summaryrefslogtreecommitdiff
path: root/theories/ZArith/BinInt.v
blob: cf7397b57e5821c37b2ae8f1649d360459076fd3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Export BinNums BinPos Pnat.
Require Import BinNat Bool Equalities GenericMinMax
 OrdersFacts ZAxioms ZProperties.
Require BinIntDef.

(***********************************************************)
(** * Binary Integers *)
(***********************************************************)

(** Initial author: Pierre Crégut, CNET, Lannion, France *)

(** The type [Z] and its constructors [Z0] and [Zpos] and [Zneg]
    are now defined in [BinNums.v] *)

Local Open Scope Z_scope.

(** Every definitions and early properties about binary integers
    are placed in a module [Z] for qualification purpose. *)

Module Z
 <: ZAxiomsSig
 <: UsualOrderedTypeFull
 <: UsualDecidableTypeFull
 <: TotalOrder.

(** * Definitions of operations, now in a separate file *)

Include BinIntDef.Z.

(** When including property functors, only inline t eq zero one two *)

Set Inline Level 30.

(** * Logic Predicates *)

Definition eq := @Logic.eq Z.
Definition eq_equiv := @eq_equivalence Z.

Definition lt x y := (x ?= y) = Lt.
Definition gt x y := (x ?= y) = Gt.
Definition le x y := (x ?= y) <> Gt.
Definition ge x y := (x ?= y) <> Lt.

Infix "<=" := le : Z_scope.
Infix "<" := lt : Z_scope.
Infix ">=" := ge : Z_scope.
Infix ">" := gt : Z_scope.

Notation "x <= y <= z" := (x <= y /\ y <= z) : Z_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : Z_scope.
Notation "x < y < z" := (x < y /\ y < z) : Z_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : Z_scope.

Definition divide x y := exists z, y = z*x.
Notation "( x | y )" := (divide x y) (at level 0).

Definition Even a := exists b, a = 2*b.
Definition Odd a := exists b, a = 2*b+1.

(** * Decidability of equality. *)

Definition eq_dec (x y : Z) : {x = y} + {x <> y}.
Proof.
 decide equality; apply Pos.eq_dec.
Defined.

(** * Proofs of morphisms, obvious since eq is Leibniz *)

Local Obligation Tactic := simpl_relation.
Program Definition succ_wd : Proper (eq==>eq) succ := _.
Program Definition pred_wd : Proper (eq==>eq) pred := _.
Program Definition opp_wd : Proper (eq==>eq) opp := _.
Program Definition add_wd : Proper (eq==>eq==>eq) add := _.
Program Definition sub_wd : Proper (eq==>eq==>eq) sub := _.
Program Definition mul_wd : Proper (eq==>eq==>eq) mul := _.
Program Definition lt_wd : Proper (eq==>eq==>iff) lt := _.
Program Definition div_wd : Proper (eq==>eq==>eq) div := _.
Program Definition mod_wd : Proper (eq==>eq==>eq) modulo := _.
Program Definition quot_wd : Proper (eq==>eq==>eq) quot := _.
Program Definition rem_wd : Proper (eq==>eq==>eq) rem := _.
Program Definition pow_wd : Proper (eq==>eq==>eq) pow := _.
Program Definition testbit_wd : Proper (eq==>eq==>Logic.eq) testbit := _.

(** * Properties of [pos_sub] *)

(** [pos_sub] can be written in term of positive comparison
    and subtraction (cf. earlier definition of addition of Z) *)

Lemma pos_sub_spec p q :
 pos_sub p q =
 match (p ?= q)%positive with
   | Eq => 0
   | Lt => neg (q - p)
   | Gt => pos (p - q)
 end.
Proof.
 revert q. induction p; destruct q; simpl; trivial;
 rewrite ?Pos.compare_xI_xI, ?Pos.compare_xO_xI,
  ?Pos.compare_xI_xO, ?Pos.compare_xO_xO, IHp; simpl;
 case Pos.compare_spec; intros; simpl; trivial;
  (now rewrite Pos.sub_xI_xI) || (now rewrite Pos.sub_xO_xO) ||
  (now rewrite Pos.sub_xO_xI) || (now rewrite Pos.sub_xI_xO) ||
  subst; unfold Pos.sub; simpl; now rewrite Pos.sub_mask_diag.
Qed.

Lemma pos_sub_discr p q :
  match pos_sub p q with
  | Z0 => p = q
  | pos k => p = q + k
  | neg k => q = p + k
  end%positive.
Proof.
 rewrite pos_sub_spec.
 case Pos.compare_spec; auto; intros;
  now rewrite Pos.add_comm, Pos.sub_add.
Qed.

(** Particular cases of the previous result *)

Lemma pos_sub_diag p : pos_sub p p = 0.
Proof.
 now rewrite pos_sub_spec, Pos.compare_refl.
Qed.

Lemma pos_sub_lt p q : (p < q)%positive -> pos_sub p q = neg (q - p).
Proof.
 intros H. now rewrite pos_sub_spec, H.
Qed.

Lemma pos_sub_gt p q : (q < p)%positive -> pos_sub p q = pos (p - q).
Proof.
 intros H. now rewrite pos_sub_spec, Pos.compare_antisym, H.
Qed.

(** The opposite of [pos_sub] is [pos_sub] with reversed arguments *)

Lemma pos_sub_opp p q : - pos_sub p q = pos_sub q p.
Proof.
 revert q; induction p; destruct q; simpl; trivial;
 rewrite <- IHp; now destruct pos_sub.
Qed.

(** In the following module, we group results that are needed now
  to prove specifications of operations, but will also be provided
  later by the generic functor of properties. *)

Module Import Private_BootStrap.

(** ** Operations and constants *)

Lemma add_0_r n : n + 0 = n.
Proof.
 now destruct n.
Qed.

Lemma mul_0_r n : n * 0 = 0.
Proof.
 now destruct n.
Qed.

Lemma mul_1_l n : 1 * n = n.
Proof.
 now destruct n.
Qed.

(** ** Addition is commutative *)

Lemma add_comm n m : n + m = m + n.
Proof.
 destruct n, m; simpl; trivial; now rewrite Pos.add_comm.
Qed.

(** ** Opposite distributes over addition *)

Lemma opp_add_distr n m : - (n + m) = - n + - m.
Proof.
 destruct n, m; simpl; trivial using pos_sub_opp.
Qed.

(** ** Opposite is injective *)

Lemma opp_inj n m : -n = -m -> n = m.
Proof.
 destruct n, m; simpl; intros H; destr_eq H; now f_equal.
Qed.

(** ** Addition is associative *)

Lemma pos_sub_add p q r :
  pos_sub (p + q) r = pos p + pos_sub q r.
Proof.
 simpl. rewrite !pos_sub_spec.
 case (Pos.compare_spec q r); intros E0.
 - (* q = r *)
   subst.
   assert (H := Pos.lt_add_r r p).
   rewrite Pos.add_comm in H. apply Pos.lt_gt in H.
   now rewrite H, Pos.add_sub.
 - (* q < r *)
   rewrite pos_sub_spec.
   assert (Hr : (r = (r-q)+q)%positive) by (now rewrite Pos.sub_add).
   rewrite Hr at 1. rewrite Pos.add_compare_mono_r.
   case Pos.compare_spec; intros E1; trivial; f_equal.
   rewrite Pos.add_comm. apply Pos.sub_add_distr.
   rewrite Hr, Pos.add_comm. now apply Pos.add_lt_mono_r.
   symmetry. apply Pos.sub_sub_distr; trivial.
 - (* r < q *)
   assert (LT : (r < p + q)%positive).
   { apply Pos.lt_trans with q; trivial.
     rewrite Pos.add_comm. apply Pos.lt_add_r. }
   apply Pos.lt_gt in LT. rewrite LT. f_equal.
   symmetry. now apply Pos.add_sub_assoc.
Qed.

Local Arguments add !x !y.

Lemma add_assoc_pos p n m : pos p + (n + m) = pos p + n + m.
Proof.
 destruct n as [|n|n], m as [|m|m]; simpl; trivial.
 - now rewrite Pos.add_assoc.
 - symmetry. apply pos_sub_add.
 - symmetry. apply add_0_r.
 - now rewrite <- pos_sub_add, add_comm, <- pos_sub_add, Pos.add_comm.
 - apply opp_inj. rewrite !opp_add_distr, !pos_sub_opp.
   rewrite add_comm, Pos.add_comm. apply pos_sub_add.
Qed.

Lemma add_assoc n m p : n + (m + p) = n + m + p.
Proof.
 destruct n.
 - trivial.
 - apply add_assoc_pos.
 - apply opp_inj. rewrite !opp_add_distr. simpl. apply add_assoc_pos.
Qed.

(** ** Opposite is inverse for addition *)

Lemma add_opp_diag_r n : n + - n = 0.
Proof.
 destruct n; simpl; trivial; now rewrite pos_sub_diag.
Qed.

(** ** Multiplication and Opposite *)

Lemma mul_opp_r n m : n * - m = - (n * m).
Proof.
 now destruct n, m.
Qed.

(** ** Distributivity of multiplication over addition *)

Lemma mul_add_distr_pos (p:positive) n m :
 (n + m) * pos p = n * pos p + m * pos p.
Proof.
 destruct n as [|n|n], m as [|m|m]; simpl; trivial.
 - now rewrite Pos.mul_add_distr_r.
 - rewrite ?pos_sub_spec, ?Pos.mul_compare_mono_r; case Pos.compare_spec;
   simpl; trivial; intros; now rewrite Pos.mul_sub_distr_r.
 - rewrite ?pos_sub_spec, ?Pos.mul_compare_mono_r; case Pos.compare_spec;
   simpl; trivial; intros; now rewrite Pos.mul_sub_distr_r.
 - now rewrite Pos.mul_add_distr_r.
Qed.

Lemma mul_add_distr_r n m p : (n + m) * p = n * p + m * p.
Proof.
 destruct p as [|p|p].
 - now rewrite !mul_0_r.
 - apply mul_add_distr_pos.
 - apply opp_inj. rewrite opp_add_distr, <- !mul_opp_r.
   apply mul_add_distr_pos.
Qed.

End Private_BootStrap.

(** * Proofs of specifications *)

(** ** Specification of constants *)

Lemma one_succ : 1 = succ 0.
Proof.
reflexivity.
Qed.

Lemma two_succ : 2 = succ 1.
Proof.
reflexivity.
Qed.

(** ** Specification of addition *)

Lemma add_0_l n : 0 + n = n.
Proof.
 now destruct n.
Qed.

Lemma add_succ_l n m : succ n + m = succ (n + m).
Proof.
 unfold succ. now rewrite 2 (add_comm _ 1), add_assoc.
Qed.

(** ** Specification of opposite *)

Lemma opp_0 : -0 = 0.
Proof.
 reflexivity.
Qed.

Lemma opp_succ n : -(succ n) = pred (-n).
Proof.
 unfold succ, pred. apply opp_add_distr.
Qed.

(** ** Specification of successor and predecessor *)

Local Arguments pos_sub : simpl nomatch.

Lemma succ_pred n : succ (pred n) = n.
Proof.
 unfold succ, pred. now rewrite <- add_assoc, add_opp_diag_r, add_0_r.
Qed.

Lemma pred_succ n : pred (succ n) = n.
Proof.
 unfold succ, pred. now rewrite <- add_assoc, add_opp_diag_r, add_0_r.
Qed.

(** ** Specification of subtraction *)

Lemma sub_0_r n : n - 0 = n.
Proof.
 apply add_0_r.
Qed.

Lemma sub_succ_r n m : n - succ m = pred (n - m).
Proof.
 unfold sub, succ, pred. now rewrite opp_add_distr, add_assoc.
Qed.

(** ** Specification of multiplication *)

Lemma mul_0_l n : 0 * n = 0.
Proof.
 reflexivity.
Qed.

Lemma mul_succ_l n m : succ n * m = n * m + m.
Proof.
 unfold succ. now rewrite mul_add_distr_r, mul_1_l.
Qed.

(** ** Specification of comparisons and order *)

Lemma eqb_eq n m : (n =? m) = true <-> n = m.
Proof.
 destruct n, m; simpl; try (now split); rewrite Pos.eqb_eq;
 split; (now injection 1) || (intros; now f_equal).
Qed.

Lemma ltb_lt n m : (n <? m) = true <-> n < m.
Proof.
 unfold ltb, lt. destruct compare; easy'.
Qed.

Lemma leb_le n m : (n <=? m) = true <-> n <= m.
Proof.
 unfold leb, le. destruct compare; easy'.
Qed.

Lemma compare_eq_iff n m : (n ?= m) = Eq <-> n = m.
Proof.
destruct n, m; simpl; rewrite ?CompOpp_iff, ?Pos.compare_eq_iff;
 split; congruence.
Qed.

Lemma compare_sub n m : (n ?= m) = (n - m ?= 0).
Proof.
 destruct n as [|n|n], m as [|m|m]; simpl; trivial;
 rewrite <- ? Pos.compare_antisym, ?pos_sub_spec;
 case Pos.compare_spec; trivial.
Qed.

Lemma compare_antisym n m : (m ?= n) = CompOpp (n ?= m).
Proof.
destruct n, m; simpl; trivial; now rewrite <- ?Pos.compare_antisym.
Qed.

Lemma compare_lt_iff n m : (n ?= m) = Lt <-> n < m.
Proof. reflexivity. Qed.

Lemma compare_le_iff n m : (n ?= m) <> Gt <-> n <= m.
Proof. reflexivity. Qed.

(** Some more advanced properties of comparison and orders,
    including [compare_spec] and [lt_irrefl] and [lt_eq_cases]. *)

Include BoolOrderFacts.

(** Remaining specification of [lt] and [le] *)

Lemma lt_succ_r n m : n < succ m <-> n<=m.
Proof.
 unfold lt, le. rewrite compare_sub, sub_succ_r.
 rewrite (compare_sub n m).
 destruct (n-m) as [|[ | | ]|]; easy'.
Qed.

(** ** Specification of minimum and maximum *)

Lemma max_l n m : m<=n -> max n m = n.
Proof.
 unfold le, max. rewrite (compare_antisym n m).
 case compare; intuition.
Qed.

Lemma max_r n m :  n<=m -> max n m = m.
Proof.
 unfold le, max. case compare_spec; intuition.
Qed.

Lemma min_l n m : n<=m -> min n m = n.
Proof.
 unfold le, min. case compare_spec; intuition.
Qed.

Lemma min_r n m : m<=n -> min n m = m.
Proof.
 unfold le, min.
 rewrite (compare_antisym n m). case compare_spec; intuition.
Qed.

(** ** Induction principles based on successor / predecessor *)

Lemma peano_ind (P : Z -> Prop) :
  P 0 ->
  (forall x, P x -> P (succ x)) ->
  (forall x, P x -> P (pred x)) ->
  forall z, P z.
Proof.
 intros H0 Hs Hp z; destruct z.
 assumption.
 induction p using Pos.peano_ind.
  now apply (Hs 0).
  rewrite <- Pos.add_1_r.
  now apply (Hs (pos p)).
 induction p using Pos.peano_ind.
  now apply (Hp 0).
  rewrite <- Pos.add_1_r.
  now apply (Hp (neg p)).
Qed.

Lemma bi_induction (P : Z -> Prop) :
  Proper (eq ==> iff) P ->
  P 0 ->
  (forall x, P x <-> P (succ x)) ->
  forall z, P z.
Proof.
 intros _ H0 Hs. induction z using peano_ind.
 assumption.
 now apply -> Hs.
 apply Hs. now rewrite succ_pred.
Qed.

(** We can now derive all properties of basic functions and orders,
    and use these properties for proving the specs of more advanced
    functions. *)

Include ZBasicProp <+ UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties.


(** ** Specification of absolute value *)

Lemma abs_eq n : 0 <= n -> abs n = n.
Proof.
 destruct n; trivial. now destruct 1.
Qed.

Lemma abs_neq n : n <= 0 -> abs n = - n.
Proof.
 destruct n; trivial. now destruct 1.
Qed.

(** ** Specification of sign *)

Lemma sgn_null n : n = 0 -> sgn n = 0.
Proof.
 intros. now subst.
Qed.

Lemma sgn_pos n : 0 < n -> sgn n = 1.
Proof.
 now destruct n.
Qed.

Lemma sgn_neg n : n < 0 -> sgn n = -1.
Proof.
 now destruct n.
Qed.

(** ** Specification of power *)

Lemma pow_0_r n : n^0 = 1.
Proof.
 reflexivity.
Qed.

Lemma pow_succ_r n m : 0<=m -> n^(succ m) = n * n^m.
Proof.
 destruct m as [|m|m]; (now destruct 1) || (intros _); simpl; trivial.
 unfold pow_pos. now rewrite Pos.add_comm, Pos.iter_add.
Qed.

Lemma pow_neg_r n m : m<0 -> n^m = 0.
Proof.
 now destruct m.
Qed.

(** For folding back a [pow_pos] into a [pow] *)

Lemma pow_pos_fold n p : pow_pos n p = n ^ (pos p).
Proof.
 reflexivity.
Qed.

(** ** Specification of square *)

Lemma square_spec n : square n = n * n.
Proof.
 destruct n; trivial; simpl; f_equal; apply Pos.square_spec.
Qed.

(** ** Specification of square root *)

Lemma sqrtrem_spec n : 0<=n ->
 let (s,r) := sqrtrem n in n = s*s + r /\ 0 <= r <= 2*s.
Proof.
 destruct n. now repeat split.
 generalize (Pos.sqrtrem_spec p). simpl.
 destruct 1; simpl; subst; now repeat split.
 now destruct 1.
Qed.

Lemma sqrt_spec n : 0<=n ->
 let s := sqrt n in s*s <= n < (succ s)*(succ s).
Proof.
 destruct n. now repeat split. unfold sqrt.
 intros _. simpl succ. rewrite Pos.add_1_r. apply (Pos.sqrt_spec p).
 now destruct 1.
Qed.

Lemma sqrt_neg n : n<0 -> sqrt n = 0.
Proof.
 now destruct n.
Qed.

Lemma sqrtrem_sqrt n : fst (sqrtrem n) = sqrt n.
Proof.
 destruct n; try reflexivity.
 unfold sqrtrem, sqrt, Pos.sqrt.
 destruct (Pos.sqrtrem p) as (s,r). now destruct r.
Qed.

(** ** Specification of logarithm *)

Lemma log2_spec n : 0 < n -> 2^(log2 n) <= n < 2^(succ (log2 n)).
Proof.
 assert (Pow : forall p q, pos (p^q) = (pos p)^(pos q)).
 { intros. now apply Pos.iter_swap_gen. }
 destruct n as [|[p|p|]|]; intros Hn; split; try easy; unfold log2;
  simpl succ; rewrite ?Pos.add_1_r, <- Pow.
 change (2^Pos.size p <= Pos.succ (p~0))%positive.
 apply Pos.lt_le_incl, Pos.lt_succ_r, Pos.size_le.
 apply Pos.size_gt.
 apply Pos.size_le.
 apply Pos.size_gt.
Qed.

Lemma log2_nonpos n : n<=0 -> log2 n = 0.
Proof.
 destruct n as [|p|p]; trivial; now destruct 1.
Qed.

(** Specification of parity functions *)

Lemma even_spec n : even n = true <-> Even n.
Proof.
 split.
 exists (div2 n). now destruct n as [|[ | | ]|[ | | ]].
 intros (m,->). now destruct m.
Qed.

Lemma odd_spec n : odd n = true <-> Odd n.
Proof.
 split.
 exists (div2 n). destruct n as [|[ | | ]|[ | | ]]; simpl; try easy.
 now rewrite Pos.pred_double_succ.
 intros (m,->). now destruct m as [|[ | | ]|[ | | ]].
Qed.

(** ** Multiplication and Doubling *)

Lemma double_spec n : double n = 2*n.
Proof.
 reflexivity.
Qed.

Lemma succ_double_spec n : succ_double n = 2*n + 1.
Proof.
 now destruct n.
Qed.

Lemma pred_double_spec n : pred_double n = 2*n - 1.
Proof.
 now destruct n.
Qed.

(** ** Correctness proofs for Trunc division *)

Lemma pos_div_eucl_eq a b : 0 < b ->
  let (q, r) := pos_div_eucl a b in pos a = q * b + r.
Proof.
 intros Hb.
 induction a; unfold pos_div_eucl; fold pos_div_eucl.
 - (* ~1 *)
   destruct pos_div_eucl as (q,r).
   change (pos a~1) with (2*(pos a)+1).
   rewrite IHa, mul_add_distr_l, mul_assoc.
   destruct ltb.
   now rewrite add_assoc.
   rewrite mul_add_distr_r, mul_1_l, <- !add_assoc. f_equal.
   unfold sub. now rewrite (add_comm _ (-b)), add_assoc, add_opp_diag_r.
 - (* ~0 *)
   destruct pos_div_eucl as (q,r).
   change (pos a~0) with (2*pos a).
   rewrite IHa, mul_add_distr_l, mul_assoc.
   destruct ltb.
   trivial.
   rewrite mul_add_distr_r, mul_1_l, <- !add_assoc. f_equal.
   unfold sub. now rewrite (add_comm _ (-b)), add_assoc, add_opp_diag_r.
 - (* 1 *)
   case leb_spec; trivial.
   intros Hb'.
   destruct b as [|b|b]; try easy; clear Hb.
   replace b with 1%positive; trivial.
   apply Pos.le_antisym. apply Pos.le_1_l. now apply Pos.lt_succ_r.
Qed.

Lemma div_eucl_eq a b : b<>0 ->
 let (q, r) := div_eucl a b in a = b * q + r.
Proof.
 destruct a as [ |a|a], b as [ |b|b]; unfold div_eucl; trivial;
  (now destruct 1) || intros _;
  generalize (pos_div_eucl_eq a (pos b) Logic.eq_refl);
  destruct pos_div_eucl as (q,r); rewrite mul_comm.
 - (* pos pos *)
   trivial.
 - (* pos neg *)
   intros ->.
   destruct r as [ |r|r]; rewrite <- !mul_opp_comm; trivial;
    rewrite mul_add_distr_l, mul_1_r, <- add_assoc; f_equal;
   now rewrite add_assoc, add_opp_diag_r.
 - (* neg pos *)
   change (neg a) with (- pos a). intros ->.
   rewrite (opp_add_distr _ r), <- mul_opp_r.
   destruct r as [ |r|r]; trivial;
    rewrite opp_add_distr, mul_add_distr_l, <- add_assoc; f_equal;
    unfold sub; now rewrite add_assoc, mul_opp_r, mul_1_r, add_opp_diag_l.
 - (* neg neg *)
   change (neg a) with (- pos a). intros ->.
   now rewrite opp_add_distr, <- mul_opp_l.
Qed.

Lemma div_mod a b : b<>0 -> a = b*(a/b) + (a mod b).
Proof.
 intros Hb. generalize (div_eucl_eq a b Hb).
 unfold div, modulo. now destruct div_eucl.
Qed.

Lemma pos_div_eucl_bound a b : 0<b -> 0 <= snd (pos_div_eucl a b) < b.
Proof.
 assert (AUX : forall m p, m < pos (p~0) -> m - pos p < pos p).
  intros m p. unfold lt.
  rewrite (compare_sub m), (compare_sub _ (pos _)). unfold sub.
  rewrite <- add_assoc. simpl opp; simpl (neg _ + _).
  now rewrite Pos.add_diag.
 intros Hb.
 destruct b as [|b|b]; discriminate Hb || clear Hb.
 induction a; unfold pos_div_eucl; fold pos_div_eucl.
 (* ~1 *)
 destruct pos_div_eucl as (q,r).
 simpl in IHa; destruct IHa as (Hr,Hr').
 case ltb_spec; intros H; unfold snd. split; trivial. now destruct r.
 split. unfold le.
  now rewrite compare_antisym, <- compare_sub, <- compare_antisym.
 apply AUX. rewrite <- succ_double_spec.
 destruct r; try easy. unfold lt in *; simpl in *.
  now rewrite Pos.compare_xI_xO, Hr'.
 (* ~0 *)
 destruct pos_div_eucl as (q,r).
 simpl in IHa; destruct IHa as (Hr,Hr').
 case ltb_spec; intros H; unfold snd. split; trivial. now destruct r.
 split. unfold le.
  now rewrite compare_antisym, <- compare_sub, <- compare_antisym.
 apply AUX. destruct r; try easy.
 (* 1 *)
 case leb_spec; intros H; simpl; split; try easy.
 red; simpl. now apply Pos.le_succ_l.
Qed.

Lemma mod_pos_bound a b : 0 < b -> 0 <= a mod b < b.
Proof.
 destruct b as [|b|b]; try easy; intros _.
 destruct a as [|a|a]; unfold modulo, div_eucl.
 now split.
 now apply pos_div_eucl_bound.
 generalize (pos_div_eucl_bound a (pos b) Logic.eq_refl).
 destruct pos_div_eucl as (q,r); unfold snd; intros (Hr,Hr').
 destruct r as [|r|r]; (now destruct Hr) || clear Hr.
 now split.
 split. unfold le.
  now rewrite compare_antisym, <- compare_sub, <- compare_antisym, Hr'.
 unfold lt in *; simpl in *. rewrite pos_sub_gt by trivial.
 simpl. now apply Pos.sub_decr.
Qed.

Definition mod_bound_pos a b (_:0<=a) := mod_pos_bound a b.

Lemma mod_neg_bound a b : b < 0 -> b < a mod b <= 0.
Proof.
 destruct b as [|b|b]; try easy; intros _.
 destruct a as [|a|a]; unfold modulo, div_eucl.
 now split.
 generalize (pos_div_eucl_bound a (pos b) Logic.eq_refl).
 destruct pos_div_eucl as (q,r); unfold snd; intros (Hr,Hr').
 destruct r as [|r|r]; (now destruct Hr) || clear Hr.
 now split.
 split.
 unfold lt in *; simpl in *. rewrite pos_sub_lt by trivial.
 rewrite <- Pos.compare_antisym. now apply Pos.sub_decr.
 change (neg b - neg r <= 0). unfold le, lt in *.
  rewrite <- compare_sub. simpl in *.
  now rewrite <- Pos.compare_antisym, Hr'.
 generalize (pos_div_eucl_bound a (pos b) Logic.eq_refl).
 destruct pos_div_eucl as (q,r); unfold snd; intros (Hr,Hr').
 split; destruct r; try easy.
  red; simpl; now rewrite <- Pos.compare_antisym.
Qed.

(** ** Correctness proofs for Floor division *)

Theorem quotrem_eq a b : let (q,r) := quotrem a b in a = q * b + r.
Proof.
 destruct a as [|a|a], b as [|b|b]; simpl; trivial;
 generalize (N.pos_div_eucl_spec a (N.pos b)); case N.pos_div_eucl; trivial;
  intros q r;
  try change (neg a) with (-pos a);
  change (pos a) with (of_N (N.pos a)); intros ->; now destruct q, r.
Qed.

Lemma quot_rem' a b : a = b*(a÷b) + rem a b.
Proof.
 rewrite mul_comm. generalize (quotrem_eq a b).
 unfold quot, rem. now destruct quotrem.
Qed.

Lemma quot_rem a b : b<>0 -> a = b*(a÷b) + rem a b.
Proof. intros _. apply quot_rem'. Qed.

Lemma rem_bound_pos a b : 0<=a -> 0<b -> 0 <= rem a b < b.
Proof.
 intros Ha Hb.
 destruct b as [|b|b]; (now discriminate Hb) || clear Hb;
 destruct a as [|a|a]; (now destruct Ha) || clear Ha.
 compute. now split.
 unfold rem, quotrem.
 assert (H := N.pos_div_eucl_remainder a (N.pos b)).
 destruct N.pos_div_eucl as (q,[|r]); simpl; split; try easy.
 now apply H.
Qed.

Lemma rem_opp_l' a b : rem (-a) b = - (rem a b).
Proof.
 destruct a, b; trivial; unfold rem; simpl;
  now destruct N.pos_div_eucl as (q,[|r]).
Qed.

Lemma rem_opp_r' a b : rem a (-b) = rem a b.
Proof.
 destruct a, b; trivial; unfold rem; simpl;
  now destruct N.pos_div_eucl as (q,[|r]).
Qed.

Lemma rem_opp_l a b : b<>0 -> rem (-a) b = - (rem a b).
Proof. intros _. apply rem_opp_l'. Qed.

Lemma rem_opp_r a b : b<>0 -> rem a (-b) = rem a b.
Proof. intros _. apply rem_opp_r'. Qed.

(** ** Extra properties about [divide] *)

Lemma divide_Zpos p q : (pos p|pos q) <-> (p|q)%positive.
Proof.
 split.
 intros ([ |r|r],H); simpl in *; destr_eq H. exists r; auto.
 intros (r,H). exists (pos r); simpl; now f_equal.
Qed.

Lemma divide_Zpos_Zneg_r n p : (n|pos p) <-> (n|neg p).
Proof.
 split; intros (m,H); exists (-m); now rewrite mul_opp_l, <- H.
Qed.

Lemma divide_Zpos_Zneg_l n p : (pos p|n) <-> (neg p|n).
Proof.
 split; intros (m,H); exists (-m); now rewrite mul_opp_l, <- mul_opp_r.
Qed.

(** ** Correctness proofs for gcd *)

Lemma ggcd_gcd a b : fst (ggcd a b) = gcd a b.
Proof.
 destruct a as [ |p|p], b as [ |q|q]; simpl; auto;
  generalize (Pos.ggcd_gcd p q); destruct Pos.ggcd as (g,(aa,bb));
  simpl; congruence.
Qed.

Lemma ggcd_correct_divisors a b :
  let '(g,(aa,bb)) := ggcd a b in
  a = g*aa /\ b = g*bb.
Proof.
 destruct a as [ |p|p], b as [ |q|q]; simpl; rewrite ?Pos.mul_1_r; auto;
  generalize (Pos.ggcd_correct_divisors p q);
  destruct Pos.ggcd as (g,(aa,bb)); simpl; destruct 1; now subst.
Qed.

Lemma gcd_divide_l a b : (gcd a b | a).
Proof.
 rewrite <- ggcd_gcd. generalize (ggcd_correct_divisors a b).
 destruct ggcd as (g,(aa,bb)); simpl. intros (H,_). exists aa.
  now rewrite mul_comm.
Qed.

Lemma gcd_divide_r a b : (gcd a b | b).
Proof.
 rewrite <- ggcd_gcd. generalize (ggcd_correct_divisors a b).
 destruct ggcd as (g,(aa,bb)); simpl. intros (_,H). exists bb.
  now rewrite mul_comm.
Qed.

Lemma gcd_greatest a b c : (c|a) -> (c|b) -> (c | gcd a b).
Proof.
 assert (H : forall p q r, (r|pos p) -> (r|pos q) -> (r|pos (Pos.gcd p q))).
 { intros p q [|r|r] H H'.
   destruct H; now rewrite mul_comm in *.
   apply divide_Zpos, Pos.gcd_greatest; now apply divide_Zpos.
   apply divide_Zpos_Zneg_l, divide_Zpos, Pos.gcd_greatest;
    now apply divide_Zpos, divide_Zpos_Zneg_l.
 }
 destruct a, b; simpl; auto; intros; try apply H; trivial;
  now apply divide_Zpos_Zneg_r.
Qed.

Lemma gcd_nonneg a b : 0 <= gcd a b.
Proof.
 now destruct a, b.
Qed.

(** ggcd and opp : an auxiliary result used in QArith *)

Theorem ggcd_opp a b :
  ggcd (-a) b = (let '(g,(aa,bb)) := ggcd a b in (g,(-aa,bb))).
Proof.
 destruct a as [|a|a], b as [|b|b]; unfold ggcd, opp; auto;
  destruct (Pos.ggcd a b) as (g,(aa,bb)); auto.
Qed.

(** ** Extra properties about [testbit] *)

Lemma testbit_of_N a n :
 testbit (of_N a) (of_N n) = N.testbit a n.
Proof.
 destruct a as [|a], n; simpl; trivial. now destruct a.
Qed.

Lemma testbit_of_N' a n : 0<=n ->
 testbit (of_N a) n = N.testbit a (to_N n).
Proof.
 intro Hn. rewrite <- testbit_of_N. f_equal.
 destruct n; trivial; now destruct Hn.
Qed.

Lemma testbit_Zpos a n : 0<=n ->
 testbit (pos a) n = N.testbit (N.pos a) (to_N n).
Proof.
 intro Hn. now rewrite <- testbit_of_N'.
Qed.

Lemma testbit_Zneg a n : 0<=n ->
 testbit (neg a) n = negb (N.testbit (Pos.pred_N a) (to_N n)).
Proof.
 intro Hn.
 rewrite <- testbit_of_N' by trivial.
 destruct n as [ |n|n];
  [ | simpl; now destruct (Pos.pred_N a) | now destruct Hn].
 unfold testbit.
 now destruct a as [|[ | | ]| ].
Qed.

(** ** Proofs of specifications for bitwise operations *)

Lemma div2_spec a : div2 a = shiftr a 1.
Proof.
 reflexivity.
Qed.

Lemma testbit_0_l n : testbit 0 n = false.
Proof.
 now destruct n.
Qed.

Lemma testbit_neg_r a n : n<0 -> testbit a n = false.
Proof.
 now destruct n.
Qed.

Lemma testbit_odd_0 a : testbit (2*a+1) 0 = true.
Proof.
 now destruct a as [|a|[a|a|]].
Qed.

Lemma testbit_even_0 a : testbit (2*a) 0 = false.
Proof.
 now destruct a.
Qed.

Lemma testbit_odd_succ a n : 0<=n ->
 testbit (2*a+1) (succ n) = testbit a n.
Proof.
 destruct n as [|n|n]; (now destruct 1) || intros _.
 destruct a as [|[a|a|]|[a|a|]]; simpl; trivial. now destruct a.
 unfold testbit; simpl.
 destruct a as [|a|[a|a|]]; simpl; trivial;
  rewrite ?Pos.add_1_r, ?Pos.pred_N_succ; now destruct n.
Qed.

Lemma testbit_even_succ a n : 0<=n ->
 testbit (2*a) (succ n) = testbit a n.
Proof.
 destruct n as [|n|n]; (now destruct 1) || intros _.
 destruct a as [|[a|a|]|[a|a|]]; simpl; trivial. now destruct a.
 unfold testbit; simpl.
 destruct a as [|a|[a|a|]]; simpl; trivial;
  rewrite ?Pos.add_1_r, ?Pos.pred_N_succ; now destruct n.
Qed.

(** Correctness proofs about [Z.shiftr] and [Z.shiftl] *)

Lemma shiftr_spec_aux a n m : 0<=n -> 0<=m ->
 testbit (shiftr a n) m = testbit a (m+n).
Proof.
 intros Hn Hm. unfold shiftr.
 destruct n as [ |n|n]; (now destruct Hn) || clear Hn; simpl.
 now rewrite add_0_r.
 assert (forall p, to_N (m + pos p) = (to_N m + N.pos p)%N).
  destruct m; trivial; now destruct Hm.
 assert (forall p, 0 <= m + pos p).
  destruct m; easy || now destruct Hm.
 destruct a as [ |a|a].
 (* a = 0 *)
 replace (Pos.iter div2 0 n) with 0
  by (apply Pos.iter_invariant; intros; subst; trivial).
 now rewrite 2 testbit_0_l.
 (* a > 0 *)
 change (pos a) with (of_N (N.pos a)) at 1.
 rewrite <- (Pos.iter_swap_gen _ _ _ N.div2) by now intros [|[ | | ]].
 rewrite testbit_Zpos, testbit_of_N', H; trivial.
 exact (N.shiftr_spec' (N.pos a) (N.pos n) (to_N m)).
 (* a < 0 *)
 rewrite <- (Pos.iter_swap_gen _ _ _ Pos.div2_up) by trivial.
 rewrite 2 testbit_Zneg, H; trivial. f_equal.
 rewrite (Pos.iter_swap_gen _ _ _ _ N.div2) by exact N.pred_div2_up.
 exact (N.shiftr_spec' (Pos.pred_N a) (N.pos n) (to_N m)).
Qed.

Lemma shiftl_spec_low a n m : m<n ->
 testbit (shiftl a n) m = false.
Proof.
 intros H. destruct n as [|n|n], m as [|m|m]; try easy; simpl shiftl.
 destruct (Pos.succ_pred_or n) as [-> | <-];
  rewrite ?Pos.iter_succ; apply testbit_even_0.
 destruct a as [ |a|a].
 (* a = 0 *)
 replace (Pos.iter (mul 2) 0 n) with 0
  by (apply Pos.iter_invariant; intros; subst; trivial).
 apply testbit_0_l.
 (* a > 0 *)
 rewrite <- (Pos.iter_swap_gen _ _ _ xO) by trivial.
 rewrite testbit_Zpos by easy.
 exact (N.shiftl_spec_low (N.pos a) (N.pos n) (N.pos m) H).
 (* a < 0 *)
 rewrite <- (Pos.iter_swap_gen _ _ _ xO) by trivial.
 rewrite testbit_Zneg by easy.
 now rewrite (N.pos_pred_shiftl_low a (N.pos n)).
Qed.

Lemma shiftl_spec_high a n m : 0<=m -> n<=m ->
 testbit (shiftl a n) m = testbit a (m-n).
Proof.
 intros Hm H.
 destruct n as [ |n|n]. simpl. now rewrite sub_0_r.
 (* n > 0 *)
 destruct m as [ |m|m]; try (now destruct H).
 assert (0 <= pos m - pos n).
  red. now rewrite compare_antisym, <- compare_sub, <- compare_antisym.
 assert (EQ : to_N (pos m - pos n) = (N.pos m - N.pos n)%N).
  red in H. simpl in H. simpl to_N.
  rewrite pos_sub_spec, Pos.compare_antisym.
  destruct (Pos.compare_spec n m) as [H'|H'|H']; try (now destruct H).
  subst. now rewrite N.sub_diag.
  simpl. destruct (Pos.sub_mask_pos' m n H') as (p & -> & <-).
  f_equal. now rewrite Pos.add_comm, Pos.add_sub.
 destruct a; unfold shiftl.
 (* ... a = 0 *)
 replace (Pos.iter (mul 2) 0 n) with 0
  by (apply Pos.iter_invariant; intros; subst; trivial).
 now rewrite 2 testbit_0_l.
 (* ... a > 0 *)
 rewrite <- (Pos.iter_swap_gen _ _ _ xO) by trivial.
 rewrite 2 testbit_Zpos, EQ by easy.
 exact (N.shiftl_spec_high' (N.pos p) (N.pos n) (N.pos m) H).
 (* ... a < 0 *)
 rewrite <- (Pos.iter_swap_gen _ _ _ xO) by trivial.
 rewrite 2 testbit_Zneg, EQ by easy. f_equal.
 simpl to_N.
 rewrite <- N.shiftl_spec_high by easy.
 now apply (N.pos_pred_shiftl_high p (N.pos n)).
 (* n < 0 *)
 unfold sub. simpl.
 now apply (shiftr_spec_aux a (pos n) m).
Qed.

Lemma shiftr_spec a n m : 0<=m ->
 testbit (shiftr a n) m = testbit a (m+n).
Proof.
 intros Hm.
 destruct (leb_spec 0 n).
 now apply shiftr_spec_aux.
 destruct (leb_spec (-n) m) as [LE|GT].
 unfold shiftr.
 rewrite (shiftl_spec_high a (-n) m); trivial. now destruct n.
 unfold shiftr.
 rewrite (shiftl_spec_low a (-n) m); trivial.
 rewrite testbit_neg_r; trivial.
 red in GT. rewrite compare_sub in GT. now destruct n.
Qed.

(** Correctness proofs for bitwise operations *)

Lemma lor_spec a b n :
 testbit (lor a b) n = testbit a n || testbit b n.
Proof.
 destruct (leb_spec 0 n) as [Hn|Hn]; [|now rewrite !testbit_neg_r].
 destruct a as [ |a|a], b as [ |b|b];
  rewrite ?testbit_0_l, ?orb_false_r; trivial; unfold lor;
  rewrite ?testbit_Zpos, ?testbit_Zneg, ?N.pos_pred_succ by trivial.
 now rewrite <- N.lor_spec.
 now rewrite N.ldiff_spec, negb_andb, negb_involutive, orb_comm.
 now rewrite N.ldiff_spec, negb_andb, negb_involutive.
 now rewrite N.land_spec, negb_andb.
Qed.

Lemma land_spec a b n :
 testbit (land a b) n = testbit a n && testbit b n.
Proof.
 destruct (leb_spec 0 n) as [Hn|Hn]; [|now rewrite !testbit_neg_r].
 destruct a as [ |a|a], b as [ |b|b];
  rewrite ?testbit_0_l, ?andb_false_r; trivial; unfold land;
  rewrite ?testbit_Zpos, ?testbit_Zneg, ?testbit_of_N', ?N.pos_pred_succ
   by trivial.
 now rewrite <- N.land_spec.
 now rewrite N.ldiff_spec.
 now rewrite N.ldiff_spec, andb_comm.
 now rewrite N.lor_spec, negb_orb.
Qed.

Lemma ldiff_spec a b n :
 testbit (ldiff a b) n = testbit a n && negb (testbit b n).
Proof.
 destruct (leb_spec 0 n) as [Hn|Hn]; [|now rewrite !testbit_neg_r].
 destruct a as [ |a|a], b as [ |b|b];
  rewrite ?testbit_0_l, ?andb_true_r; trivial; unfold ldiff;
  rewrite ?testbit_Zpos, ?testbit_Zneg, ?testbit_of_N', ?N.pos_pred_succ
   by trivial.
 now rewrite <- N.ldiff_spec.
 now rewrite N.land_spec, negb_involutive.
 now rewrite N.lor_spec, negb_orb.
 now rewrite N.ldiff_spec, negb_involutive, andb_comm.
Qed.

Lemma lxor_spec a b n :
 testbit (lxor a b) n = xorb (testbit a n) (testbit b n).
Proof.
 destruct (leb_spec 0 n) as [Hn|Hn]; [|now rewrite !testbit_neg_r].
 destruct a as [ |a|a], b as [ |b|b];
  rewrite ?testbit_0_l, ?xorb_false_l, ?xorb_false_r; trivial; unfold lxor;
  rewrite ?testbit_Zpos, ?testbit_Zneg, ?testbit_of_N', ?N.pos_pred_succ
   by trivial.
 now rewrite <- N.lxor_spec.
 now rewrite N.lxor_spec, negb_xorb_r.
 now rewrite N.lxor_spec, negb_xorb_l.
 now rewrite N.lxor_spec, xorb_negb_negb.
Qed.


(** Generic properties of advanced functions. *)

Include ZExtraProp.

(** In generic statements, the predicates [lt] and [le] have been
  favored, whereas [gt] and [ge] don't even exist in the abstract
  layers. The use of [gt] and [ge] is hence not recommended. We provide
  here the bare minimal results to related them with [lt] and [le]. *)

Lemma gt_lt_iff n m : n > m <-> m < n.
Proof.
 unfold lt, gt. now rewrite compare_antisym, CompOpp_iff.
Qed.

Lemma gt_lt n m : n > m -> m < n.
Proof.
 apply gt_lt_iff.
Qed.

Lemma lt_gt n m : n < m -> m > n.
Proof.
 apply gt_lt_iff.
Qed.

Lemma ge_le_iff n m : n >= m <-> m <= n.
Proof.
 unfold le, ge. now rewrite compare_antisym, CompOpp_iff.
Qed.

Lemma ge_le n m : n >= m -> m <= n.
Proof.
 apply ge_le_iff.
Qed.

Lemma le_ge n m : n <= m -> m >= n.
Proof.
 apply ge_le_iff.
Qed.

(** We provide a tactic converting from one style to the other. *)

Ltac swap_greater := rewrite ?gt_lt_iff in *; rewrite ?ge_le_iff in *.

(** Similarly, the boolean comparisons [ltb] and [leb] are favored
  over their dual [gtb] and [geb]. We prove here the equivalence
  and a few minimal results. *)

Lemma gtb_ltb n m : (n >? m) = (m <? n).
Proof.
 unfold gtb, ltb. rewrite compare_antisym. now case compare.
Qed.

Lemma geb_leb n m : (n >=? m) = (m <=? n).
Proof.
 unfold geb, leb. rewrite compare_antisym. now case compare.
Qed.

Lemma gtb_lt n m : (n >? m) = true <-> m < n.
Proof.
 rewrite gtb_ltb. apply ltb_lt.
Qed.

Lemma geb_le n m : (n >=? m) = true <-> m <= n.
Proof.
 rewrite geb_leb. apply leb_le.
Qed.

Lemma gtb_spec n m : BoolSpec (m<n) (n<=m) (n >? m).
Proof.
 rewrite gtb_ltb. apply ltb_spec.
Qed.

Lemma geb_spec n m : BoolSpec (m<=n) (n<m) (n >=? m).
Proof.
 rewrite geb_leb. apply leb_spec.
Qed.

(** TODO : to add in Numbers ? *)

Lemma add_reg_l n m p : n + m = n + p -> m = p.
Proof.
 exact (proj1 (add_cancel_l m p n)).
Qed.

Lemma mul_reg_l n m p : p <> 0 -> p * n = p * m -> n = m.
Proof.
 exact (fun Hp => proj1 (mul_cancel_l n m p Hp)).
Qed.

Lemma mul_reg_r n m p : p <> 0 -> n * p = m * p -> n = m.
Proof.
 exact (fun Hp => proj1 (mul_cancel_r n m p Hp)).
Qed.

Lemma opp_eq_mul_m1 n : - n = n * -1.
Proof.
 rewrite mul_comm. now destruct n.
Qed.

Lemma add_diag n : n + n = 2 * n.
Proof.
 change 2 with (1+1). now rewrite mul_add_distr_r, !mul_1_l.
Qed.

(** * Comparison and opposite *)

Lemma compare_opp n m : (- n ?= - m) = (m ?= n).
Proof.
 destruct n, m; simpl; trivial; intros; now rewrite <- Pos.compare_antisym.
Qed.

(** * Comparison and addition *)

Lemma add_compare_mono_l n m p : (n + m ?= n + p) = (m ?= p).
Proof.
 rewrite (compare_sub m p), compare_sub. f_equal.
 unfold sub. rewrite opp_add_distr, (add_comm n m), add_assoc.
 f_equal. now rewrite <- add_assoc, add_opp_diag_r, add_0_r.
Qed.

End Z.

Bind Scope Z_scope with Z.t Z.

(** Re-export Notations *)

Infix "+" := Z.add : Z_scope.
Notation "- x" := (Z.opp x) : Z_scope.
Infix "-" := Z.sub : Z_scope.
Infix "*" := Z.mul : Z_scope.
Infix "^" := Z.pow : Z_scope.
Infix "/" := Z.div : Z_scope.
Infix "mod" := Z.modulo (at level 40, no associativity) : Z_scope.
Infix "÷" := Z.quot (at level 40, left associativity) : Z_scope.
Infix "?=" := Z.compare (at level 70, no associativity) : Z_scope.
Infix "=?" := Z.eqb (at level 70, no associativity) : Z_scope.
Infix "<=?" := Z.leb (at level 70, no associativity) : Z_scope.
Infix "<?" := Z.ltb (at level 70, no associativity) : Z_scope.
Infix ">=?" := Z.geb (at level 70, no associativity) : Z_scope.
Infix ">?" := Z.gtb (at level 70, no associativity) : Z_scope.
Notation "( x | y )" := (Z.divide x y) (at level 0) : Z_scope.
Infix "<=" := Z.le : Z_scope.
Infix "<" := Z.lt : Z_scope.
Infix ">=" := Z.ge : Z_scope.
Infix ">" := Z.gt : Z_scope.
Notation "x <= y <= z" := (x <= y /\ y <= z) : Z_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : Z_scope.
Notation "x < y < z" := (x < y /\ y < z) : Z_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : Z_scope.

(** Conversions from / to positive numbers *)

Module Pos2Z.

Lemma id p : Z.to_pos (Z.pos p) = p.
Proof. reflexivity. Qed.

Lemma inj p q : Z.pos p = Z.pos q -> p = q.
Proof. now injection 1. Qed.

Lemma inj_iff p q : Z.pos p = Z.pos q <-> p = q.
Proof. split. apply inj. intros; now f_equal. Qed.

Lemma is_pos p : 0 < Z.pos p.
Proof. reflexivity. Qed.

Lemma is_nonneg p : 0 <= Z.pos p.
Proof. easy. Qed.

Lemma inj_1 : Z.pos 1 = 1.
Proof. reflexivity. Qed.

Lemma inj_xO p : Z.pos p~0 = 2 * Z.pos p.
Proof. reflexivity. Qed.

Lemma inj_xI p : Z.pos p~1 = 2 * Z.pos p + 1.
Proof. reflexivity. Qed.

Lemma inj_succ p : Z.pos (Pos.succ p) = Z.succ (Z.pos p).
Proof. simpl. now rewrite Pos.add_1_r. Qed.

Lemma inj_add p q : Z.pos (p+q) = Z.pos p + Z.pos q.
Proof. reflexivity. Qed.

Lemma inj_sub p q : (p < q)%positive ->
 Z.pos (q-p) = Z.pos q - Z.pos p.
Proof. intros. simpl. now rewrite Z.pos_sub_gt. Qed.

Lemma inj_sub_max p q : Z.pos (p - q) = Z.max 1 (Z.pos p - Z.pos q).
Proof.
  simpl. rewrite Z.pos_sub_spec. case Pos.compare_spec; intros.
  - subst; now rewrite Pos.sub_diag.
  - now rewrite Pos.sub_lt.
  - now destruct (p-q)%positive.
Qed.

Lemma inj_pred p : p <> 1%positive ->
 Z.pos (Pos.pred p) = Z.pred (Z.pos p).
Proof. destruct p; easy || now destruct 1. Qed.

Lemma inj_mul p q : Z.pos (p*q) = Z.pos p * Z.pos q.
Proof. reflexivity. Qed.

Lemma inj_pow_pos p q : Z.pos (p^q) = Z.pow_pos (Z.pos p) q.
Proof. now apply Pos.iter_swap_gen. Qed.

Lemma inj_pow p q : Z.pos (p^q) = (Z.pos p)^(Z.pos q).
Proof. apply inj_pow_pos. Qed.

Lemma inj_square p : Z.pos (Pos.square p) = Z.square (Z.pos p).
Proof. reflexivity. Qed.

Lemma inj_compare p q : (p ?= q)%positive = (Z.pos p ?= Z.pos q).
Proof. reflexivity. Qed.

Lemma inj_leb p q : (p <=? q)%positive = (Z.pos p <=? Z.pos q).
Proof. reflexivity. Qed.

Lemma inj_ltb p q : (p <? q)%positive = (Z.pos p <? Z.pos q).
Proof. reflexivity. Qed.

Lemma inj_eqb p q : (p =? q)%positive = (Z.pos p =? Z.pos q).
Proof. reflexivity. Qed.

Lemma inj_max p q : Z.pos (Pos.max p q) = Z.max (Z.pos p) (Z.pos q).
Proof.
 unfold Z.max, Pos.max. rewrite inj_compare. now case Z.compare_spec.
Qed.

Lemma inj_min p q : Z.pos (Pos.min p q) = Z.min (Z.pos p) (Z.pos q).
Proof.
 unfold Z.min, Pos.min. rewrite inj_compare. now case Z.compare_spec.
Qed.

Lemma inj_sqrt p : Z.pos (Pos.sqrt p) = Z.sqrt (Z.pos p).
Proof. reflexivity. Qed.

Lemma inj_gcd p q : Z.pos (Pos.gcd p q) = Z.gcd (Z.pos p) (Z.pos q).
Proof. reflexivity. Qed.

Definition inj_divide p q : (Z.pos p|Z.pos q) <-> (p|q)%positive.
Proof. apply Z.divide_Zpos. Qed.

Lemma inj_testbit a n : 0<=n ->
 Z.testbit (Z.pos a) n = N.testbit (N.pos a) (Z.to_N n).
Proof. apply Z.testbit_Zpos. Qed.

(** Some results concerning Z.neg and Z.pos *)

Lemma inj_neg p q : Z.neg p = Z.neg q -> p = q.
Proof. now injection 1. Qed.

Lemma inj_neg_iff p q : Z.neg p = Z.neg q <-> p = q.
Proof. split. apply inj_neg. intros; now f_equal. Qed.

Lemma inj_pos p q : Z.pos p = Z.pos q -> p = q.
Proof. now injection 1. Qed.

Lemma inj_pos_iff p q : Z.pos p = Z.pos q <-> p = q.
Proof. split. apply inj_pos. intros; now f_equal. Qed.

Lemma neg_is_neg p : Z.neg p < 0.
Proof. reflexivity. Qed.

Lemma neg_is_nonpos p : Z.neg p <= 0.
Proof. easy. Qed.

Lemma pos_is_pos p : 0 < Z.pos p.
Proof. reflexivity. Qed.

Lemma pos_is_nonneg p : 0 <= Z.pos p.
Proof. easy. Qed.

Lemma neg_le_pos p q : Zneg p <= Zpos q.
Proof. easy. Qed.

Lemma neg_lt_pos p q : Zneg p < Zpos q.
Proof. easy. Qed.

Lemma neg_le_neg p q : (q <= p)%positive -> Zneg p <= Zneg q.
Proof. intros; unfold Z.le; simpl. now rewrite <- Pos.compare_antisym. Qed.

Lemma neg_lt_neg p q : (q < p)%positive -> Zneg p < Zneg q.
Proof. intros; unfold Z.lt; simpl. now rewrite <- Pos.compare_antisym. Qed.

Lemma pos_le_pos p q : (p <= q)%positive -> Zpos p <= Zpos q.
Proof. easy. Qed.

Lemma pos_lt_pos p q : (p < q)%positive -> Zpos p < Zpos q.
Proof. easy. Qed.

Lemma neg_xO p : Z.neg p~0 = 2 * Z.neg p.
Proof. reflexivity. Qed.

Lemma neg_xI p : Z.neg p~1 = 2 * Z.neg p - 1.
Proof. reflexivity. Qed.

Lemma pos_xO p : Z.pos p~0 = 2 * Z.pos p.
Proof. reflexivity. Qed.

Lemma pos_xI p : Z.pos p~1 = 2 * Z.pos p + 1.
Proof. reflexivity. Qed.

Lemma opp_neg p : - Z.neg p = Z.pos p.
Proof. reflexivity. Qed.

Lemma opp_pos p : - Z.pos p = Z.neg p.
Proof. reflexivity. Qed.

Lemma add_neg_neg p q : Z.neg p + Z.neg q = Z.neg (p+q).
Proof. reflexivity. Qed.

Lemma add_pos_neg p q : Z.pos p + Z.neg q = Z.pos_sub p q.
Proof. reflexivity. Qed.

Lemma add_neg_pos p q : Z.neg p + Z.pos q = Z.pos_sub q p.
Proof. reflexivity. Qed.

Lemma add_pos_pos p q : Z.pos p + Z.pos q = Z.pos (p+q).
Proof. reflexivity. Qed.

Lemma divide_pos_neg_r n p : (n|Z.pos p) <-> (n|Z.neg p).
Proof. apply Z.divide_Zpos_Zneg_r. Qed.

Lemma divide_pos_neg_l n p : (Z.pos p|n) <-> (Z.neg p|n).
Proof. apply Z.divide_Zpos_Zneg_l. Qed.

Lemma testbit_neg a n : 0<=n ->
 Z.testbit (Z.neg a) n = negb (N.testbit (Pos.pred_N a) (Z.to_N n)).
Proof. apply Z.testbit_Zneg. Qed.

Lemma testbit_pos a n : 0<=n ->
 Z.testbit (Z.pos a) n = N.testbit (N.pos a) (Z.to_N n).
Proof. apply Z.testbit_Zpos. Qed.

End Pos2Z.

Module Z2Pos.

Lemma id x : 0 < x -> Z.pos (Z.to_pos x) = x.
Proof. now destruct x. Qed.

Lemma inj x y : 0 < x -> 0 < y -> Z.to_pos x = Z.to_pos y -> x = y.
Proof.
 destruct x; simpl; try easy. intros _ H ->. now apply id.
Qed.

Lemma inj_iff x y : 0 < x -> 0 < y -> (Z.to_pos x = Z.to_pos y <-> x = y).
Proof. split. now apply inj. intros; now f_equal. Qed.

Lemma to_pos_nonpos x : x <= 0 -> Z.to_pos x = 1%positive.
Proof. destruct x; trivial. now destruct 1. Qed.

Lemma inj_1 : Z.to_pos 1 = 1%positive.
Proof. reflexivity. Qed.

Lemma inj_double x : 0 < x ->
 Z.to_pos (Z.double x) = (Z.to_pos x)~0%positive.
Proof. now destruct x. Qed.

Lemma inj_succ_double x : 0 < x ->
 Z.to_pos (Z.succ_double x) = (Z.to_pos x)~1%positive.
Proof. now destruct x. Qed.

Lemma inj_succ x : 0 < x -> Z.to_pos (Z.succ x) = Pos.succ (Z.to_pos x).
Proof.
 destruct x; try easy. simpl. now rewrite Pos.add_1_r.
Qed.

Lemma inj_add x y : 0 < x -> 0 < y ->
 Z.to_pos (x+y) = (Z.to_pos x + Z.to_pos y)%positive.
Proof. destruct x; easy || now destruct y. Qed.

Lemma inj_sub x y : 0 < x < y ->
 Z.to_pos (y-x) = (Z.to_pos y - Z.to_pos x)%positive.
Proof.
 destruct x; try easy. destruct y; try easy. simpl.
 intros. now rewrite Z.pos_sub_gt.
Qed.

Lemma inj_pred x : 1 < x -> Z.to_pos (Z.pred x) = Pos.pred (Z.to_pos x).
Proof. now destruct x as [|[x|x|]|]. Qed.

Lemma inj_mul x y : 0 < x -> 0 < y ->
 Z.to_pos (x*y) = (Z.to_pos x * Z.to_pos y)%positive.
Proof. destruct x; easy || now destruct y. Qed.

Lemma inj_pow x y : 0 < x -> 0 < y ->
 Z.to_pos (x^y) = (Z.to_pos x ^ Z.to_pos y)%positive.
Proof.
 intros. apply Pos2Z.inj. rewrite Pos2Z.inj_pow, !id; trivial.
 apply Z.pow_pos_nonneg. trivial. now apply Z.lt_le_incl.
Qed.

Lemma inj_pow_pos x p : 0 < x ->
 Z.to_pos (Z.pow_pos x p) = ((Z.to_pos x)^p)%positive.
Proof. intros. now apply (inj_pow x (Z.pos p)). Qed.

Lemma inj_compare x y : 0 < x -> 0 < y ->
 (x ?= y) = (Z.to_pos x ?= Z.to_pos y)%positive.
Proof. destruct x; easy || now destruct y. Qed.

Lemma inj_leb x y : 0 < x -> 0 < y ->
 (x <=? y) = (Z.to_pos x <=? Z.to_pos y)%positive.
Proof. destruct x; easy || now destruct y. Qed.

Lemma inj_ltb x y : 0 < x -> 0 < y ->
 (x <? y) = (Z.to_pos x <? Z.to_pos y)%positive.
Proof. destruct x; easy || now destruct y. Qed.

Lemma inj_eqb x y : 0 < x -> 0 < y ->
 (x =? y) = (Z.to_pos x =? Z.to_pos y)%positive.
Proof. destruct x; easy || now destruct y. Qed.

Lemma inj_max x y :
 Z.to_pos (Z.max x y) = Pos.max (Z.to_pos x) (Z.to_pos y).
Proof.
 destruct x; simpl; try rewrite Pos.max_1_l.
 - now destruct y.
 - destruct y; simpl; now rewrite ?Pos.max_1_r, <- ?Pos2Z.inj_max.
 - destruct y; simpl; rewrite ?Pos.max_1_r; trivial.
   apply to_pos_nonpos. now apply Z.max_lub.
Qed.

Lemma inj_min x y :
 Z.to_pos (Z.min x y) = Pos.min (Z.to_pos x) (Z.to_pos y).
Proof.
 destruct x; simpl; try rewrite Pos.min_1_l.
 - now destruct y.
 - destruct y; simpl; now rewrite ?Pos.min_1_r, <- ?Pos2Z.inj_min.
 - destruct y; simpl; rewrite ?Pos.min_1_r; trivial.
   apply to_pos_nonpos. apply Z.min_le_iff. now left.
Qed.

Lemma inj_sqrt x : Z.to_pos (Z.sqrt x) = Pos.sqrt (Z.to_pos x).
Proof. now destruct x. Qed.

Lemma inj_gcd x y : 0 < x -> 0 < y ->
 Z.to_pos (Z.gcd x y) = Pos.gcd (Z.to_pos x) (Z.to_pos y).
Proof. destruct x; easy || now destruct y. Qed.

End Z2Pos.

(** Compatibility Notations *)

Notation Zdouble_plus_one := Z.succ_double (only parsing).
Notation Zdouble_minus_one := Z.pred_double (only parsing).
Notation Zdouble := Z.double (compat "8.6").
Notation ZPminus := Z.pos_sub (only parsing).
Notation Zsucc' := Z.succ (compat "8.6").
Notation Zpred' := Z.pred (compat "8.6").
Notation Zplus' := Z.add (compat "8.6").
Notation Zplus := Z.add (only parsing). (* Slightly incompatible *)
Notation Zopp := Z.opp (compat "8.6").
Notation Zsucc := Z.succ (compat "8.6").
Notation Zpred := Z.pred (compat "8.6").
Notation Zminus := Z.sub (only parsing).
Notation Zmult := Z.mul (only parsing).
Notation Zcompare := Z.compare (compat "8.6").
Notation Zsgn := Z.sgn (compat "8.6").
Notation Zle := Z.le (compat "8.6").
Notation Zge := Z.ge (compat "8.6").
Notation Zlt := Z.lt (compat "8.6").
Notation Zgt := Z.gt (compat "8.6").
Notation Zmax := Z.max (compat "8.6").
Notation Zmin := Z.min (compat "8.6").
Notation Zabs := Z.abs (compat "8.6").
Notation Zabs_nat := Z.abs_nat (compat "8.6").
Notation Zabs_N := Z.abs_N (compat "8.6").
Notation Z_of_nat := Z.of_nat (only parsing).
Notation Z_of_N := Z.of_N (only parsing).

Notation Zind := Z.peano_ind (only parsing).
Notation Zopp_0 := Z.opp_0 (compat "8.6").
Notation Zopp_involutive := Z.opp_involutive (compat "8.6").
Notation Zopp_inj := Z.opp_inj (compat "8.6").
Notation Zplus_0_l := Z.add_0_l (only parsing).
Notation Zplus_0_r := Z.add_0_r (only parsing).
Notation Zplus_comm := Z.add_comm (only parsing).
Notation Zopp_plus_distr := Z.opp_add_distr (only parsing).
Notation Zopp_succ := Z.opp_succ (compat "8.6").
Notation Zplus_opp_r := Z.add_opp_diag_r (only parsing).
Notation Zplus_opp_l := Z.add_opp_diag_l (only parsing).
Notation Zplus_assoc := Z.add_assoc (only parsing).
Notation Zplus_permute := Z.add_shuffle3 (only parsing).
Notation Zplus_reg_l := Z.add_reg_l (only parsing).
Notation Zplus_succ_l := Z.add_succ_l (only parsing).
Notation Zplus_succ_comm := Z.add_succ_comm (only parsing).
Notation Zsucc_discr := Z.neq_succ_diag_r (only parsing).
Notation Zsucc_inj := Z.succ_inj (compat "8.6").
Notation Zsucc'_inj := Z.succ_inj (compat "8.6").
Notation Zsucc'_pred' := Z.succ_pred (compat "8.6").
Notation Zpred'_succ' := Z.pred_succ (compat "8.6").
Notation Zpred'_inj := Z.pred_inj (compat "8.6").
Notation Zsucc'_discr := Z.neq_succ_diag_r (only parsing).
Notation Zminus_0_r := Z.sub_0_r (only parsing).
Notation Zminus_diag := Z.sub_diag (only parsing).
Notation Zminus_plus_distr := Z.sub_add_distr (only parsing).
Notation Zminus_succ_r := Z.sub_succ_r (only parsing).
Notation Zminus_plus := Z.add_simpl_l (only parsing).
Notation Zmult_0_l := Z.mul_0_l (only parsing).
Notation Zmult_0_r := Z.mul_0_r (only parsing).
Notation Zmult_1_l := Z.mul_1_l (only parsing).
Notation Zmult_1_r := Z.mul_1_r (only parsing).
Notation Zmult_comm := Z.mul_comm (only parsing).
Notation Zmult_assoc := Z.mul_assoc (only parsing).
Notation Zmult_permute := Z.mul_shuffle3 (only parsing).
Notation Zmult_1_inversion_l := Z.mul_eq_1 (only parsing).
Notation Zdouble_mult := Z.double_spec (only parsing).
Notation Zdouble_plus_one_mult := Z.succ_double_spec (only parsing).
Notation Zopp_mult_distr_l_reverse := Z.mul_opp_l (only parsing).
Notation Zmult_opp_opp := Z.mul_opp_opp (only parsing).
Notation Zmult_opp_comm := Z.mul_opp_comm (only parsing).
Notation Zopp_eq_mult_neg_1 := Z.opp_eq_mul_m1 (only parsing).
Notation Zmult_plus_distr_r := Z.mul_add_distr_l (only parsing).
Notation Zmult_plus_distr_l := Z.mul_add_distr_r (only parsing).
Notation Zmult_minus_distr_r := Z.mul_sub_distr_r (only parsing).
Notation Zmult_reg_l := Z.mul_reg_l (only parsing).
Notation Zmult_reg_r := Z.mul_reg_r (only parsing).
Notation Zmult_succ_l := Z.mul_succ_l (only parsing).
Notation Zmult_succ_r := Z.mul_succ_r (only parsing).

Notation Zpos_xI := Pos2Z.inj_xI (only parsing).
Notation Zpos_xO := Pos2Z.inj_xO (only parsing).
Notation Zneg_xI := Pos2Z.neg_xI (only parsing).
Notation Zneg_xO := Pos2Z.neg_xO (only parsing).
Notation Zopp_neg := Pos2Z.opp_neg (only parsing).
Notation Zpos_succ_morphism := Pos2Z.inj_succ (only parsing).
Notation Zpos_mult_morphism := Pos2Z.inj_mul (only parsing).
Notation Zpos_minus_morphism := Pos2Z.inj_sub (only parsing).
Notation Zpos_eq_rev := Pos2Z.inj (only parsing).
Notation Zpos_plus_distr := Pos2Z.inj_add (only parsing).
Notation Zneg_plus_distr := Pos2Z.add_neg_neg (only parsing).

Notation Z := Z (only parsing).
Notation Z_rect := Z_rect (only parsing).
Notation Z_rec := Z_rec (only parsing).
Notation Z_ind := Z_ind (only parsing).
Notation Z0 := Z0 (only parsing).
Notation Zpos := Zpos (only parsing).
Notation Zneg := Zneg (only parsing).

(** Compatibility lemmas. These could be notations,
    but scope information would be lost.
*)

Notation SYM1 lem := (fun n => eq_sym (lem n)).
Notation SYM2 lem := (fun n m => eq_sym (lem n m)).
Notation SYM3 lem := (fun n m p => eq_sym (lem n m p)).

Lemma Zplus_assoc_reverse : forall n m p, n+m+p = n+(m+p).
Proof (SYM3 Z.add_assoc).
Lemma Zplus_succ_r_reverse : forall n m, Z.succ (n+m) = n+Z.succ m.
Proof (SYM2 Z.add_succ_r).
Notation Zplus_succ_r := Zplus_succ_r_reverse (only parsing).
Lemma Zplus_0_r_reverse : forall n, n = n + 0.
Proof (SYM1 Z.add_0_r).
Lemma Zplus_eq_compat : forall n m p q, n=m -> p=q -> n+p=m+q.
Proof (f_equal2 Z.add).
Lemma Zsucc_pred : forall n, n = Z.succ (Z.pred n).
Proof (SYM1 Z.succ_pred).
Lemma Zpred_succ : forall n, n = Z.pred (Z.succ n).
Proof (SYM1 Z.pred_succ).
Lemma Zsucc_eq_compat : forall n m, n = m -> Z.succ n = Z.succ m.
Proof (f_equal Z.succ).
Lemma Zminus_0_l_reverse : forall n, n = n - 0.
Proof (SYM1 Z.sub_0_r).
Lemma Zminus_diag_reverse : forall n, 0 = n-n.
Proof (SYM1 Z.sub_diag).
Lemma Zminus_succ_l : forall n m, Z.succ (n - m) = Z.succ n - m.
Proof (SYM2 Z.sub_succ_l).
Lemma Zplus_minus_eq : forall n m p, n = m + p -> p = n - m.
Proof. intros. now apply Z.add_move_l. Qed.
Lemma Zplus_minus : forall n m, n + (m - n) = m.
Proof (fun n m => eq_trans (Z.add_comm n (m-n)) (Z.sub_add n m)).
Lemma Zminus_plus_simpl_l : forall n m p, p + n - (p + m) = n - m.
Proof (fun n m p => Z.add_add_simpl_l_l p n m).
Lemma Zminus_plus_simpl_l_reverse : forall n m p, n - m = p + n - (p + m).
Proof (SYM3 Zminus_plus_simpl_l).
Lemma Zminus_plus_simpl_r : forall n m p, n + p - (m + p) = n - m.
Proof (fun n m p => Z.add_add_simpl_r_r n p m).
Lemma Zeq_minus : forall n m, n = m -> n - m = 0.
Proof (fun n m => proj2 (Z.sub_move_0_r n m)).
Lemma Zminus_eq : forall n m, n - m = 0 -> n = m.
Proof (fun n m => proj1 (Z.sub_move_0_r n m)).
Lemma Zmult_0_r_reverse : forall n, 0 = n * 0.
Proof (SYM1 Z.mul_0_r).
Lemma Zmult_assoc_reverse : forall n m p, n * m * p = n * (m * p).
Proof (SYM3 Z.mul_assoc).
Lemma Zmult_integral : forall n m, n * m = 0 -> n = 0 \/ m = 0.
Proof (fun n m => proj1 (Z.mul_eq_0 n m)).
Lemma Zmult_integral_l : forall n m, n <> 0 -> m * n = 0 -> m = 0.
Proof (fun n m H H' => Z.mul_eq_0_l m n H' H).
Lemma Zopp_mult_distr_l : forall n m, - (n * m) = - n * m.
Proof (SYM2 Z.mul_opp_l).
Lemma Zopp_mult_distr_r : forall n m, - (n * m) = n * - m.
Proof (SYM2 Z.mul_opp_r).
Lemma Zmult_minus_distr_l : forall n m p, p * (n - m) = p * n - p * m.
Proof (fun n m p => Z.mul_sub_distr_l p n m).
Lemma Zmult_succ_r_reverse : forall n m, n * m + n = n * Z.succ m.
Proof (SYM2 Z.mul_succ_r).
Lemma Zmult_succ_l_reverse : forall n m, n * m + m = Z.succ n * m.
Proof (SYM2 Z.mul_succ_l).
Lemma Zpos_eq : forall p q, p = q -> Z.pos p = Z.pos q.
Proof. congruence. Qed.
Lemma Zpos_eq_iff : forall p q, p = q <-> Z.pos p = Z.pos q.
Proof (fun p q => iff_sym (Pos2Z.inj_iff p q)).

Hint Immediate Zsucc_pred: zarith.

(* Not kept :
Zplus_0_simpl_l
Zplus_0_simpl_l_reverse
Zplus_opp_expand
Zsucc_inj_contrapositive
Zsucc_succ'
Zpred_pred'
*)

(* No compat notation for :
weak_assoc (now Z.add_assoc_pos)
weak_Zmult_plus_distr_r (now Z.mul_add_distr_pos)
*)

(** Obsolete stuff *)

Definition Zne (x y:Z) := x <> y. (* TODO : to remove someday ? *)

Ltac elim_compare com1 com2 :=
  case (Dcompare (com1 ?= com2)%Z);
    [ idtac | let x := fresh "H" in
      (intro x; case x; clear x) ].

Lemma ZL0 : 2%nat = (1 + 1)%nat.
Proof.
  reflexivity.
Qed.

Lemma Zplus_diag_eq_mult_2 n : n + n = n * 2.
Proof.
 rewrite Z.mul_comm. apply Z.add_diag.
Qed.

Lemma Z_eq_mult n m : m = 0 -> m * n = 0.
Proof.
 intros; now subst.
Qed.