summaryrefslogtreecommitdiff
path: root/theories/Structures/Equalities.v
blob: 487b1d0cc0c1bce4375680893012a096abc730ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id$ *)

Require Export RelationClasses.

Set Implicit Arguments.
Unset Strict Implicit.

(** * Structure with just a base type [t] *)

Module Type Typ.
  Parameter Inline t : Type.
End Typ.

(** * Structure with an equality relation [eq] *)

Module Type HasEq (Import T:Typ).
  Parameter Inline eq : t -> t -> Prop.
End HasEq.

Module Type Eq := Typ <+ HasEq.

Module Type EqNotation (Import E:Eq).
  Infix "==" := eq (at level 70, no associativity).
  Notation "x ~= y" := (~eq x y) (at level 70, no associativity).
End EqNotation.

Module Type Eq' := Eq <+ EqNotation.

(** * Specification of the equality via the [Equivalence] type class *)

Module Type IsEq (Import E:Eq).
  Declare Instance eq_equiv : Equivalence eq.
End IsEq.

(** * Earlier specification of equality by three separate lemmas. *)

Module Type IsEqOrig (Import E:Eq').
  Axiom eq_refl : forall x : t, x==x.
  Axiom eq_sym : forall x y : t, x==y -> y==x.
  Axiom eq_trans : forall x y z : t, x==y -> y==z -> x==z.
  Hint Immediate eq_sym.
  Hint Resolve eq_refl eq_trans.
End IsEqOrig.

(** * Types with decidable equality *)

Module Type HasEqDec (Import E:Eq').
  Parameter eq_dec : forall x y : t, { x==y } + { ~ x==y }.
End HasEqDec.

(** * Boolean Equality *)

(** Having [eq_dec] is the same as having a boolean equality plus
    a correctness proof. *)

Module Type HasEqBool (Import E:Eq').
  Parameter Inline eqb : t -> t -> bool.
  Parameter eqb_eq : forall x y, eqb x y = true <-> x==y.
End HasEqBool.

(** From these basic blocks, we can build many combinations
    of static standalone module types. *)

Module Type EqualityType := Eq <+ IsEq.

Module Type EqualityTypeOrig := Eq <+ IsEqOrig.

Module Type EqualityTypeBoth <: EqualityType <: EqualityTypeOrig
 := Eq <+ IsEq <+ IsEqOrig.

Module Type DecidableType <: EqualityType
 := Eq <+ IsEq <+ HasEqDec.

Module Type DecidableTypeOrig <: EqualityTypeOrig
 := Eq <+ IsEqOrig <+ HasEqDec.

Module Type DecidableTypeBoth <: DecidableType <: DecidableTypeOrig
 := EqualityTypeBoth <+ HasEqDec.

Module Type BooleanEqualityType <: EqualityType
 := Eq <+ IsEq <+ HasEqBool.

Module Type BooleanDecidableType <: DecidableType <: BooleanEqualityType
 := Eq <+ IsEq <+ HasEqDec <+ HasEqBool.

Module Type DecidableTypeFull <: DecidableTypeBoth <: BooleanDecidableType
 := Eq <+ IsEq <+ IsEqOrig <+ HasEqDec <+ HasEqBool.

(** Same, with notation for [eq] *)

Module Type EqualityType' := EqualityType <+ EqNotation.
Module Type EqualityTypeOrig' := EqualityTypeOrig <+ EqNotation.
Module Type EqualityTypeBoth' := EqualityTypeBoth <+ EqNotation.
Module Type DecidableType' := DecidableType <+ EqNotation.
Module Type DecidableTypeOrig' := DecidableTypeOrig <+ EqNotation.
Module Type DecidableTypeBoth' := DecidableTypeBoth <+ EqNotation.
Module Type BooleanEqualityType' := BooleanEqualityType <+ EqNotation.
Module Type BooleanDecidableType' := BooleanDecidableType <+ EqNotation.
Module Type DecidableTypeFull' := DecidableTypeFull <+ EqNotation.

(** * Compatibility wrapper from/to the old version of
      [EqualityType] and [DecidableType] *)

Module BackportEq (E:Eq)(F:IsEq E) <: IsEqOrig E.
 Definition eq_refl := @Equivalence_Reflexive _ _ F.eq_equiv.
 Definition eq_sym := @Equivalence_Symmetric _ _ F.eq_equiv.
 Definition eq_trans := @Equivalence_Transitive _ _ F.eq_equiv.
End BackportEq.

Module UpdateEq (E:Eq)(F:IsEqOrig E) <: IsEq E.
 Instance eq_equiv : Equivalence E.eq.
 Proof. exact (Build_Equivalence _ _ F.eq_refl F.eq_sym F.eq_trans). Qed.
End UpdateEq.

Module Backport_ET (E:EqualityType) <: EqualityTypeBoth
 := E <+ BackportEq.

Module Update_ET (E:EqualityTypeOrig) <: EqualityTypeBoth
 := E <+ UpdateEq.

Module Backport_DT (E:DecidableType) <: DecidableTypeBoth
 := E <+ BackportEq.

Module Update_DT (E:DecidableTypeOrig) <: DecidableTypeBoth
 := E <+ UpdateEq.


(** * Having [eq_dec] is equivalent to having [eqb] and its spec. *)

Module HasEqDec2Bool (E:Eq)(F:HasEqDec E) <: HasEqBool E.
 Definition eqb x y := if F.eq_dec x y then true else false.
 Lemma eqb_eq : forall x y, eqb x y = true <-> E.eq x y.
 Proof.
  intros x y. unfold eqb. destruct F.eq_dec as [EQ|NEQ].
  auto with *.
  split. discriminate. intro EQ; elim NEQ; auto.
 Qed.
End HasEqDec2Bool.

Module HasEqBool2Dec (E:Eq)(F:HasEqBool E) <: HasEqDec E.
 Lemma eq_dec : forall x y, {E.eq x y}+{~E.eq x y}.
 Proof.
  intros x y. assert (H:=F.eqb_eq x y).
  destruct (F.eqb x y); [left|right].
  apply -> H; auto.
  intro EQ. apply H in EQ. discriminate.
 Defined.
End HasEqBool2Dec.

Module Dec2Bool (E:DecidableType) <: BooleanDecidableType
 := E <+ HasEqDec2Bool.

Module Bool2Dec (E:BooleanEqualityType) <: BooleanDecidableType
 := E <+ HasEqBool2Dec.



(** * UsualDecidableType

   A particular case of [DecidableType] where the equality is
   the usual one of Coq. *)

Module Type HasUsualEq (Import T:Typ) <: HasEq T.
 Definition eq := @Logic.eq t.
End HasUsualEq.

Module Type UsualEq <: Eq := Typ <+ HasUsualEq.

Module Type UsualIsEq (E:UsualEq) <: IsEq E.
 (* No Instance syntax to avoid saturating the Equivalence tables *)
 Lemma eq_equiv : Equivalence E.eq.
 Proof. exact eq_equivalence. Qed.
End UsualIsEq.

Module Type UsualIsEqOrig (E:UsualEq) <: IsEqOrig E.
 Definition eq_refl := @Logic.eq_refl E.t.
 Definition eq_sym := @Logic.eq_sym E.t.
 Definition eq_trans := @Logic.eq_trans E.t.
End UsualIsEqOrig.

Module Type UsualEqualityType <: EqualityType
 := UsualEq <+ UsualIsEq.

Module Type UsualDecidableType <: DecidableType
 := UsualEq <+ UsualIsEq <+ HasEqDec.

Module Type UsualDecidableTypeOrig <: DecidableTypeOrig
 := UsualEq <+ UsualIsEqOrig <+ HasEqDec.

Module Type UsualDecidableTypeBoth <: DecidableTypeBoth
 := UsualEq <+ UsualIsEq <+ UsualIsEqOrig <+ HasEqDec.

Module Type UsualBoolEq := UsualEq <+ HasEqBool.

Module Type UsualDecidableTypeFull <: DecidableTypeFull
 := UsualEq <+ UsualIsEq <+ UsualIsEqOrig <+ HasEqDec <+ HasEqBool.


(** Some shortcuts for easily building a [UsualDecidableType] *)

Module Type MiniDecidableType.
 Include Typ.
 Parameter eq_dec : forall x y : t, {x=y}+{~x=y}.
End MiniDecidableType.

Module Make_UDT (M:MiniDecidableType) <: UsualDecidableTypeBoth
 := M <+ HasUsualEq <+ UsualIsEq <+ UsualIsEqOrig.

Module Make_UDTF (M:UsualBoolEq) <: UsualDecidableTypeFull
 := M <+ UsualIsEq <+ UsualIsEqOrig <+ HasEqBool2Dec.