summaryrefslogtreecommitdiff
path: root/theories/Wellfounded/Well_Ordering.v
blob: e9a18e7437b13eb918cb42238e26ffceb03df409 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Well_Ordering.v 5920 2004-07-16 20:01:26Z herbelin $ i*)

(** Author: Cristina Cornes.
    From: Constructing Recursion Operators in Type Theory
    L. Paulson  JSC (1986) 2, 325-355 *)

Require Import Eqdep.

Section WellOrdering.
Variable A : Set.
Variable B : A -> Set. 

Inductive WO : Set :=
    sup : forall (a:A) (f:B a -> WO), WO.


Inductive le_WO : WO -> WO -> Prop :=
    le_sup : forall (a:A) (f:B a -> WO) (v:B a), le_WO (f v) (sup a f).
 

Theorem wf_WO : well_founded le_WO.
Proof.
 unfold well_founded in |- *; intro.
 apply Acc_intro.
 elim a.
 intros.
 inversion H0.
 apply Acc_intro.
 generalize H4; generalize H1; generalize f0; generalize v.
 rewrite H3.
 intros.
 apply (H v0 y0).
 cut (f = f1).
 intros E; rewrite E; auto.
 symmetry  in |- *.
 apply (inj_pair2 A (fun a0:A => B a0 -> WO) a0 f1 f H5).
Qed.

End WellOrdering.


Section Characterisation_wf_relations.

(** Wellfounded relations are the inverse image of wellordering types *)
(*  in course of development                                          *)


Variable A : Set.
Variable leA : A -> A -> Prop.

Definition B (a:A) := {x : A | leA x a}.

Definition wof : well_founded leA -> A -> WO A B.
Proof.
 intros.
 apply (well_founded_induction H (fun a:A => WO A B)); auto.
 intros.
 apply (sup A B x).
 unfold B at 1 in |- *.
 destruct 1 as [x0].
 apply (H1 x0); auto.
Qed.

End Characterisation_wf_relations.