summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zbool.v
blob: 61eb2a340f1de2f09badccfc84bdc38c95e14db3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Require Import BinInt.
Require Import Zeven.
Require Import Zorder.
Require Import Zcompare.
Require Import ZArith_dec.
Require Import Sumbool.

Local Open Scope Z_scope.

(** * Boolean operations from decidability of order *)
(** The decidability of equality and order relations over
    type [Z] gives some boolean functions with the adequate specification. *)

Definition Z_lt_ge_bool (x y:Z) := bool_of_sumbool (Z_lt_ge_dec x y).
Definition Z_ge_lt_bool (x y:Z) := bool_of_sumbool (Z_ge_lt_dec x y).

Definition Z_le_gt_bool (x y:Z) := bool_of_sumbool (Z_le_gt_dec x y).
Definition Z_gt_le_bool (x y:Z) := bool_of_sumbool (Z_gt_le_dec x y).

Definition Z_eq_bool (x y:Z) := bool_of_sumbool (Z.eq_dec x y).
Definition Z_noteq_bool (x y:Z) := bool_of_sumbool (Z_noteq_dec x y).

Definition Zeven_odd_bool (x:Z) := bool_of_sumbool (Zeven_odd_dec x).

(**********************************************************************)
(** * Boolean comparisons of binary integers *)

Notation Zle_bool := Z.leb (compat "8.3").
Notation Zge_bool := Z.geb (compat "8.3").
Notation Zlt_bool := Z.ltb (compat "8.3").
Notation Zgt_bool := Z.gtb (compat "8.3").

(** We now provide a direct [Z.eqb] that doesn't refer to [Z.compare].
   The old [Zeq_bool] is kept for compatibility. *)

Definition Zeq_bool (x y:Z) :=
  match x ?= y with
    | Eq => true
    | _ => false
  end.

Definition Zneq_bool (x y:Z) :=
  match x ?= y with
    | Eq => false
    | _ => true
  end.

(** Properties in term of [if ... then ... else ...] *)

Lemma Zle_cases n m : if n <=? m then n <= m else n > m.
Proof.
 case Z.leb_spec; now Z.swap_greater.
Qed.

Lemma Zlt_cases n m : if n <? m then n < m else n >= m.
Proof.
 case Z.ltb_spec; now Z.swap_greater.
Qed.

Lemma Zge_cases n m : if n >=? m then n >= m else n < m.
Proof.
 rewrite Z.geb_leb. case Z.leb_spec; now Z.swap_greater.
Qed.

Lemma Zgt_cases n m : if n >? m then n > m else n <= m.
Proof.
 rewrite Z.gtb_ltb. case Z.ltb_spec; now Z.swap_greater.
Qed.

(** Lemmas on [Z.leb] used in contrib/graphs *)

Lemma Zle_bool_imp_le n m : (n <=? m) = true -> (n <= m).
Proof.
 apply Z.leb_le.
Qed.

Lemma Zle_imp_le_bool n m : (n <= m) -> (n <=? m) = true.
Proof.
 apply Z.leb_le.
Qed.

Notation Zle_bool_refl := Z.leb_refl (compat "8.3").

Lemma Zle_bool_antisym n m :
 (n <=? m) = true -> (m <=? n) = true -> n = m.
Proof.
 rewrite !Z.leb_le. apply Z.le_antisymm.
Qed.

Lemma Zle_bool_trans n m p :
 (n <=? m) = true -> (m <=? p) = true -> (n <=? p) = true.
Proof.
 rewrite !Z.leb_le. apply Z.le_trans.
Qed.

Definition Zle_bool_total x y :
  { x <=? y = true } + { y <=? x = true }.
Proof.
 case_eq (x <=? y); intros H.
 - left; trivial.
 - right. apply Z.leb_gt in H. now apply Z.leb_le, Z.lt_le_incl.
Defined.

Lemma Zle_bool_plus_mono n m p q :
 (n <=? m) = true ->
 (p <=? q) = true ->
 (n + p <=? m + q) = true.
Proof.
 rewrite !Z.leb_le. apply Z.add_le_mono.
Qed.

Lemma Zone_pos : 1 <=? 0 = false.
Proof.
 reflexivity.
Qed.

Lemma Zone_min_pos n : (n <=? 0) = false -> (1 <=? n) = true.
Proof.
 rewrite Z.leb_le, Z.leb_gt. apply Z.le_succ_l.
Qed.

(** Properties in term of [iff] *)

Lemma Zle_is_le_bool n m : (n <= m) <-> (n <=? m) = true.
Proof.
 symmetry. apply Z.leb_le.
Qed.

Lemma Zge_is_le_bool n m : (n >= m) <-> (m <=? n) = true.
Proof.
 Z.swap_greater. symmetry. apply Z.leb_le.
Qed.

Lemma Zlt_is_lt_bool n m : (n < m) <-> (n <? m) = true.
Proof.
 symmetry. apply Z.ltb_lt.
Qed.

Lemma Zgt_is_gt_bool n m : (n > m) <-> (n >? m) = true.
Proof.
 Z.swap_greater. rewrite Z.gtb_ltb. symmetry. apply Z.ltb_lt.
Qed.

Lemma Zlt_is_le_bool n m : (n < m) <-> (n <=? m - 1) = true.
Proof.
 rewrite Z.leb_le. apply Z.lt_le_pred.
Qed.

Lemma Zgt_is_le_bool n m : (n > m) <-> (m <=? n - 1) = true.
Proof.
 Z.swap_greater. rewrite Z.leb_le. apply Z.lt_le_pred.
Qed.

(** Properties of the deprecated [Zeq_bool] *)

Lemma Zeq_is_eq_bool x y : x = y <-> Zeq_bool x y = true.
Proof.
 unfold Zeq_bool.
 rewrite <- Z.compare_eq_iff. destruct Z.compare; now split.
Qed.

Lemma Zeq_bool_eq x y : Zeq_bool x y = true -> x = y.
Proof.
 apply Zeq_is_eq_bool.
Qed.

Lemma Zeq_bool_neq x y : Zeq_bool x y = false -> x <> y.
Proof.
 rewrite Zeq_is_eq_bool; now destruct Zeq_bool.
Qed.

Lemma Zeq_bool_if x y : if Zeq_bool x y then x=y else x<>y.
Proof.
 generalize (Zeq_bool_eq x y) (Zeq_bool_neq x y).
 destruct Zeq_bool; auto.
Qed.