summaryrefslogtreecommitdiff
path: root/theories/Structures/DecidableType.v
blob: 24333ad8152a6c74eebc31eec6d493cae273f924 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Export SetoidList.
Require Equalities.

Set Implicit Arguments.
Unset Strict Implicit.

(** NB: This file is here only for compatibility with earlier version of
    [FSets] and [FMap]. Please use [Structures/Equalities.v] directly now. *)

(** * Types with Equalities, and nothing more (for subtyping purpose) *)

Module Type EqualityType := Equalities.EqualityTypeOrig.

(** * Types with decidable Equalities (but no ordering) *)

Module Type DecidableType := Equalities.DecidableTypeOrig.

(** * Additional notions about keys and datas used in FMap *)

Module KeyDecidableType(D:DecidableType).
 Import D.

 Section Elt.
 Variable elt : Type.
 Notation key:=t.

  Definition eqk (p p':key*elt) := eq (fst p) (fst p').
  Definition eqke (p p':key*elt) :=
          eq (fst p) (fst p') /\ (snd p) = (snd p').

  Hint Unfold eqk eqke.
  Hint Extern 2 (eqke ?a ?b) => split.

   (* eqke is stricter than eqk *)

   Lemma eqke_eqk : forall x x', eqke x x' -> eqk x x'.
   Proof.
     unfold eqk, eqke; intuition.
   Qed.

  (* eqk, eqke are equalities *)

  Lemma eqk_refl : forall e, eqk e e.
  Proof. auto. Qed.

  Lemma eqke_refl : forall e, eqke e e.
  Proof. auto. Qed.

  Lemma eqk_sym : forall e e', eqk e e' -> eqk e' e.
  Proof. auto. Qed.

  Lemma eqke_sym : forall e e', eqke e e' -> eqke e' e.
  Proof. unfold eqke; intuition. Qed.

  Lemma eqk_trans : forall e e' e'', eqk e e' -> eqk e' e'' -> eqk e e''.
  Proof. eauto. Qed.

  Lemma eqke_trans : forall e e' e'', eqke e e' -> eqke e' e'' -> eqke e e''.
  Proof.
    unfold eqke; intuition; [ eauto | congruence ].
  Qed.

  Hint Resolve eqk_trans eqke_trans eqk_refl eqke_refl.
  Hint Immediate eqk_sym eqke_sym.

  Global Instance eqk_equiv : Equivalence eqk.
  Proof. split; eauto. Qed.

  Global Instance eqke_equiv : Equivalence eqke.
  Proof. split; eauto. Qed.

  Lemma InA_eqke_eqk :
     forall x m, InA eqke x m -> InA eqk x m.
  Proof.
    unfold eqke; induction 1; intuition. 
  Qed.
  Hint Resolve InA_eqke_eqk.

  Lemma InA_eqk : forall p q m, eqk p q -> InA eqk p m -> InA eqk q m.
  Proof.
   intros; apply InA_eqA with p; auto using eqk_equiv.
  Qed.

  Definition MapsTo (k:key)(e:elt):= InA eqke (k,e).
  Definition In k m := exists e:elt, MapsTo k e m.

  Hint Unfold MapsTo In.

  (* An alternative formulation for [In k l] is [exists e, InA eqk (k,e) l] *)

  Lemma In_alt : forall k l, In k l <-> exists e, InA eqk (k,e) l.
  Proof.
  firstorder.
  exists x; auto.
  induction H.
  destruct y.
  exists e; auto.
  destruct IHInA as [e H0].
  exists e; auto.
  Qed.

  Lemma MapsTo_eq : forall l x y e, eq x y -> MapsTo x e l -> MapsTo y e l.
  Proof.
    intros; unfold MapsTo in *; apply InA_eqA with (x,e); auto using eqke_equiv.
  Qed.

  Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
  Proof.
  destruct 2 as (e,E); exists e; eapply MapsTo_eq; eauto.
  Qed.

  Lemma In_inv : forall k k' e l, In k ((k',e) :: l) -> eq k k' \/ In k l.
  Proof.
    inversion 1.
    inversion_clear H0; eauto.
    destruct H1; simpl in *; intuition.
  Qed.

  Lemma In_inv_2 : forall k k' e e' l,
      InA eqk (k, e) ((k', e') :: l) -> ~ eq k k' -> InA eqk (k, e) l.
  Proof.
   inversion_clear 1; compute in H0; intuition.
  Qed.

  Lemma In_inv_3 : forall x x' l,
      InA eqke x (x' :: l) -> ~ eqk x x' -> InA eqke x l.
  Proof.
   inversion_clear 1; compute in H0; intuition.
  Qed.

 End Elt.

 Hint Unfold eqk eqke.
 Hint Extern 2 (eqke ?a ?b) => split.
 Hint Resolve eqk_trans eqke_trans eqk_refl eqke_refl.
 Hint Immediate eqk_sym eqke_sym.
 Hint Resolve InA_eqke_eqk.
 Hint Unfold MapsTo In.
 Hint Resolve In_inv_2 In_inv_3.

End KeyDecidableType.