summaryrefslogtreecommitdiff
path: root/theories/Structures/OrderedTypeEx.v
blob: 3c6afc7b25f1d5b7ed21d09f97a7a1baf20d4775 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

Require Import OrderedType.
Require Import ZArith.
Require Import Omega.
Require Import NArith Ndec.
Require Import Compare_dec.

(** * Examples of Ordered Type structures. *)

(** First, a particular case of [OrderedType] where
    the equality is the usual one of Coq. *)

Module Type UsualOrderedType.
 Parameter Inline t : Type.
 Definition eq := @eq t.
 Parameter Inline lt : t -> t -> Prop.
 Definition eq_refl := @eq_refl t.
 Definition eq_sym := @eq_sym t.
 Definition eq_trans := @eq_trans t.
 Axiom lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
 Axiom lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
 Parameter compare : forall x y : t, Compare lt eq x y.
 Parameter eq_dec : forall x y : t, { eq x y } + { ~ eq x y }.
End UsualOrderedType.

(** a [UsualOrderedType] is in particular an [OrderedType]. *)

Module UOT_to_OT (U:UsualOrderedType) <: OrderedType := U.

(** [nat] is an ordered type with respect to the usual order on natural numbers. *)

Module Nat_as_OT <: UsualOrderedType.

  Definition t := nat.

  Definition eq := @eq nat.
  Definition eq_refl := @eq_refl t.
  Definition eq_sym := @eq_sym t.
  Definition eq_trans := @eq_trans t.

  Definition lt := lt.

  Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
  Proof. unfold lt; intros; apply lt_trans with y; auto. Qed.

  Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
  Proof. unfold lt, eq; intros; omega. Qed.

  Definition compare x y : Compare lt eq x y.
  Proof.
    case_eq (nat_compare x y); intro.
    - apply EQ. now apply nat_compare_eq.
    - apply LT. now apply nat_compare_Lt_lt.
    - apply GT. now apply nat_compare_Gt_gt.
  Defined.

  Definition eq_dec := eq_nat_dec.

End Nat_as_OT.


(** [Z] is an ordered type with respect to the usual order on integers. *)

Local Open Scope Z_scope.

Module Z_as_OT <: UsualOrderedType.

  Definition t := Z.
  Definition eq := @eq Z.
  Definition eq_refl := @eq_refl t.
  Definition eq_sym := @eq_sym t.
  Definition eq_trans := @eq_trans t.

  Definition lt (x y:Z) := (x<y).

  Lemma lt_trans : forall x y z, x<y -> y<z -> x<z.
  Proof. intros; omega. Qed.

  Lemma lt_not_eq : forall x y, x<y -> ~ x=y.
  Proof. intros; omega. Qed.

  Definition compare x y : Compare lt eq x y.
  Proof.
    case_eq (x ?= y); intro.
    - apply EQ. now apply Z.compare_eq.
    - apply LT. assumption.
    - apply GT. now apply Z.gt_lt.
  Defined.

  Definition eq_dec := Z.eq_dec.

End Z_as_OT.

(** [positive] is an ordered type with respect to the usual order on natural numbers. *)

Local Open Scope positive_scope.

Module Positive_as_OT <: UsualOrderedType.
  Definition t:=positive.
  Definition eq:=@eq positive.
  Definition eq_refl := @eq_refl t.
  Definition eq_sym := @eq_sym t.
  Definition eq_trans := @eq_trans t.

  Definition lt := Pos.lt.

  Definition lt_trans := Pos.lt_trans.

  Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
  Proof.
  intros x y H. contradict H. rewrite H. apply Pos.lt_irrefl.
  Qed.

  Definition compare x y : Compare lt eq x y.
  Proof.
  case_eq (x ?= y); intros H.
  - apply EQ. now apply Pos.compare_eq.
  - apply LT; assumption.
  - apply GT. now apply Pos.gt_lt.
  Defined.

  Definition eq_dec := Pos.eq_dec.

End Positive_as_OT.


(** [N] is an ordered type with respect to the usual order on natural numbers. *)

Module N_as_OT <: UsualOrderedType.
  Definition t:=N.
  Definition eq:=@eq N.
  Definition eq_refl := @eq_refl t.
  Definition eq_sym := @eq_sym t.
  Definition eq_trans := @eq_trans t.

  Definition lt := N.lt.
  Definition lt_trans := N.lt_trans.
  Definition lt_not_eq := N.lt_neq.

  Definition compare x y : Compare lt eq x y.
  Proof.
  case_eq (x ?= y)%N; intro.
  - apply EQ. now apply N.compare_eq.
  - apply LT. assumption.
  - apply GT. now apply N.gt_lt.
  Defined.

  Definition eq_dec := N.eq_dec.

End N_as_OT.


(** From two ordered types, we can build a new OrderedType
   over their cartesian product, using the lexicographic order. *)

Module PairOrderedType(O1 O2:OrderedType) <: OrderedType.
 Module MO1:=OrderedTypeFacts(O1).
 Module MO2:=OrderedTypeFacts(O2).

 Definition t := prod O1.t O2.t.

 Definition eq x y := O1.eq (fst x) (fst y) /\ O2.eq (snd x) (snd y).

 Definition lt x y :=
    O1.lt (fst x) (fst y) \/
    (O1.eq (fst x) (fst y) /\ O2.lt (snd x) (snd y)).

 Lemma eq_refl : forall x : t, eq x x.
 Proof.
 intros (x1,x2); red; simpl; auto.
 Qed.

 Lemma eq_sym : forall x y : t, eq x y -> eq y x.
 Proof.
 intros (x1,x2) (y1,y2); unfold eq; simpl; intuition.
 Qed.

 Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
 Proof.
 intros (x1,x2) (y1,y2) (z1,z2); unfold eq; simpl; intuition eauto.
 Qed.

 Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
 Proof.
 intros (x1,x2) (y1,y2) (z1,z2); unfold eq, lt; simpl; intuition.
 left; eauto.
 left; eapply MO1.lt_eq; eauto.
 left; eapply MO1.eq_lt; eauto.
 right; split; eauto.
 Qed.

 Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
 Proof.
 intros (x1,x2) (y1,y2); unfold eq, lt; simpl; intuition.
 apply (O1.lt_not_eq H0 H1).
 apply (O2.lt_not_eq H3 H2).
 Qed.

 Definition compare : forall x y : t, Compare lt eq x y.
 intros (x1,x2) (y1,y2).
 destruct (O1.compare x1 y1).
 apply LT; unfold lt; auto.
 destruct (O2.compare x2 y2).
 apply LT; unfold lt; auto.
 apply EQ; unfold eq; auto.
 apply GT; unfold lt; auto.
 apply GT; unfold lt; auto.
 Defined.

 Definition eq_dec : forall x y : t, {eq x y} + {~ eq x y}.
 Proof.
 intros; elim (compare x y); intro H; [ right | left | right ]; auto.
 auto using lt_not_eq.
 assert (~ eq y x); auto using lt_not_eq, eq_sym.
 Defined.

End PairOrderedType.


(** Even if [positive] can be seen as an ordered type with respect to the
  usual order (see above), we can also use a lexicographic order over bits
  (lower bits are considered first). This is more natural when using
  [positive] as indexes for sets or maps (see FSetPositive and FMapPositive. *)

Module PositiveOrderedTypeBits <: UsualOrderedType.
  Definition t:=positive.
  Definition eq:=@eq positive.
  Definition eq_refl := @eq_refl t.
  Definition eq_sym := @eq_sym t.
  Definition eq_trans := @eq_trans t.

  Fixpoint bits_lt (p q:positive) : Prop :=
   match p, q with
   | xH, xI _ => True
   | xH, _ => False
   | xO p, xO q => bits_lt p q
   | xO _, _ => True
   | xI p, xI q => bits_lt p q
   | xI _, _ => False
   end.

  Definition lt:=bits_lt.

  Lemma bits_lt_trans :
    forall x y z : positive, bits_lt x y -> bits_lt y z -> bits_lt x z.
  Proof.
  induction x.
  induction y; destruct z; simpl; eauto; intuition.
  induction y; destruct z; simpl; eauto; intuition.
  induction y; destruct z; simpl; eauto; intuition.
  Qed.

  Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
  Proof.
  exact bits_lt_trans.
  Qed.

  Lemma bits_lt_antirefl : forall x : positive, ~ bits_lt x x.
  Proof.
  induction x; simpl; auto.
  Qed.

  Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
  Proof.
  intros; intro.
  rewrite <- H0 in H; clear H0 y.
  unfold lt in H.
  exact (bits_lt_antirefl x H).
  Qed.

  Definition compare : forall x y : t, Compare lt eq x y.
  Proof.
  induction x; destruct y.
  - (* I I *)
    destruct (IHx y) as [l|e|g].
    apply LT; auto.
    apply EQ; rewrite e; red; auto.
    apply GT; auto.
  - (* I O *)
    apply GT; simpl; auto.
  - (* I H *)
    apply GT; simpl; auto.
  - (* O I *)
    apply LT; simpl; auto.
  - (* O O *)
    destruct (IHx y) as [l|e|g].
    apply LT; auto.
    apply EQ; rewrite e; red; auto.
    apply GT; auto.
  - (* O H *)
    apply LT; simpl; auto.
  - (* H I *)
    apply LT; simpl; auto.
  - (* H O *)
    apply GT; simpl; auto.
  - (* H H *)
    apply EQ; red; auto.
  Qed.

  Lemma eq_dec (x y: positive): {x = y} + {x <> y}.
  Proof.
  intros. case_eq (x ?= y); intros.
  - left. now apply Pos.compare_eq.
  - right. intro. subst y. now rewrite (Pos.compare_refl x) in *.
  - right. intro. subst y. now rewrite (Pos.compare_refl x) in *.
  Qed.

End PositiveOrderedTypeBits.