.
  assert (c * (b / c - a / c) >= c * 1).
  apply Zmult_ge_compat_l.
  omega.
  omega.
  assert (c * 1 = c).
  ring.
  omega.
Qed.

Lemma Z_mod_plus : forall a b c:Z, c > 0 -> (a + b * c) mod c = a mod c.
Proof.
  intros a b c cPos.
  generalize (Z_div_mod_eq a c cPos).
  generalize (Z_mod_lt a c cPos).
  generalize (Z_div_mod_eq (a + b * c) c cPos).
  generalize (Z_mod_lt (a + b * c) c cPos).
  intros.

  assert ((a + b * c) mod c - a mod c = c * (b + a / c - (a + b * c) / c)).
  replace ((a + b * c) mod c) with (a + b * c - c * ((a + b * c) / c)).
  replace (a mod c) with (a - c * (a / c)).
  ring.
  omega.
  omega.
  set (q := b + a / c - (a + b * c) / c) in *.
  apply (Zcase_sign q); intros.
  assert (c * q = 0).
  rewrite H4; ring.
  rewrite H5 in H3.
  omega.

  assert (c * q >= c).
  pattern c at 2 in |- *; replace c with (c * 1).
  apply Zmult_ge_compat_l; omega.
  ring.
  omega.

  assert (c * q <= - c).
  replace (- c) with (c * -1).
  apply Zmult_le_compat_l; omega.
  ring.
  omega.
Qed.

Lemma Z_div_plus : forall a b c:Z, c > 0 -> (a + b * c) / c = a / c + b.
Proof.
  intros a b c cPos.
  generalize (Z_div_mod_eq a c cPos).
  generalize (Z_mod_lt a c cPos).
  generalize (Z_div_mod_eq (a + b * c) c cPos).
  generalize (Z_mod_lt (a + b * c) c cPos).
  intros.
  apply Zmult_reg_l with c. omega.
  replace (c * ((a + b * c) / c)) with (a + b * c - (a + b * c) mod c).
  rewrite (Z_mod_plus a b c cPos).
  pattern a at 1 in |- *; rewrite H2.
  ring.
  pattern (a + b * c) at 1 in |- *; rewrite H0.
  ring.
Qed.

Lemma Z_div_mult : forall a b:Z, b > 0 -> a * b / b = a.
  intros; replace (a * b) with (0 + a * b); auto.
  rewrite Z_div_plus; auto.
Qed.

Lemma Z_mult_div_ge : forall a b:Z, b > 0 -> b * (a / b) <= a.
Proof.
  intros a b bPos.
  generalize (Z_div_mod_eq a _ bPos); intros.
  generalize (Z_mod_lt a _ bPos); intros.
  pattern a at 2 in |- *; rewrite H.
  omega.
Qed.

Lemma Z_mod_same : forall a:Z, a > 0 -> a mod a = 0.
Proof.
  intros a aPos.
  generalize (Z_mod_plus 0 1 a aPos).
  replace (0 + 1 * a) with a.
  intros.
  rewrite H.
  compute in |- *.
  trivial.
  ring.
Qed.

Lemma Z_div_same : forall a:Z, a > 0 -> a / a = 1.
Proof.
  intros a aPos.
  generalize (Z_div_plus 0 1 a aPos).
  replace (0 + 1 * a) with a.
  intros.
  rewrite H.
  compute in |- *.
  trivial.
  ring.
Qed.

Lemma Z_div_exact_1 : forall a b:Z, b > 0 -> a = b * (a / b) -> a mod b = 0.
  intros a b Hb; generalize (Z_div_mod a b Hb); unfold Zmod, Zdiv in |- *.
  case (Zdiv_eucl a b); intros q r; omega.
Qed.

Lemma Z_div_exact_2 : forall a b:Z, b > 0 -> a mod b = 0 -> a = b * (a / b).
  intros a b Hb; generalize (Z_div_mod a b Hb); unfold Zmod, Zdiv in |- *.
  case (Zdiv_eucl a b); intros q r; omega.
Qed.

Lemma Z_mod_zero_opp : forall a b:Z, b > 0 -> a mod b = 0 -> - a mod b = 0.
  intros a b Hb.
  intros.
  rewrite Z_div_exact_2 with a b; auto.
  replace (- (b * (a / b))) with (0 + - (a / b) * b).
  rewrite Z_mod_plus; auto.
  ring.
Qed.