summaryrefslogtreecommitdiff
path: root/theories/Strings/String.v
blob: be9a10c6dc8a565266ae1125b5fb4e7c562a44c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(** Contributed by Laurent Théry (INRIA);
    Adapted to Coq V8 by the Coq Development Team *)

Require Import Arith.
Require Import Ascii.
Require Import Bool.
Declare ML Module "string_syntax_plugin".

(** *** Definition of strings *)

(** Implementation of string as list of ascii characters *)

Inductive string : Set :=
  | EmptyString : string
  | String : ascii -> string -> string.

Delimit Scope string_scope with string.
Bind Scope string_scope with string.
Local Open Scope string_scope.

(** Equality is decidable *)

Definition string_dec : forall s1 s2 : string, {s1 = s2} + {s1 <> s2}.
Proof.
 decide equality; apply ascii_dec.
Defined.

Local Open Scope lazy_bool_scope.

Fixpoint eqb s1 s2 : bool :=
 match s1, s2 with
 | EmptyString, EmptyString => true
 | String c1 s1', String c2 s2' => Ascii.eqb c1 c2 &&& eqb s1' s2'
 | _,_ => false
 end.

Infix "=?" := eqb : string_scope.

Lemma eqb_spec s1 s2 : Bool.reflect (s1 = s2) (s1 =? s2)%string.
Proof.
 revert s2. induction s1; destruct s2; try (constructor; easy); simpl.
 case Ascii.eqb_spec; simpl; [intros -> | constructor; now intros [= ]].
 case IHs1; [intros ->; now constructor | constructor; now intros [= ]].
Qed.

Local Ltac t_eqb :=
  repeat first [ congruence
               | progress subst
               | apply conj
               | match goal with
                 | [ |- context[eqb ?x ?y] ] => destruct (eqb_spec x y)
                 end
               | intro ].
Lemma eqb_refl x : (x =? x)%string = true. Proof. t_eqb. Qed.
Lemma eqb_sym x y : (x =? y)%string = (y =? x)%string. Proof. t_eqb. Qed.
Lemma eqb_eq n m : (n =? m)%string = true <-> n = m. Proof. t_eqb. Qed.
Lemma eqb_neq x y : (x =? y)%string = false <-> x <> y. Proof. t_eqb. Qed.
Lemma eqb_compat: Morphisms.Proper (Morphisms.respectful eq (Morphisms.respectful eq eq)) eqb.
Proof. t_eqb. Qed.

(** *** Concatenation of strings *)

Reserved Notation "x ++ y" (right associativity, at level 60).

Fixpoint append (s1 s2 : string) : string :=
  match s1 with
  | EmptyString => s2
  | String c s1' => String c (s1' ++ s2)
  end
where "s1 ++ s2" := (append s1 s2) : string_scope.

(******************************)
(** Length                    *)
(******************************)

Fixpoint length (s : string) : nat :=
  match s with
  | EmptyString => 0
  | String c s' => S (length s')
  end.

(******************************)
(** Nth character of a string *)
(******************************)

Fixpoint get (n : nat) (s : string) {struct s} : option ascii :=
  match s with
  | EmptyString => None
  | String c s' => match n with
                   | O => Some c
                   | S n' => get n' s'
                   end
  end.

(** Two lists that are identical through get are syntactically equal *)

Theorem get_correct :
  forall s1 s2 : string, (forall n : nat, get n s1 = get n s2) <-> s1 = s2.
Proof.
intros s1; elim s1; simpl.
intros s2; case s2; simpl; split; auto.
intros H; generalize (H 0); intros H1; inversion H1.
intros; discriminate.
intros a s1' Rec s2; case s2; simpl; split; auto.
intros H; generalize (H 0); intros H1; inversion H1.
intros; discriminate.
intros H; generalize (H 0); simpl; intros H1; inversion H1.
case (Rec s).
intros H0; rewrite H0; auto.
intros n; exact (H (S n)).
intros H; injection H as H1 H2.
rewrite H2; trivial.
rewrite H1; auto.
Qed.

(** The first elements of [s1 ++ s2] are the ones of [s1] *)

Theorem append_correct1 :
 forall (s1 s2 : string) (n : nat),
 n < length s1 -> get n s1 = get n (s1 ++ s2).
Proof.
intros s1; elim s1; simpl; auto.
intros s2 n H; inversion H.
intros a s1' Rec s2 n; case n; simpl; auto.
intros n0 H; apply Rec; auto.
apply lt_S_n; auto.
Qed.

(** The last elements of [s1 ++ s2] are the ones of [s2] *)

Theorem append_correct2 :
 forall (s1 s2 : string) (n : nat),
 get n s2 = get (n + length s1) (s1 ++ s2).
Proof.
intros s1; elim s1; simpl; auto.
intros s2 n; rewrite plus_comm; simpl; auto.
intros a s1' Rec s2 n; case n; simpl; auto.
generalize (Rec s2 0); simpl; auto. intros.
rewrite <- Plus.plus_Snm_nSm; auto.
Qed.

(** *** Substrings *)

(** [substring n m s] returns the substring of [s] that starts
    at position [n] and of length [m];
    if this does not make sense it returns [""] *)

Fixpoint substring (n m : nat) (s : string) : string :=
  match n, m, s with
  | 0, 0, _ => EmptyString
  | 0, S m', EmptyString => s
  | 0, S m', String c s' => String c (substring 0 m' s')
  | S n', _, EmptyString => s
  | S n', _, String c s' => substring n' m s'
  end.

(** The substring is included in the initial string *)

Theorem substring_correct1 :
 forall (s : string) (n m p : nat),
 p < m -> get p (substring n m s) = get (p + n) s.
Proof.
intros s; elim s; simpl; auto.
intros n; case n; simpl; auto.
intros m; case m; simpl; auto.
intros a s' Rec; intros n; case n; simpl; auto.
intros m; case m; simpl; auto.
intros p H; inversion H.
intros m' p; case p; simpl; auto.
intros n0 H; apply Rec; simpl; auto.
apply Lt.lt_S_n; auto.
intros n' m p H; rewrite <- Plus.plus_Snm_nSm; simpl; auto.
Qed.

(** The substring has at most [m] elements *)

Theorem substring_correct2 :
 forall (s : string) (n m p : nat), m <= p -> get p (substring n m s) = None.
Proof.
intros s; elim s; simpl; auto.
intros n; case n; simpl; auto.
intros m; case m; simpl; auto.
intros a s' Rec; intros n; case n; simpl; auto.
intros m; case m; simpl; auto.
intros m' p; case p; simpl; auto.
intros H; inversion H.
intros n0 H; apply Rec; simpl; auto.
apply Le.le_S_n; auto.
Qed.

(** *** Concatenating lists of strings *)

(** [concat sep sl] concatenates the list of strings [sl], inserting
    the separator string [sep] between each. *)

Fixpoint concat (sep : string) (ls : list string) :=
  match ls with
  | nil => EmptyString
  | cons x nil => x
  | cons x xs => x ++ sep ++ concat sep xs
  end.

(** *** Test functions *)

(** Test if [s1] is a prefix of [s2] *)

Fixpoint prefix (s1 s2 : string) {struct s2} : bool :=
  match s1 with
  | EmptyString => true
  | String a s1' =>
      match s2 with
      | EmptyString => false
      | String b s2' =>
          match ascii_dec a b with
          | left _ => prefix s1' s2'
          | right _ => false
          end
      end
  end.

(** If [s1] is a prefix of [s2], it is the [substring] of length
    [length s1] starting at position [O] of [s2] *)

Theorem prefix_correct :
 forall s1 s2 : string,
 prefix s1 s2 = true <-> substring 0 (length s1) s2 = s1.
Proof.
intros s1; elim s1; simpl; auto.
intros s2; case s2; simpl; split; auto.
intros a s1' Rec s2; case s2; simpl; auto.
split; intros; discriminate.
intros b s2'; case (ascii_dec a b); simpl; auto.
intros e; case (Rec s2'); intros H1 H2; split; intros H3; auto.
rewrite e; rewrite H1; auto.
apply H2; injection H3; auto.
intros n; split; intros; try discriminate.
case n; injection H; auto.
Qed.

(** Test if, starting at position [n], [s1] occurs in [s2]; if
    so it returns the position *)

Fixpoint index (n : nat) (s1 s2 : string) : option nat :=
  match s2, n with
  | EmptyString, 0 =>
      match s1 with
      | EmptyString => Some 0
      | String a s1' => None
      end
  | EmptyString, S n' => None
  | String b s2', 0 =>
      if prefix s1 s2 then Some 0
      else
        match index 0 s1 s2' with
        | Some n => Some (S n)
        | None => None
        end
   | String b s2', S n' =>
      match index n' s1 s2' with
      | Some n => Some (S n)
      | None => None
      end
  end.

(* Dirty trick to avoid locally that prefix reduces itself *)
Opaque prefix.

(** If the result of [index] is [Some m], [s1] in [s2] at position [m] *)

Theorem index_correct1 :
 forall (n m : nat) (s1 s2 : string),
 index n s1 s2 = Some m -> substring m (length s1) s2 = s1.
Proof.
intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl;
 auto.
intros n; case n; simpl; auto.
intros m s1; case s1; simpl; auto.
intros H; injection H as <-; auto.
intros; discriminate.
intros; discriminate.
intros b s2' Rec n m s1.
case n; simpl; auto.
generalize (prefix_correct s1 (String b s2'));
 case (prefix s1 (String b s2')).
intros H0 H; injection H as <-; auto.
case H0; simpl; auto.
case m; simpl; auto.
case (index 0 s1 s2'); intros; discriminate.
intros m'; generalize (Rec 0 m' s1); case (index 0 s1 s2'); auto.
intros x H H0 H1; apply H; injection H1; auto.
intros; discriminate.
intros n'; case m; simpl; auto.
case (index n' s1 s2'); intros; discriminate.
intros m'; generalize (Rec n' m' s1); case (index n' s1 s2'); auto.
intros x H H1; apply H; injection H1; auto.
intros; discriminate.
Qed.

(** If the result of [index] is [Some m],
    [s1] does not occur in [s2] before [m] *)

Theorem index_correct2 :
 forall (n m : nat) (s1 s2 : string),
 index n s1 s2 = Some m ->
 forall p : nat, n <= p -> p < m -> substring p (length s1) s2 <> s1.
Proof.
intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl;
 auto.
intros n; case n; simpl; auto.
intros m s1; case s1; simpl; auto.
intros H; injection H as <-.
intros p H0 H2; inversion H2.
intros; discriminate.
intros; discriminate.
intros b s2' Rec n m s1.
case n; simpl; auto.
generalize (prefix_correct s1 (String b s2'));
 case (prefix s1 (String b s2')).
intros H0 H; injection H as <-; auto.
intros p H2 H3; inversion H3.
case m; simpl; auto.
case (index 0 s1 s2'); intros; discriminate.
intros m'; generalize (Rec 0 m' s1); case (index 0 s1 s2'); auto.
intros x H H0 H1 p; try case p; simpl; auto.
intros H2 H3; red; intros H4; case H0.
intros H5 H6; absurd (false = true); auto with bool.
intros n0 H2 H3; apply H; auto.
injection H1; auto.
apply Le.le_O_n.
apply Lt.lt_S_n; auto.
intros; discriminate.
intros n'; case m; simpl; auto.
case (index n' s1 s2'); intros; discriminate.
intros m'; generalize (Rec n' m' s1); case (index n' s1 s2'); auto.
intros x H H0 p; case p; simpl; auto.
intros H1; inversion H1; auto.
intros n0 H1 H2; apply H; auto.
injection H0; auto.
apply Le.le_S_n; auto.
apply Lt.lt_S_n; auto.
intros; discriminate.
Qed.

(** If the result of [index] is [None], [s1] does not occur in [s2]
    after [n] *)

Theorem index_correct3 :
 forall (n m : nat) (s1 s2 : string),
 index n s1 s2 = None ->
 s1 <> EmptyString -> n <= m -> substring m (length s1) s2 <> s1.
Proof.
intros n m s1 s2; generalize n m s1; clear n m s1; elim s2; simpl;
 auto.
intros n; case n; simpl; auto.
intros m s1; case s1; simpl; auto.
case m; intros; red; intros; discriminate.
intros n' m; case m; auto.
intros s1; case s1; simpl; auto.
intros b s2' Rec n m s1.
case n; simpl; auto.
generalize (prefix_correct s1 (String b s2'));
 case (prefix s1 (String b s2')).
intros; discriminate.
case m; simpl; auto with bool.
case s1; simpl; auto.
intros a s H H0 H1 H2; red; intros H3; case H.
intros H4 H5; absurd (false = true); auto with bool.
case s1; simpl; auto.
intros a s n0 H H0 H1 H2;
 change (substring n0 (length (String a s)) s2' <> String a s);
 apply (Rec 0); auto.
generalize H0; case (index 0 (String a s) s2'); simpl; auto; intros;
 discriminate.
apply Le.le_O_n.
intros n'; case m; simpl; auto.
intros H H0 H1; inversion H1.
intros n0 H H0 H1; apply (Rec n'); auto.
generalize H; case (index n' s1 s2'); simpl; auto; intros;
 discriminate.
apply Le.le_S_n; auto.
Qed.

(* Back to normal for prefix *)
Transparent prefix.

(** If we are searching for the [Empty] string and the answer is no
    this means that [n] is greater than the size of [s] *)

Theorem index_correct4 :
 forall (n : nat) (s : string),
 index n EmptyString s = None -> length s < n.
Proof.
intros n s; generalize n; clear n; elim s; simpl; auto.
intros n; case n; simpl; auto.
intros; discriminate.
intros; apply Lt.lt_O_Sn.
intros a s' H n; case n; simpl; auto.
intros; discriminate.
intros n'; generalize (H n'); case (index n' EmptyString s'); simpl;
 auto.
intros; discriminate.
intros H0 H1; apply Lt.lt_n_S; auto.
Qed.

(** Same as [index] but with no optional type, we return [0] when it
    does not occur *)

Definition findex n s1 s2 :=
  match index n s1 s2 with
  | Some n => n
  | None => 0
  end.

(** *** Concrete syntax *)

(**
  The concrete syntax for strings in scope string_scope follows the
  Coq convention for strings: all ascii characters of code less than
  128 are literals to the exception of the character `double quote'
  which must be doubled.

  Strings that involve ascii characters of code >= 128 which are not
  part of a valid utf8 sequence of characters are not representable
  using the Coq string notation (use explicitly the String constructor
  with the ascii codes of the characters).
*)

Example HelloWorld := "	""Hello world!""
".