summaryrefslogtreecommitdiff
path: root/theories/Wellfounded/Lexicographic_Product.v
blob: 4b8447f496fa83b83f9a2300b8124cbfb30c9e40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** Authors: Bruno Barras, Cristina Cornes *)

Require Import Eqdep.
Require Import Relation_Operators.
Require Import Transitive_Closure.

(**  From : Constructing Recursion Operators in Type Theory
     L. Paulson  JSC (1986) 2, 325-355 *)

Section WfLexicographic_Product.
  Variable A : Type.
  Variable B : A -> Type.
  Variable leA : A -> A -> Prop.
  Variable leB : forall x:A, B x -> B x -> Prop.

  Notation LexProd := (lexprod A B leA leB).

  Lemma acc_A_B_lexprod :
    forall x:A,
      Acc leA x ->
      (forall x0:A, clos_trans A leA x0 x -> well_founded (leB x0)) ->
      forall y:B x, Acc (leB x) y -> Acc LexProd (existT B x y).
  Proof.
    induction 1 as [x _ IHAcc]; intros H2 y.
    induction 1 as [x0 H IHAcc0]; intros.
    apply Acc_intro.
    destruct y as [x2 y1]; intro H6.
    simple inversion H6; intro.
    cut (leA x2 x); intros.
    apply IHAcc; auto with sets.
    intros.
    apply H2.
    apply t_trans with x2; auto with sets.

    red in H2.
    apply H2.
    auto with sets.

    injection H1.
    destruct 2.
    injection H3.
    destruct 2; auto with sets.

    rewrite <- H1.
    injection H3; intros _ Hx1.
    subst x1.
    apply IHAcc0.
    elim inj_pair2 with A B x y' x0; assumption.
  Defined.

  Theorem wf_lexprod :
    well_founded leA ->
    (forall x:A, well_founded (leB x)) -> well_founded LexProd.
  Proof.
    intros wfA wfB; unfold well_founded.
    destruct a.
    apply acc_A_B_lexprod; auto with sets; intros.
    red in wfB.
    auto with sets.
  Defined.


End WfLexicographic_Product.


Section Wf_Symmetric_Product.
  Variable A : Type.
  Variable B : Type.
  Variable leA : A -> A -> Prop.
  Variable leB : B -> B -> Prop.

  Notation Symprod := (symprod A B leA leB).

  Lemma Acc_symprod :
    forall x:A, Acc leA x -> forall y:B, Acc leB y -> Acc Symprod (x, y).
  Proof.
    induction 1 as [x _ IHAcc]; intros y H2.
    induction H2 as [x1 H3 IHAcc1].
    apply Acc_intro; intros y H5.
    inversion_clear H5; auto with sets.
    apply IHAcc; auto.
    apply Acc_intro; trivial.
  Defined.


  Lemma wf_symprod :
    well_founded leA -> well_founded leB -> well_founded Symprod.
  Proof.
    red.
    destruct a.
    apply Acc_symprod; auto with sets.
  Defined.

End Wf_Symmetric_Product.


Section Swap.

  Variable A : Type.
  Variable R : A -> A -> Prop.

  Notation SwapProd := (swapprod A R).


  Lemma swap_Acc : forall x y:A, Acc SwapProd (x, y) -> Acc SwapProd (y, x).
  Proof.
    intros.
    inversion_clear H.
    apply Acc_intro.
    destruct y0; intros.
    inversion_clear H; inversion_clear H1; apply H0.
    apply sp_swap.
    apply right_sym; auto with sets.

    apply sp_swap.
    apply left_sym; auto with sets.

    apply sp_noswap.
    apply right_sym; auto with sets.

    apply sp_noswap.
    apply left_sym; auto with sets.
  Defined.


  Lemma Acc_swapprod :
    forall x y:A, Acc R x -> Acc R y -> Acc SwapProd (x, y).
  Proof.
    induction 1 as [x0 _ IHAcc0]; intros H2.
    cut (forall y0:A, R y0 x0 -> Acc SwapProd (y0, y)).
    clear IHAcc0.
    induction H2 as [x1 _ IHAcc1]; intros H4.
    cut (forall y:A, R y x1 -> Acc SwapProd (x0, y)).
    clear IHAcc1.
    intro.
    apply Acc_intro.
    destruct y; intro H5.
    inversion_clear H5.
    inversion_clear H0; auto with sets.

    apply swap_Acc.
    inversion_clear H0; auto with sets.

    intros.
    apply IHAcc1; auto with sets; intros.
    apply Acc_inv with (y0, x1); auto with sets.
    apply sp_noswap.
    apply right_sym; auto with sets.

    auto with sets.
  Defined.


  Lemma wf_swapprod : well_founded R -> well_founded SwapProd.
  Proof.
    red.
    destruct a; intros.
    apply Acc_swapprod; auto with sets.
  Defined.

End Swap.