summaryrefslogtreecommitdiff
path: root/theories/Sorting/Permutation.v
blob: 43a0f0bc9ece1ebb69375a95c65ecc33c9e3559a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Permutation.v,v 1.4.2.1 2004/07/16 19:31:19 herbelin Exp $ i*)

Require Import Relations.
Require Import List.
Require Import Multiset.

Set Implicit Arguments.

Section defs.

Variable A : Set.
Variable leA : relation A.
Variable eqA : relation A.

Let gtA (x y:A) := ~ leA x y.

Hypothesis leA_dec : forall x y:A, {leA x y} + {~ leA x y}.
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
Hypothesis leA_refl : forall x y:A, eqA x y -> leA x y.
Hypothesis leA_trans : forall x y z:A, leA x y -> leA y z -> leA x z.
Hypothesis leA_antisym : forall x y:A, leA x y -> leA y x -> eqA x y.

Hint Resolve leA_refl: default.
Hint Immediate eqA_dec leA_dec leA_antisym: default.

Let emptyBag := EmptyBag A.
Let singletonBag := SingletonBag _ eqA_dec.

(** contents of a list *)

Fixpoint list_contents (l:list A) : multiset A :=
  match l with
  | nil => emptyBag
  | a :: l => munion (singletonBag a) (list_contents l)
  end.

Lemma list_contents_app :
 forall l m:list A,
   meq (list_contents (l ++ m)) (munion (list_contents l) (list_contents m)).
Proof.
simple induction l; simpl in |- *; auto with datatypes.
intros.
apply meq_trans with
 (munion (singletonBag a) (munion (list_contents l0) (list_contents m)));
 auto with datatypes.
Qed.
Hint Resolve list_contents_app.

Definition permutation (l m:list A) :=
  meq (list_contents l) (list_contents m).

Lemma permut_refl : forall l:list A, permutation l l.
Proof.
unfold permutation in |- *; auto with datatypes.
Qed.
Hint Resolve permut_refl.

Lemma permut_tran :
 forall l m n:list A, permutation l m -> permutation m n -> permutation l n.
Proof.
unfold permutation in |- *; intros.
apply meq_trans with (list_contents m); auto with datatypes.
Qed.

Lemma permut_right :
 forall l m:list A,
   permutation l m -> forall a:A, permutation (a :: l) (a :: m).
Proof.
unfold permutation in |- *; simpl in |- *; auto with datatypes.
Qed.
Hint Resolve permut_right.

Lemma permut_app :
 forall l l' m m':list A,
   permutation l l' -> permutation m m' -> permutation (l ++ m) (l' ++ m').
Proof.
unfold permutation in |- *; intros.
apply meq_trans with (munion (list_contents l) (list_contents m));
 auto with datatypes.
apply meq_trans with (munion (list_contents l') (list_contents m'));
 auto with datatypes.
apply meq_trans with (munion (list_contents l') (list_contents m));
 auto with datatypes.
Qed.
Hint Resolve permut_app.

Lemma permut_cons :
 forall l m:list A,
   permutation l m -> forall a:A, permutation (a :: l) (a :: m).
Proof.
intros l m H a.
change (permutation ((a :: nil) ++ l) ((a :: nil) ++ m)) in |- *.
apply permut_app; auto with datatypes.
Qed.
Hint Resolve permut_cons.

Lemma permut_middle :
 forall (l m:list A) (a:A), permutation (a :: l ++ m) (l ++ a :: m).
Proof.
unfold permutation in |- *.
simple induction l; simpl in |- *; auto with datatypes.
intros.
apply meq_trans with
 (munion (singletonBag a)
    (munion (singletonBag a0) (list_contents (l0 ++ m))));
 auto with datatypes.
apply munion_perm_left; auto with datatypes.
Qed.
Hint Resolve permut_middle.

End defs.
Unset Implicit Arguments.